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Simple Summary: The phenomenon of global climate change can impact the geographic range and
abundance of species, thereby heightening the vulnerability of rare species to extinction. The reed
parrotbill (Paradoxornis heudei David, 1872) is endemic to central and eastern China and is considered
a near-threatened species according to the International Union for Conservation of Nature (IUCN).
This study shows that temperature annual range, annual precipitation, and isothermality were the
principal climatic factors to limit the habitat suitability of P. heudei. Presently, the suitable habitat for
P. heudei is predominantly found in the central–eastern and northeast plains of China, especially the
eastern coastal area. P. heudei is sensitive to climate change. In the future, northeastern China may
serve as a potential suitable habitat for P. heudei.

Abstract: The phenomenon of global climate change can impact the geographic range and biodiversity,
thereby heightening the vulnerability of rare species to extinction. The reed parrotbill (Paradoxornis
heudei David, 1872) is endemic to central and eastern China, it is mainly distributed in the middle
and lower reaches of the Yangtze River Plain and the Northeast Plain. In this study, eight of ten
algorithms of the species distribution model (SDM) were used to evaluate the impact of climate
change on the potential distribution of P. heudei under current and future climate scenarios and to
analyze the possible related climate factors. After checking the collected data, 97 occurrence records
of P. heudei were used. The relative contribution rate shows that among the selected climatic variables,
temperature annual range (bio7), annual precipitation (bio12), and isothermality (bio3) were the
principal climatic factors to limit the habitat suitability of P. heudei. The suitable habitat for P. heudei is
primarily concentrated in the central–eastern and northeast plains of China, particularly in the eastern
coastal region, spanning a mere area of 57,841 km2. The habitat suitability of P. heudei under different
representative concentration pathway (RCP) scenarios was predicted to be different under future
climatic conditions, but all of them had a larger range than the current one. The species distribution
range could expand by more than 100% on average compared with the current range under the
four scenarios in 2050, while it could contract by approximately 30% on average relative to the 2050
range in 2070 under different climate change scenarios. In the future, northeastern China may serve
as a potential suitable habitat for P. heudei. The changes in the spatial and temporal distributions
of P. heudei’s range are of utmost importance in identifying high-priority conservation regions and
devising effective management strategies for its preservation.
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1. Introduction

The distribution of species is determined by multiple environmental variables, and
many studies have demonstrated that species respond differently to climate change, leading
to range adaptations such as expansions, shifts, or contractions to adjust to the new condi-
tions they encounter [1–3]. Otherwise, numerous species would be at risk of extinction [4,5].
Climate change has led to substantial changes in the geographic distribution of a large
number of taxa, ranging from insects to amphibians and reptiles, mammals, and even
birds [6–10]. Studying the transformation of climatic niches throughout geological periods
is imperative in comprehending the mechanisms of adaptation, speciation, and extinction,
as well as the role of climate in shaping the patterns of species diversity [11]. Previous
studies have shown that as a response to global warming, terrestrial species are shifting
their distribution towards higher altitudes or latitudes [12]. Predicting the potential habitat
in the future and identifying the risk of extinction is essential, as it allows us to take pre-
ventive measures beforehand [13]. Understanding the relationship between niche change
and climate change can help us understand whether species are capable of adapting their
climatic niche to new conditions [14]. When facing changing climatic conditions, lineages
with the capability to withstand novel circumstances are chosen, leading to niche evolution
through adaptation within the lineages, as well as selective speciation and extinction of
various lineages [15].

Species distribution modeling (SDM) is a widely used and effective method to assem-
ble and represent the spatial distribution of different taxa [16] using data from observed
species distribution records to infer the ecological requirements of species and map their
habitat suitability [17,18]; it has been implemented in biological invasion management, the
identification and protection of critical habitats, and the selection and migration of pro-
tected areas [19,20]. In the past two decades, the use of SDMs has become one of the most
effective techniques for investigating the impact of climate change on habitat suitability
and the conservation of endangered species, since it does not require field experiments and
is easily used to predict distribution under climate change [21,22]. With many different
methods and protocols, including generalized linear models (GLMs), generalized additive
models (GAMs), MaxEnt (maximum entropy model), random forests (RFs), and bioclimatic
envelope, various SDM methods have been employed for the assessment of ecological
requirements, ecological responses, and distribution areas [23–26]. Each model has its
own advantages and limitations due to the different principles and algorithms used, and
the performance of the model is unstable with the change in input data. Instead of being
limited to one model, it is better to set up a model group, integrate the results of multiple
models, and take one comprehensive result as the output of the model group to improve the
accuracy of the prediction results [27]. Therefore, biomod2, a model platform based on R
language, was developed and has been widely recognized and used since its release [1,28].

The reed parrotbill (Paradoxornis heudei David, 1872) is mainly distributed in the lower
Yangtze River, the Yellow Sea coast of northeastern China, extreme eastern Mongolia, and
extreme southeastern Russia and is a resident species endemic to East Asia [29]. Recently,
the population of P. heudei has been declining due to habitat loss and degradation, and it
is listed as near threatened (NT) by the International Union for Conservation of Nature
(IUCN) [30]. The reed parrotbill has high habitat specificity and is limited to living in
reedbeds, which are very wet areas of reed plants between water and land [31,32]. In
the future, this species is facing a moderate-to-rapid decline across its range, mainly due
to development and habitat degradation within reedbed habitats. Previous studies have
focused on the descriptions of breeding biology, ecology, and genetic markers [31,33–36].
However, it is unclear how climate change affects population dynamics and where a
suitable habitat for P. heudei might be in the future. Thus, one crucial issue concerning
the ecological importance of P. heudei is to ascertain the impact of climate change on the
suitable habitat’s geographical distribution.

Here, we used a large number of geo-referenced records and recent survey data to
model the potential distribution of P. heudei in China using 10 algorithms and the species
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distribution model (SDM). In this paper, we hope to use the existing distribution data of
P. heudei to (1) identify the environmental variables that influence the selection of suitable
distribution areas of P. heudei, (2) predict the current suitable distribution range of P. heudei
based on the ecological niche model, and (3) predict the change in the suitable distribution
area of P. heudei under climate change to provide evidence for the habitat selection and
conservation of P. heudei.

2. Materials and Methods
2.1. Species Occurrence Records

Our study area was located in East Asia, mainly in the central–eastern and northeastern
regions of China, ranging from 107 to 133◦ E and from 28 to 49◦ N based on the distribution
range of P. heudei. The distribution data of P. heudei were collected with field surveys and
from the Global Biodiversity Information Facility (GBIF) database [http://www.gbif.org/
(accessed on 13 November 2022)], for a total of 1892 data collected, of which many were
duplicate records [37]. Duplicate and invalid records were manually removed; records with
obvious misdescriptions of areas and inaccurate descriptions were discarded; and some
records without clear geographical distribution were identified and confirmed using Google
Earth and GPSspg [http://www.gpsspg.com/maps.htm/ (accessed on 13 November 2022)]
for latitude and longitude. To minimize the sampling bias effect in our dataset [38], only
one distribution point was randomly retained in a 2.5 arc minute grid cell. After removing
points with unclear and incorrect information, we used the spThin package in R 4.0.1 for
spatial rarefaction to examine the P. heudei records for spatial autocorrelation, which helped
to minimize spatial biases and ensure occurrence independence [39].

After discarding duplicate and invalid data, we assembled a database of 97 spa-
tially georeferenced occurrence records for model calibration, mainly covering central–
eastern China and northeastern China, including Hubei, Henan, Jiangsu, and Heilongjiang
Provinces, as well as a few areas of Mongolia and Russia along the Chinese border with
China.

2.2. Environmental Predictors

Temperature and precipitation data have been identified as the factors that have the
greatest impact on the current species niche [40]. We obtained 19 bioclimatic variables at a
resolution of 2.5 arcmin using WorldClim [version 2.1; available at https://www.worldclim.
org (accessed on 13 November 2022)], which represented the average temperature and
precipitation data from 1970 to 2000 [41]. The variables selected included those that
represent potential physiological limits for species [42]. To avoid the effect of overfitting,
Pearson correlations were used to examine multicollinearity. In the pairwise comparison
of the 19 bioclimatic variables, when the absolute value of the correlation coefficient of a
certain climatic variable pair was greater than 0.7, it was regarded as a higher contribution,
and the corresponding bioclimatic variable was eliminated [43].

To measure the changes in species distribution ranges due to climate change, we used
four RCP scenarios (RCP2.6, RCP4.5, RCP6.0, and RCP8.5) in two periods, 2050 (average
for 2041–2060) and 2070 (average for 2061–2080), with the same spatial resolution of the
current period data [44]. Among them, RCP8.5 led to the largest temperature rise, followed
by RCP6.0, RCP4.5, and RCP2.6, which had the smallest impact on global warming. An
important difference among the four different scenario models is the difference in future
land use planning [45]. RCP8.5 is the baseline scenario with no climate change policy
intervention; RCP6.0 is the climate scenario with government intervention; RCP4.5 is the
climate scenario with another government intervention; and RCP2.6 is the scenario model
with very low GHG concentrations.

2.3. Modeling Procedure

An ensemble modeling approach with ten algorithms was used to predict the potential
distribution of P. heudei under current and future climate scenarios; the algorithms were

http://www.gbif.org/
http://www.gpsspg.com/maps.htm/
https://www.worldclim.org
https://www.worldclim.org
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ANN (artificial neural network), FDA (flexible discriminant analysis), GAM (generalized
additive model), CTA (classification tree analysis), GBM (generalized boosted model),
GLM (generalized linear model), SRE (one rectilinear envelope similar to BIOCLM), MARS
(multivariate adaptive regression splines), MaxEnt (maximum entropy model), and RF
(random forest), implemented using the biomod2 package in R 4.0.2 software [27]. We
obtained 10,000 pseudo-absences or background records for the study area, which are
necessary for several algorithms [26]. We employed a five-fold cross-validation method
to train the models, whereby 80% of data (including presences and pseudo-absences)
were randomly selected for model training, and the remaining data were used for model
testing. We used two criterium parameters, true skill statistics (TSS) and area under the
receiver operating characteristic curve (AUC) to evaluate the predictive performance of the
algorithms [46].

To project the habitat suitability of P. heudei under current and future climates, the algo-
rithms with TSS ≥ 0.60 and AUC ≥ 0.80 were used for estimating the relative contributions
of the predictor variables using a randomization method. To improve the interpretation of
distribution changes in current and future climates, we transformed potential distribution
projections into binary maps (suitable/unsuitable) by maximizing the TSS value [26,47]. To
estimate changes in range size by comparing suitable habitats under current and future
climatic conditions, we quantified loss areas, stable areas, and gain areas by counting the
number of raster cells (each 2.5 × 2.5 arcmin grid cell) that fell into each category [27].

3. Results
3.1. Predictor Variable Contributions and Model Performance

Based on the results of pairwise Pearson correlation analysis, we chose five cli-
matic variables (isothermality (bio3), i.e., mean diurnal range/ temperature annual range
(bio2/bio7); max temperature in the warmest month (bio5); temperature annual range
(bio7); annual precipitation (bio12); precipitation in the driest quarter (bio17)) without
collinearity to predict the SDM for P. heudei in China (Figure 1).
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Figure 1. (a) Pearson correlations of 19 bioclimatic variables. The variables with correlation coeffi-
cients of more than 0.7 were excluded. (b) Analysis of 19 climatic factors’ Pearson correlations. The
red dots represent positive correlations, and the black dots represent negative correlations. The darker
the color and the larger the circle are, the greater the correlation was. If there was no correlation, there
is no color.

Eight of the ten modeling algorithms showed superior predictive performance
(TSS ≥ 0.60 and AUC ≥ 0.80), and these were ANN, FDA, GAM, GBM, GLM, MARS,
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MaxEnt, and RF (Figure 2). Therefore, these eight models were used to project the habitat
suitability of P. heudei. According to the basic values of relative contribution, temperature
annual range (bio7), annual precipitation (bio12), and isothermality (bio3) were identified
as the most important factors influencing the distribution of P. heudei. The establishment of
P. heudei was mainly limited by temperature and precipitation (Figure 3).

Biology 2023, 12, x FOR PEER REVIEW 5 of 12 
 

 

 
 

(a) (b) 

Figure 1. (a) Pearson correlations of 19 bioclimatic variables. The variables with correlation coeffi-
cients of more than 0.7 were excluded. (b) Analysis of 19 climatic factors’ Pearson correlations. The 
red dots represent positive correlations, and the black dots represent negative correlations. The 
darker the color and the larger the circle are, the greater the correlation was. If there was no corre-
lation, there is no color. 

Eight of the ten modeling algorithms showed superior predictive performance (TSS 
≥ 0.60 and AUC ≥ 0.80), and these were ANN, FDA, GAM, GBM, GLM, MARS, MaxEnt, 
and RF (Figure 2). Therefore, these eight models were used to project the habitat suitability 
of P. heudei. According to the basic values of relative contribution, temperature annual 
range (bio7), annual precipitation (bio12), and isothermality (bio3) were identified as the 
most important factors influencing the distribution of P. heudei. The establishment of P. 
heudei was mainly limited by temperature and precipitation (Figure 3). 

 
Figure 2. Ten modeling algorithms were evaluated for their predictive performance in estimating 
the habitat suitability of Paradoxornis heudei using the true skill statistics (TSS) and area under the 
receiver operating characteristic curve (AUC) metrics. ANN: artificial neural network; FDA: flexible 
discriminant analysis; GAM: generalized additive model; CTA: classification tree analysis; GBM: 
generalized boosted model; GLM: generalized linear model; SRE: one rectilinear envelope similar 
to BIOCLM; MARS: multivariate adaptive regression splines; Maxent: maximum entropy model; 
RF: random forest. 

Figure 2. Ten modeling algorithms were evaluated for their predictive performance in estimating
the habitat suitability of Paradoxornis heudei using the true skill statistics (TSS) and area under the
receiver operating characteristic curve (AUC) metrics. ANN: artificial neural network; FDA: flexible
discriminant analysis; GAM: generalized additive model; CTA: classification tree analysis; GBM:
generalized boosted model; GLM: generalized linear model; SRE: one rectilinear envelope similar to
BIOCLM; MARS: multivariate adaptive regression splines; Maxent: maximum entropy model; RF:
random forest.
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Figure 3. The relative contributions of selected predictor variables in the ensemble model of the
habitat suitability of Paradoxornis heudei could be determined. bio3: mean diurnal range/temperature
annual range; bio5: max temperature in the warmest month; bio7: temperature annual range; bio12:
annual precipitation; bio17: precipitation in the driest quarter.

3.2. Current Potential Distribution

The projection results indicate that the preferred habitat of P. heudei was mostly identi-
fied in the central–eastern and northeastern plains of China, especially in the coastal areas
of the plains. Under the current climatic conditions, the potential habitat area for P. heudei
covers approximately 57,841 km2 and is predominantly located in Northeast Plain, and
North China Plain and the middle and lower reaches of Yangtze Plain, with the central
area being the most suitable (Figure 4). The suitable habitat for P. heudei is extensive but not
continuous, exhibiting a fragmented distribution.
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Figure 4. Binary habitat suitability output for Paradoxornis heudei based on current climatic conditions.
The blue color indicates a suitable range, while the gray color represents an unsuitable range for the
habitat. The red squares represent the occurrence records of Paradoxornis heudei.

3.3. Projected Potential Distribution in the Future Considering Climate Change

Under the four scenarios of RCP6, the projections of the habitat suitability of P. heudei
under the future climatic conditions were different, but all of them were expanded com-
pared with the current climate range, and the changes were the greatest under the scenario
of RCP6. Under this scenario, the suitable distribution area of P. heudei could exceed
138,000 km2 by 2050, more than double the current area (Figure 5). In both 2050 and 2070,
the range could expand and then shrink under different climate change scenarios. In 2050,
the range of the four scenarios could increase by more than 100% on average. On average,
the 2070 range could be about 30% smaller than the 2050 range.
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Figure 5. Range size change in Paradoxornis heudei in 2050 and 2070 under four RCPs.

The simulation results show that the suitable distribution area of P. heudei could
shift to the north in the future. Compared with the currently suitable distribution area,
the expanded area could be mainly concentrated in Songnen Plain, Sanjiang Plain, and
Liaodong Bay area in northeastern China, which could become the main habitat of P. heudei
in the future (Figure 6). However, the suitable distribution area in North China Plain and
Jiangsu Province could be significantly reduced in the future, especially in Jiangsu Province,
which could be reduced by more than 90% compared with the current range.
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Figure 6. Future distribution of suitable habitats for Paradoxornis heudei. The blue areas are currently
known to be suitable habitats and may remain so in the future. The red areas represent newly
identified suitable habitats projected to emerge in the future. The black areas, which are currently
suitable habitats, may become unsuitable due to climate changes.

4. Discussion

In this study, we comprehensively analyzed the potential suitable habitat of the reed
parrotbill Paradoxornis heudei under present and future climatic conditions, which could
serve as a crucial step in developing an effective conservation strategy for the species. Our
model indicates that the suitable habitat area for the species under the current climatic
conditions covers approximately 57,841 km2, mainly in the central–eastern and northeastern
plains of China, particularly in the eastern coastal region. This study demonstrates good
predictive accuracy and reveals that P. heudei is widely distributed. However, the suitable
habitats are discontinuous, indicating a fragmented distribution pattern.

Identifying appropriate variables is a key step to maximize the performance of niche
models and their spatiotemporal prediction [48]. Based on the variable importance results,
the environmental variable with the highest gain was bio7, indicating that temperature
annual range (=bio5–bio6, Max temperature in the warmest month–Min temperature in the
coldest month) was the principal climatic factor to limit the habitat suitability of P. heudei
(Figure 3). The relative contribution rate shows that among the selected climatic variables,
annual precipitation (bio12) gave the second highest contribution to the distribution model,
indicating that bio12 was an important driving factor for the habitat selection of P. heudei.
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Variables related to extreme environmental conditions, such as bio3 (isothermality) and bio5
(maximum temperature in the warmest month), were found to be important in explaining
the distribution. Temperature is a crucial factor in determining the distribution of species,
and evaluating the impact of climatic variables across a large geographical area can provide
information about suitable habitats for a particular species [49]. Precipitation is also closely
linked to wet conditions, such as the amount of water in ponds, streams, and slow-moving
wetlands. The reed parrotbill Paradoxornis heudei mainly inhabits coastal, lakeside, and
riverside wetlands where the common reed Phragmites australis is found [32,36]. The results
of the species distribution model indicate that the potential suitable habitats for the bird
exhibited a fragmented distribution rather than a continuous one (Figure 4). Reedbeds
in East Asia are threatened by commercial harvesting, wetland reclamation, and sewage
discharge, which have led to a decrease in the quality and size of reed marshes, potentially
threatening the survival of P. heudei. Temperature and precipitation are considered to be
the most predictive variables for birds in the species distribution model [40,50].

Under current and future scenarios, the suitability of the habitats showed a large range
shift (loss and/or gain), with more habitat suitability towards the northern parts of the
study area and some scattered locations (Figure 6). We found that the distribution area of
P. heudei could be gradually losing their inland habitats and expanding towards coastal
areas and the north due to habitat loss. Under different climate change scenarios, the
distribution range is expected to expand and then contract in both the 2050 and 2070 time
periods. The range is projected to expand by more than 100% compared with the current
range under the four scenarios in 2050 but to contract by approximately 30% relative to the
2050 range in 2070. This study revealed that P. heudei is sensitive to climate change, which
could result in a significant range shift. Northeastern China could be the main distribution
areas for P. heudei in the future.

With global warming, some species could induce range shifts and migrate to high
latitudes or high elevations, while others may adapt to these changes [51]. We projected the
species distribution models into the future to analyze the impact of global warming on the
distribution of P. heudei. Our predictions suggest that the current trend of global warming
could significantly impact the potential distribution of the species, as projected by a simple
climate model for the years 2050 and 2070. As temperatures continue to rise, P. heudei is
expected to shift its range northwards in search of more suitable habitats (Figure 6). Our
results showed that with the rise in temperatures, the potential suitable range of P. heudei
could shift towards higher altitudes and latitudes, gradually moving northward from
North China Plain and the middle and lower Yangtze River Plain to Songnen Plain and
Sanjiang Plain in northeastern China.

Due to the ongoing climate change, numerous bird species have shifted their geo-
graphic ranges towards the north [52,53]. In the past 20 years, the distribution of more than
120 species of birds has expanded northward or shifted westward in China. For example,
Pycnonotus sinensis Swinhoe, 1870, has spread northward, from the Yangtze River basin
and its southern regions to northern China [54]. Sixty-one bird species are expected to shift
their cold-zone boundaries poleward by an average of 3.9 degrees by 2070 [7]. Secondly,
climate change is also expected to determine major environmental changes in microclimate
zones, and potential microclimate zones can support various habitats under relatively
stable conditions [55]. Songnen Plain and Sanjiang Plain are encompassed by mountains
that block cold air from northern Siberia and water vapor from the ocean. As a consequence,
there could be various small areas with unique microclimates and relatively consistent
climate and ecological conditions in this region. Nevertheless, microhabitats can lower
the mean temperature and the duration of extreme temperatures, thereby mitigating the
effects of climate change on species [56]. Slow runoff, seasonal freeze–thaw cycles, and
clay and heavy soils all contribute to prolonged surface wetness, excessive water, and poor
surface drainage. These conditions eventually lead to the formation of a large marshy water
body with multiple saline–alkali lake bubbles and swamp depressions in the affected area.
These water bodies have a good role in maintaining temperature, and the annual range of
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temperature is an important driving factor for the habitat selection of P. heudei. According
to the findings of this study, P. heudei is highly susceptible to the impacts of climate change,
which could result in a significant displacement of suitable habitats under future climatic
conditions.

The spatial distribution of a species is influenced not only by climate but also by
factors such as topography, land cover, human influence, altitude, and other constraints.
It is important not to ignore the fact that the habitat of P. heudei is unique and heavily
reliant on the reed habitat. Therefore, it is suggested that the river system and reed layer be
superimposed in the future prediction of the suitable distribution area of P. heudei, so as to
more accurately simulate the suitable distribution area of P. heudei and its future changes.
Why the currently suitable habitats in the middle and lower reaches of Yangtze Plain will
unsuitable for P. heudei in the future, more studies are needed with greater consideration of
the ecological requirements.

5. Conclusions

In this study, eight of ten algorithms of the species distribution model (SDM) were
used to evaluate the impact of climate change on the potential distribution of the reed
parrotbill (Paradoxornis heudei David, 1872) under current and future climate scenarios.
According to the basic values of relative contribution, temperature annual range (bio7),
annual precipitation (bio12), and isothermality (bio3) were identified as the most important
factors influencing the distribution of P. heudei. Under the current climatic conditions, the
potential habitat area of P. heudei covers approximately 57,841 km2 and is predominantly
located in Northeast Plain, and North China Plain and the middle and lower reaches of
Yangtze Plain, with the central area being the most suitable. The suitable habitat for P. heudei
is extensive but not continuous, exhibiting a fragmented distribution. The habitat suitability
of P. heudei under different representative concentration pathways (RCPs) was predicted to
vary under future climatic conditions. According to the species distribution model (SDM)
predictions, we suggest that the future management strategy for P. heudei should consider
the potential impacts of climate change on the species and prioritize the conservation of the
Songneng and Sanjiang Plain’s wetlands to ensure adequate survival space in the future.

Supplementary Materials: The following supporting information can be downloaded at: https:
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