
Citation: Lew, S.Y.; Mohd Hisam,

N.S.; Phang, M.W.L.; Syed Abdul

Rahman, S.N.; Poh, R.Y.Y.; Lim, S.H.;

Kamaruzzaman, M.A.; Chau, S.C.;

Tsui, K.C.; Lim, L.W.; et al. Adenosine

Improves Mitochondrial Function

and Biogenesis in Friedreich’s Ataxia

Fibroblasts Following L-Buthionine

Sulfoximine-Induced Oxidative

Stress. Biology 2023, 12, 559. https://

doi.org/10.3390/biology12040559

Academic Editors: Hengming Ke and

Carlo M. Bergamini

Received: 20 February 2023

Revised: 25 March 2023

Accepted: 30 March 2023

Published: 6 April 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Adenosine Improves Mitochondrial Function and Biogenesis in
Friedreich’s Ataxia Fibroblasts Following L-Buthionine
Sulfoximine-Induced Oxidative Stress
Sze Yuen Lew 1,† , Nur Shahirah Mohd Hisam 1,†, Michael Weng Lok Phang 1, Syarifah Nur Syed Abdul Rahman 2,
Rozaida Yuen Ying Poh 3 , Siew Huah Lim 4, Mohd Amir Kamaruzzaman 5 , Sze Chun Chau 6, Ka Chun Tsui 6 ,
Lee Wei Lim 6,* and Kah Hui Wong 1,6,*

1 Department of Anatomy, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
2 Department of Oral and Craniofacial Sciences, Faculty of Dentistry, Universiti Malaya,

Kuala Lumpur 50603, Malaysia
3 Department of Biomedical Science, Faculty of Medicine, Universiti Malaya, Kuala Lumpur 50603, Malaysia
4 Department of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia
5 Department of Anatomy, Faculty of Medicine, Universiti Kebangsaan Malaysia, Jalan Yaacob Latiff, Cheras,

Kuala Lumpur 56000, Malaysia
6 School of Biomedical Sciences, Li Ka Shing Faculty of Medicine, The University of Hong Kong,

Hong Kong SAR, China
* Correspondence: drlimleewei@gmail.com (L.W.L.); wkahhui@um.edu.my (K.H.W.);

Tel.: +852-9157-2575 (L.W.L.); +60-126915782 (K.H.W.)
† These authors contributed equally to this work.

Simple Summary: Friedreich’s ataxia is the most common form of inherited ataxia, with an estimated
prevalence of 1:50,000 in Caucasians. With no cure and a reduced lifespan, Friedreich’s ataxia is
a devastating neurodegenerative disease. At the present time, the treatment strategies are aimed
at specific symptoms, such as supportive treatment and physical therapy for motor dysfunction.
Medication could improve the symptoms. However, side effects may include intolerable nausea,
insomnia, and/or depression. The lack of effective therapeutic options remains a major gap in the
field. Mitochondrial dysfunction and oxidative stress have been implicated in the pathogenesis of
Friedreich’s ataxia. Here, we investigated the protective effects of adenosine against mitochondrial
impairment in Friedreich’s ataxia. We showed that adenosine attenuated the deleterious effects of
oxidative stress and mitochondrial dysfunction by regulating mitochondrial function and biogenesis
in fibroblasts derived from a Friedreich’s ataxia patient. It serves as a promising therapeutic associated
with mitochondrial dynamics that could eventually be a major breakthrough in the treatment of
Friedreich’s ataxia, ultimately improving the quality of life of Friedreich’s ataxia patients and their
caregivers and reducing its associated healthcare burden.

Abstract: Adenosine is a nucleoside that is widely distributed in the central nervous system and acts
as a central excitatory and inhibitory neurotransmitter in the brain. The protective role of adenosine
in different pathological conditions and neurodegenerative diseases is mainly mediated by adenosine
receptors. However, its potential role in mitigating the deleterious effects of oxidative stress in
Friedreich’s ataxia (FRDA) remains poorly understood. We aimed to investigate the protective
effects of adenosine against mitochondrial dysfunction and impaired mitochondrial biogenesis in
L-buthionine sulfoximine (BSO)-induced oxidative stress in dermal fibroblasts derived from an
FRDA patient. The FRDA fibroblasts were pre-treated with adenosine for 2 h, followed by 12.50 mM
BSO to induce oxidative stress. Cells in medium without any treatments or pre-treated with 5 µM
idebenone served as the negative and positive controls, respectively. Cell viability, mitochondrial
membrane potential (MMP), aconitase activity, adenosine triphosphate (ATP) level, mitochondrial
biogenesis, and associated gene expressions were assessed. We observed disruption of mitochondrial
function and biogenesis and alteration in gene expression patterns in BSO-treated FRDA fibroblasts.
Pre-treatment with adenosine ranging from 0–600 µM restored MMP, promoted ATP production and
mitochondrial biogenesis, and modulated the expression of key metabolic genes, namely nuclear

Biology 2023, 12, 559. https://doi.org/10.3390/biology12040559 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12040559
https://doi.org/10.3390/biology12040559
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-5402-6869
https://orcid.org/0000-0002-7893-9929
https://orcid.org/0000-0003-4163-2234
https://orcid.org/0000-0002-1366-1284
https://orcid.org/0000-0001-6692-6285
https://orcid.org/0000-0002-8292-4498
https://doi.org/10.3390/biology12040559
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12040559?type=check_update&version=2


Biology 2023, 12, 559 2 of 20

respiratory factor 1 (NRF1), transcription factor A, mitochondrial (TFAM), and NFE2-like bZIP
transcription factor 2 (NFE2L2). Our study demonstrated that adenosine targeted mitochondrial
defects in FRDA, contributing to improved mitochondrial function and biogenesis, leading to cellular
iron homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.

Keywords: adenosine; Friedreich’s ataxia; dermal fibroblasts; oxidative stress; mitochondrial func-
tion; mitochondrial biogenesis

1. Introduction

Friedreich’s ataxia (FRDA) is a degenerative autosomal recessive cerebellar ataxia,
causing movement disorder. Patients with FRDA suffer from progressive gait and limb
ataxia, weakness of the lower limbs, lack of tendon reflexes in the legs, dysarthria, hyper-
trophic cardiomyopathy, scoliosis, diabetes mellitus, and skeletal deformities [1]. Early-
onset patients often become wheelchair-bound at a median of 11.5 years after onset [2].
These patients have a reduced life expectancy. Cardiac dysfunctions, including dilated
cardiomyopathy and arrhythmia, are the most common cause of death in FRDA [3]. FRDA
is the most common inherited cerebellar ataxia in individuals of Western European origin,
with a prevalence between 1:20,000 and 1:725,000. It is also found in those of North African
and Middle Eastern origin, but it has not been reported in other ethnic groups [4].

FRDA is caused by the expansion of guanine–adenine–adenine (GAA) trinucleotide
repeats in the first intron of the frataxin (FXN) gene on chromosome 9q21.11, leading
to substantially decreased levels of mitochondrial protein FXN [5]. Reduced FXN level
causes increased cellular oxidative stress and impairs the formation of iron–sulfur (Fe-
S) clusters such as heme, electron transport chain complexes I-III, and aconitase of the
Krebs cycle [6]. Frataxin deficiency has been reported to impair the regulation of iron
in the formation of Fe-S clusters, resulting in iron accumulation in mitochondria [7–9].
Excessive iron accumulation in the mitochondrial matrix causes the generation of reactive
oxygen species (ROS) via the Fenton reaction and, therefore, increases oxidative stress and
inactivates mitochondrial enzymes [10,11]. Disrupted mitochondrial enzyme activity leads
to decreased mitochondrial respiration and production of adenosine triphosphate (ATP),
resulting in mitochondrial energy imbalance and mitochondrial dysfunction [12,13].

Adenosine is a nucleoside that is widely distributed in the central nervous system
(CNS) and acts as a central excitatory and inhibitory neurotransmitter in the brain [14].
It has multiple roles, including regulation of neurotransmitter release from synaptic vesi-
cles [15,16], neuronal hyperpolarization or depolarization [17,18], and glial cell activity [19].
Increased production of extracellular adenosine has been found to play a distinct role in
intercellular signaling by engaging cell surface adenosine receptors during myocardial
ischemia–reperfusion injury and hypoxia and inflammation in acute respiratory distress
syndrome and chronic lung diseases [14]. Although short-lived in circulation, adenosine
exerts its action through activation of specific G-protein-coupled receptors, for which
four subtypes (adenosine A1 receptor, A1R; adenosine A2A receptor, A2AR; adenosine
A2B receptor, A2BR; and adenosine A3 receptor, A3R) have been identified so far [20,21].
However, interaction with adenosine receptors depends on disease type, location of lesion,
and distribution of receptors [14]. Several CNS diseases, including cerebral ischemia [22],
Alzheimer’s disease, depression [23], and epilepsy, are associated with decreased expres-
sion of A1R and increased expression of A2AR [24]. Kao et al. [25] and Lee et al. [26]
also postulated that reduced levels of adenosine may cause neurological impairments in
Huntington’s and Alzheimer’s disease, respectively.
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To date, only one A2AR antagonist, namely istradefylline (KW6002), has been approved
by the US Food Drug and Administration (FDA) as an adjuvant treatment with levodopa
or carbidopa for patients with Parkinson’s disease [27,28]. Nevertheless, the therapeutic
efficacy of adenosine-related treatments for many neurological and neurodegenerative
diseases remains inconclusive [29].

In the past two decades, there has been scant evidence elucidating the protective
effects of adenosine against cerebellar ataxia. Heffer et al. [30] showed that behavioral
profiling of adenosine agonists is related to their affinity for A1R and A2R, similar to that of
dopamine antagonists in the attenuation of spontaneous locomotor activity in mice. On
the other hand, the cerebellar adenosinergic system involving A1R had been shown to
promote ethanol- [31] and cannabinoid-induced [32,33] motor incoordination, whereas A1R
antagonist attenuated the effect, suggesting modulation by an endogenous A1R. However,
the mechanism of accentuation of motor incoordination by N6-cyclohexyladenosine, an
A1R-selective agonist, was not investigated in the study. Moreover, Dar and Mustafa [34]
found that antisense oligodeoxynucleotide targeting A1R significantly decreased the protein
level of A1R.

The current study aims to bridge the research gap between the reported therapeutic
effects of adenosine and the involvement of mitochondrial function and biogenesis in
FRDA. Here, we investigated the protective effects of adenosine against mitochondrial
dysfunction and impaired mitochondrial biogenesis in L-buthionine sulfoximine (BSO)-
induced oxidative stress in dermal fibroblasts derived from an FRDA patient.

2. Materials and Methods
2.1. Chemicals and Reagents

Reagents used in this study include Dulbecco’s Modified Eagle Medium (DMEM)
(Gibco, Thermo Fisher Scientific, Waltham, MA, USA); fetal bovine serum (FBS) (Biosera,
Nuaillé, France); idebenone, L-buthionine sulfoximine (BSO), and aconitase assay kit
(Cayman Chemical, Ann Arbor, MI, USA); adenosine, penicillin–streptomycin, and mi-
tochondrial membrane potential (MMP) kit (Sigma-Aldrich, St. Louis, MO, USA); 3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) (Alfa Aesar, Haverhill, MA,
USA); Mitochondrial ToxGloTM assay kit (Promega Corporation, Madison, WI, USA);
MitoBiogenesis™ In-Cell ELISA Kit (Abcam, Cambridge, UK); TRIzol® reagent (Life Tech-
nologies, Thermo Fisher Scientific, Waltham, MA, USA); RevertAid First Strand cDNA
Synthesis Kit (Thermo Fisher Scientific, Waltham, MA, USA); qPCRBIO SyGreen Mix
Separate-ROX (PCR Biosystems, London, UK); and OmniPur® water (Merck Millipore,
Darmstadt, Germany).

2.2. Dermal Fibroblasts Culture

Dermal fibroblasts from a healthy 33-year-old male (GM02673) and dermal fibroblasts
from a 30-year-old FRDA male patient (GM04078) were purchased from Coriell Institute for
Medical Research (Camden, NJ, USA) under the terms of the Material Transfer Agreement
(Assurance Form) with the Universiti Malaya, with Dr. Kah Hui Wong as the principal in-
vestigator. Both dermal fibroblasts from the National Institute of General Medical Sciences
(NIGMS) Human Genetic Cell Repository have been collected under Institutional Review
Board (IRB) approval, and patient informed consent. The species of origin and molecular
characterization of the fibroblasts were confirmed by Coriell Institute for Medical Research
via microsatellite analysis and nucleoside phosphorylase isoenzyme electrophoresis. The
FRDA fibroblasts are homozygous for GAA expansion in the FXN gene with alleles of
approximately 541 and 420 repeats. Dermal fibroblasts were maintained in DMEM sup-
plemented with 15% (v/v) FBS and 1% (v/v) penicillin–streptomycin at 37 ± 2 ◦C in a 5%
CO2-humidified incubator according to a previous protocol [35]. Fibroblasts in DMEM
without any treatment or pre-treated with 5µM idebenone [36] served as the negative and
positive controls, respectively. Idebenone, an analog of coenzyme Q10, has been used as an
antioxidant therapy for the management of hypertrophic cardiomyopathy in patients with
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FRDA [37]. Prior to the assays, the medium was changed to phenol red-free and sodium
pyruvate-free DMEM.

2.3. 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium Bromide (MTT) Viability Assay

The normal and FRDA fibroblasts were plated at a density of 1 × 104 cells per well
in a 96-well plate and incubated for 24 h at 37 ± 2 ◦C in a 5% CO2-humidified incubator.
The medium was replaced with a fresh medium containing adenosine ranging from 0 to
2000 µM for 24 h. Fibroblasts in DMEM without any treatment served as the negative
control. After incubation, 0.5 mg/mL MTT solution was added to each well and incubated
for 4 h at 37 ± 2 ◦C in a 5% CO2-humidified incubator. The reduction of MTT from a yellow
tetrazolium dye to purple formazan crystals can be used to measure cellular enzymes in
viable cells. The medium was then removed, and dimethyl sulfoxide (DMSO) was added
to each well. Absorbance was measured at 570 nm with 630 nm as background absorbance
using a multimode microplate reader (SpectraMax® M3, Molecular Devices, Union City,
CA, USA). The cell viability was expressed as a percentage of the negative control level.

As FRDA fibroblasts are lacking in frataxin, the cells are extremely sensitive to BSO-
induced oxidative stress compared to normal fibroblasts. Frataxin has been shown to
be influential in the production of Fe-S cluster-containing proteins [35]. We observed
a dose-response curve of viability of normal and FRDA fibroblasts following exposure
to varying concentrations of BSO for 24 h. The viability of FRDA fibroblasts decreased
gradually as the concentration of BSO increased from 1.56 to 6.25 mM, with a sharp
decrease in viability at 12.50 mM BSO. Large-scale death of FRDA fibroblasts was markedly
pronounced by challenging the cells with 12.50 mM BSO, by which the viability was reduced
to 37.47 ± 0.23%. On the other hand, 12.50 mM BSO produced mild cytotoxicity effects in
normal fibroblasts with a viability of 84.81 ± 5.62% [38]. As 12.50 mM BSO produced more
than 50% reduction (p < 0.05) in the viability of FRDA fibroblasts, the concentration was
selected for the subsequent assays of mitochondrial function and mitochondrial biogenesis
to induce oxidative stress in FRDA fibroblasts. Normal fibroblasts were not tested for
these assays.

2.4. Mitochondrial Membrane Potential (MMP) Assay

The FRDA fibroblasts were plated at a density of 1× 104 cells per well in a 96-well black
plate and incubated for 24 h at 37 ± 2 ◦C in a 5% CO2-humidified incubator. The medium
was replaced with a fresh medium containing adenosine ranging from 0 to 800 µM or 5 µM
idebenone and incubated for 2 h, followed by 12.50 mM BSO [38] for 24 h. Fibroblasts
in DMEM without any treatment or pre-treated with 5µM idebenone [36] served as the
negative and positive controls, respectively. The MMP was quantified in terms of the
permeability of JC-10 dye using the MMP kit according to the manufacturer’s protocol.
Fluorescence intensities were measured using a multimode microplate reader (SpectraMax®

M3, Molecular Devices, Union City, CA, USA) at 540 and 590 nm (red fluorescence) and 490
and 525 nm (green fluorescence) as the excitation and emission wavelengths, respectively.
The ratio of red to green fluorescence intensity was expressed as a percentage of the negative
control level.

2.5. Aconitase Assay

The FRDA fibroblasts were plated at a density of 1 × 105 cells per well in a 6-well
plate and incubated for 24 h at 37 ± 2 ◦C in a 5% CO2-humidified incubator. The medium
was replaced with a fresh medium containing adenosine ranging from 0 to 600 µM or 5 µM
idebenone and incubated for 2 h, followed by 12.50 mM BSO [38] for 24 h. Fibroblasts
in DMEM without any treatment or pre-treated with 5µM idebenone [36] served as the
negative and positive controls, respectively. Fibroblasts were homogenized in an assay
buffer and centrifuged at 800× g for 10 min at 4 ◦C to obtain the supernatant. Aconitase
activity was determined using the aconitase assay kit according to the manufacturer’s
protocol. Absorbance was measured at 450 nm using a multimode microplate reader
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(SpectraMax® M3, Molecular Devices, Union City, CA, USA). The activity was expressed
as a percentage of the negative control level.

2.6. Adenosine Triphosphate (ATP) Assay

The FRDA fibroblasts were plated at a density of 1 × 104 cells per well in a 96-
well white plate and incubated for 24 h at 37 ± 2 ◦C in a 5% CO2-humidified incubator.
The medium was replaced with a fresh medium containing adenosine ranging from 0 to
600 µM or 5 µM idebenone and incubated for 2 h, followed by 12.50 mM BSO [38] for
24 h. Fibroblasts in DMEM without any treatment or pre-treated with 5µM idebenone [36]
served as the negative and positive controls, respectively. The ATP content was determined
using the Mitochondrial ToxGloTM assay kit according to the manufacturer’s protocol.
Luminescence signal was measured using a multimode microplate reader (SpectraMax®

M3; Molecular Devices, Union City, CA, USA). The activity was expressed as a percentage
of the negative control level.

2.7. Mitochondrial Biogenesis Assay

The FRDA fibroblasts were plated at a density of 1 × 104 cells per well in a 96-well
plate and incubated for 24 h at 37 ± 2 ◦C in a 5% CO2-humidified incubator. The medium
was replaced with a fresh medium containing adenosine ranging from 0 to 600 µM or 5 µM
idebenone and incubated for 2 h, followed by 12.50 mM BSO [38] for 24 h. Fibroblasts
in DMEM without any treatment or pre-treated with 5µM idebenone [36] served as the
negative and positive controls, respectively. Mitochondrial biogenesis was determined
using the MitoBiogenesis™ In-Cell ELISA Kit according to the manufacturer’s protocol.
Absorbance was measured at 405 and 650 nm for COX1 and SDH-A, respectively, using a
multimode microplate reader (SpectraMax® M3; Molecular Devices, Union City, CA, USA).
The activity was expressed as a ratio of SDH-A to COX1.

2.8. Reverse Transcription Quantitative Real-Time Polymerase Chain Reaction (RT-qPCR)

The FRDA fibroblasts were plated at a density of 1 × 105 cells per well in a 6-well
plate and incubated for 24 h at 37 ± 2 ◦C in a 5% CO2-humidified incubator. The medium
was replaced with a fresh medium containing adenosine ranging from 0 to 600 µM or
5 µM idebenone and incubated for 2 h, followed by 12.50 mM BSO [38] for 24 h. Fibrob-
lasts in DMEM without any treatment or pre-treated with 5µM idebenone [36] served
as the negative and positive controls, respectively. Fibroblasts were subjected to total
RNA extraction using TRIzol® reagent according to the manufacturer’s protocol. The
concentration of total RNA was determined using the NanoDrop™ 2000/2000c Spec-
trophotometers (Thermo Fisher Scientific, Waltham, MA, USA). Approximately 300 ng
of total RNA was converted to cDNA using RevertAid First Strand cDNA Synthesis Kit
according to the manufacturer’s protocol and Veriti® 96-Well Thermal Cycler (Applied
Biosystems Inc., Foster City, CA, USA). The RT-qPCR was performed using 15 ng/µL
cDNA template in a pooled solution containing qPCRBIO SyGreen Mix Separate-ROX,
10 pmol/µL forward and reverse oligonucleotide primers, and OmniPur® water. The
primer sequences used in this study were synthesized by Genewiz (South Plainfield, NJ,
USA), as shown in Table 1. Amplification was performed for 40 cycles in the StepOne
Plus™ Real-Time PCR System (Applied Biosystems Inc., Foster City, CA, USA) [39–41].
The expression of the gene of interest was normalized to the reference gene actin beta
(ACTB). Fold change of gene expression was determined using the comparative threshold
cycle method (∆∆Ct) [42,43].
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Table 1. RT-qPCR primers.

Gene Origin 5′–3′ Primer Sequence

NFE2L2 Human
Forward: ACA CGG TCC ACA GCT CAT C

Reverse: TGT CAA TCA AAT CCA TGT CCT G

NRF1 Human
Forward: AGG AAC ACG GAG TGA CCC AA

Reverse: TAT GCT CGG TGT AAG TAG CCA

PPARGC1A Human
Forward: TTG ACT GGC GTC ATT CAG GA

Reverse: GGG CAA TCC GTC TTC ATC CA

TFAM Human
Forward: GTG ATT CAC CGC AGG AAA AGC

Reverse: GTG CGA CGT AGA AGA TCC TTT C

ACTB Human
Forward: GCC AAC ACA GTG CTG TCT GG

Reverse: CTG CTT GCT GAT CCA CAT CTG C
ACTB, actin beta; NFE2L2, NFE2-like bZIP transcription factor 2; NRF1, nuclear respiratory factor 1; PPARGC1A
PPARG coactivator 1 alpha; TFAM, transcription factor A, mitochondrial.

2.9. Statistical Analysis

All statistical analyses were performed in Statistical Package for the Social Science
(SPSS) 22.0, and data were presented as mean ± standard deviation (SD) from three
independent biological replicates (n = 3). The Shapiro–Wilk test was employed to evaluate
the normality of the data. Normally distributed data from more than two experimental
groups were examined by Levene’s test to evaluate the homogeneity of variances between
groups. All groups with equal variances assumed were evaluated by one-way analysis of
variance (ANOVA) to examine differences between groups, followed by Tukey’s honestly
significant difference (HSD) post-hoc test. All groups with equal variances not assumed
were evaluated by ANOVA, followed by Games–Howell multiple comparison post-hoc
test. A statistical difference of p < 0.05 was considered significant.

3. Results
3.1. Effects of Adenosine on the Viability of Normal and FRDA Fibroblasts

Prior to the investigation of the protective effects of adenosine, the viability of adenosine-
treated normal and FRDA fibroblasts was determined to exclude possible cytotoxic and
proliferative effects. Fibroblasts were exposed to various concentrations of adenosine.
As shown in Figure 1, the viability of normal and FRDA fibroblasts gradually decreased
with increasing concentration of adenosine from 0 to 2000 µM. As the relatively lower
concentrations of 0 to 800 µM adenosine showed no significant difference in the viability
compared to the negative control (p > 0.05), these concentrations were selected to investi-
gate its protective effects against mitochondrial dysfunction and impaired mitochondrial
biogenesis in FRDA fibroblasts challenged with 12.50 mM BSO.
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Figure 1. Effects of adenosine on the viability of normal and FRDA fibroblasts. Cell viability was
evaluated by MTT assay following incubation with various concentrations of adenosine for 24 h. Data
are expressed as mean ± SD and statistically analyzed by one-way ANOVA with Tukey’s post-hoc
test. Asterisk (*) and hash sign (#) indicate significant differences (p < 0.05) in viability for different
groups of normal and FRDA fibroblasts, respectively, compared to the negative control group.

3.2. Effects of Adenosine on the Mitochondrial Membrane Potential (MMP) in FRDA Fibroblasts
Treated with BSO

The MMP plays an important part in the energy storage process during oxidative
phosphorylation. We used JC-10 dye to discriminate energized and de-energized mitochon-
dria, indicated by red fluorescent aggregates in energized mitochondria with increasing
membrane potential and by green fluorescence monomers in cells with mitochondria with
collapsed MMP that fail to retain the dye. As shown in Figure 2, FRDA fibroblasts treated
with 12.50 mM BSO showed significantly decreased MMP of 87.86 ± 2.8% or 1.1-fold lower
compared to the negative control (p < 0.05). However, pre-treatment with 0 to 800 µM
adenosine significantly increased MMP (104.77 ± 3.0%, 101.94 ± 4.4%, 100.66 ± 0.7%, and
101.77 ± 2.9%, respectively) to 1.1- to 1.2-fold higher compared to BSO (p < 0.05). All tested
concentrations of adenosine exhibited 1.2- to 1.3-fold higher MMP compared to idebenone
(p < 0.05). As the relatively lower concentrations of 0 to 600 µM adenosine showed higher
MMP compared to 800 µM adenosine, these concentrations were selected in the subsequent
assays of mitochondrial function and biogenesis.
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Figure 2. Effects of adenosine on the MMP in FRDA fibroblasts treated with BSO. The MMP was
evaluated following pre-treatment with adenosine (0 to 800 µM) for 2 h and 12.50 mM BSO for
24 h. Data are expressed as mean ± SD and statistically analyzed by one-way ANOVA with Tukey’s
post-hoc test. Hash (#) and asterisk (*) indicate significant differences (p < 0.05) in MMP compared
to the idebenone group and BSO-treated (0 µM adenosine) group, respectively. BSO, L-buthionine
sulfoximine; MMP, mitochondrial membrane potential.

3.3. Effects of Adenosine on the Aconitase Activity in FRDA Fibroblasts Treated with BSO

Aconitase is an Fe-S protein in the Krebs cycle that catalyzes the isomerization of citrate
to isocitrate. As shown in Figure 3, FRDA fibroblasts treated with 12.50 mM BSO showed
significantly decreased aconitase activity of 59.33 ± 11.2% or 1.7-fold lower compared to the
negative control (p < 0.05). Pre-treatment with adenosine ranging from 0 to 600 µM failed to
restore the depleted aconitase activity (p > 0.05). However, pre-treatment with 400 and 600 µM
adenosine resulted in 1.4- to 1.5-fold higher activity compared to idebenone (p > 0.05).

Figure 3. Effects of adenosine on the aconitase activity in FRDA fibroblasts treated with BSO.
Aconitase activity was evaluated following pre-treatment with adenosine for 2 h and 12.50 mM BSO
for 24 h. Data are expressed as mean ± SD and statistically analyzed by one-way ANOVA with
Tukey’s post-hoc test. Hash (#) and asterisk (*) indicate significant differences (p < 0.05) in aconitase
activity compared to the idebenone group and BSO-treated (0 µM adenosine) group, respectively.
BSO, L-buthionine sulfoximine.
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3.4. Effects of Adenosine on the Adenosine Triphosphate (ATP) Level in FRDA Fibroblasts Treated
with BSO

The ATP is the source of energy for use and storage at the cellular level. As shown in
Figure 4, FRDA fibroblasts treated with 12.50 mM BSO showed a significantly decreased
ATP level of 74.83 ± 3.2% or 1.3-fold lower compared to the negative control (p < 0.05).
However, pre-treatment with 200 µM adenosine increased the ATP level to 85.45 ± 4.7% or
1.1-fold higher compared to BSO (p < 0.05). All tested concentrations of adenosine exhibited
179.1- to 203.5-fold higher ATP levels compared to idebenone (p < 0.05).

Figure 4. Effects of adenosine on the ATP level in FRDA fibroblasts treated with BSO. The ATP level
was evaluated following pre-treatment with adenosine for 2 h and 12.50 mM BSO for 24 h. Data
are expressed as mean ± SD and statistically analyzed by one-way ANOVA with Tukey’s post-hoc
test. Hash (#) and asterisk (*) indicate significant differences (p < 0.05) in ATP level compared to the
idebenone group and BSO-treated (0 µM adenosine) group, respectively. ATP, adenosine triphosphate;
BSO, L-buthionine sulfoximine.

3.5. Effects of Adenosine on the Mitochondrial Biogenesis in FRDA Fibroblasts Treated with BSO

Mitochondrial biogenesis is the growth and division of pre-existing mitochondria.
In this study, mitochondrial biogenesis was evaluated by the ratio of two mitochondrial
proteins, namely succinate dehydrogenase subunit A (SDH-A), a subunit of complex II
(nuclear DNA, nDNA-encoded) and cytochrome c oxidase subunit 1 (COX1), a subunit
of complex IV (mitochondrial DNA, mtDNA-encoded). As shown in Figure 5, there was
no significant difference in the SDH-A/COX1 ratio between negative control and FRDA
fibroblasts treated with 12.50 mM BSO (p > 0.05). However, pre-treatment with 400 and
600 µM adenosine significantly increased the ratio to 109.77 ± 3.5% and 108.32 ± 4.6%
or 1.2-fold higher compared to BSO, respectively (p < 0.05). All tested concentrations of
adenosine exhibited a 2.1- to 2.2-fold higher SDH-A/COX1 ratio compared to idebenone
(p < 0.05).
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Figure 5. Effects of adenosine on the mitochondrial biogenesis in FRDA fibroblasts treated with
BSO. Mitochondrial biogenesis was evaluated following pre-treatment with adenosine for 2 h and
12.50 mM BSO for 24 h. Data are expressed as mean ± SD and statistically analyzed by one-way
ANOVA with Tukey’s post-hoc test. Hash (#) and asterisk (*) indicate significant differences (p < 0.05)
in the SDH-A/COX1 ratio compared to the idebenone group and BSO-treated (0 µM adenosine)
group, respectively. BSO, L-buthionine sulfoximine; COX1, cytochrome c oxidase subunit 1; SDH-A,
succinate dehydrogenase subunit A.

3.6. Effects of Adenosine on the Gene Expression Associated with Mitochondrial Biogenesis in
FRDA Fibroblasts Treated with BSO

The NRF1 modulates mitochondrial biogenesis by binding to specific promoter sites
and regulating the expression of TFAM. As shown in Figure 6A, FRDA fibroblasts treated
with 12.50 mM BSO showed significantly increased expression of NRF1 or 2.6-fold higher
compared to the negative control (p < 0.05). However, pre-treatment with 400 and 600 µM
adenosine significantly decreased the expression of NRF1 to 1.3- and 1.5-fold lower com-
pared to BSO, respectively (p < 0.05). All tested concentrations of adenosine exhibited 8.8-
to 11.6-fold lower expression of NRF1 compared to that of idebenone (p < 0.05).

The TFAM, an nDNA-encoded mtDNA-binding protein, is required for the regulation
of mtDNA transcription, replication, and maintenance. As shown in Figure 6B, FRDA
fibroblasts treated with 12.50 mM BSO significantly increased the expression of TFAM
or 3.1-fold higher compared to the negative control (p < 0.05). However, pre-treatment
with 400 and 600 µM adenosine significantly decreased the expression of TFAM to 1.3-
and 1.5-fold lower compared to BSO, respectively (p < 0.05). All tested concentrations
of adenosine exhibited 4.0- to 4.6-fold lower expression of TFAM compared to that of
idebenone (p < 0.05).

The PPARGC1A is the master regulator of mitochondrial biogenesis and energy ex-
penditure. It modulates the activity of transcription factors, including NRF1. As shown in
Figure 6C, there was no significant difference in the expression of PPARGC1A between the
negative control and FRDA fibroblasts treated with 12.50 mM BSO (p > 0.05). Pre-treatment
with adenosine ranging from 0 to 600 µM did not decrease the expression of PPARGC1A
compared to BSO (p > 0.05). All tested concentrations of adenosine exhibited 20.6- to
37.7-fold lower expression of PPARGC1A compared to that of idebenone (p < 0.05).

The NFE2L2 is a major transcription factor that regulates the expression of various
antioxidant genes, redox homeostasis, and anti-inflammatory and metabolic enzymes.
Additionally, NFE2L2/antioxidant response element (ARE) signaling cascade has been
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observed to activate mitochondrial biogenesis. As shown in Figure 6D, FRDA fibroblasts
treated with 12.50 mM BSO significantly increased the expression of NFE2L2 or 13.5-fold
higher compared to the negative control (p < 0.05). However, pre-treatment with 400 and
600 µM adenosine significantly decreased the expression of NFE2L2 to 1.5- and 79.6-fold
lower compared to BSO, respectively (p < 0.05). Adenosine (600 µM) exhibited a 21.2-fold
lower expression of NFE2L2 compared to that of idebenone (p < 0.05).

Figure 6. Effects of adenosine on the relative gene expressions associated with mitochondrial biogen-
esis in FRDA fibroblasts treated with BSO. Gene expressions of (A) NRF1, (B) TFAM, (C) PPARGC1A,
and (D) NFE2L2 were evaluated by RT-qPCR following pre-treatment with adenosine for 2 h and
12.50 mM BSO for 24 h. Data are expressed as mean ± SD and statistically analyzed by one-way
ANOVA with Games–Howell post-hoc test. Hash (#) and asterisk (*) indicate significant differences
(p < 0.05) in the relative gene expressions compared to the idebenone group and BSO-treated (0 µM
adenosine) group, respectively. BSO, L-buthionine sulfoximine; NFE2L2, nuclear factor-erythroid
2-related factor 2; NRF1, nuclear respiratory factor 1; PPARGC1A, PPARG coactivator 1 alpha; TFAM,
transcription factor A, mitochondrial.

4. Discussion

In this study, we investigated the protective effects of adenosine against BSO-induced
oxidative stress in an in vitro model of FRDA using fibroblasts derived from an FRDA
patient. Our aim was to elucidate the mechanism of action in which adenosine can exert its
antioxidant potential through the involvement of mitochondrial function and biogenesis
and associated gene expression patterns following oxidative stress.

The key pathophysiological features of FRDA include excessive iron accumulation
in the mitochondrial matrix, mitochondrial dysfunction, mitochondrial energy imbalance
due to decreased ATP production, and increased sensitivity to oxidative stress [12]. Cur-
rently, there is no FDA-approved treatment to halt the progression of FRDA [44]. Various
pharmacological agents and natural products targeting oxidative stress [45–51] have been
considered in the management of neuromuscular disorders, including FRDA [38,52,53].
Adenosine and its derivatives have been reported to exhibit free radical scavenging activ-
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ities [54] and protect bone marrow-derived neural stem cells against hydrogen peroxide
(H2O2)-induced oxidative stress and apoptosis [55].

Based on in vitro and in vivo studies, idebenone has been widely portrayed as a potent
antioxidant [56,57], facilitating the redox flux of the mitochondrial electron transport chain
to generate cellular ATP through oxidative phosphorylation. Idebenone was assigned
Orphan Drug Status (EU/3/04/189) by the European Commission on 8 March 2004 for
the treatment of cognitive and behavioral deficits, FRDA, and Leber’s hereditary optic
neuropathy (LHON). Further, idebenone reduced impaired respiratory function in patients
with Duchenne muscular dystrophy [58]. The QS10, a metabolite of idebenone, has been
found to act as a replacement for endogenous CoQ10 in CoQ10-deficient cells and as a
nutraceutical support to bypass complex I deficiency in LHON and autosomal dominant
optic atrophy [59,60]. Idebenone has been observed to act as an antioxidant in preventing
lipid peroxidation and rupturing of mitochondrial membrane function and as an electron
carrier in supporting mitochondrial function and promoting ATP production in pre-clinical
models [37,61–65] and clinical trials [66–70] of FRDA.

We observed that adenosine ranging from 0 to 800 µM did not cause cytotoxicity in
normal and FRDA fibroblasts. Such a conclusion was also reached by Barth et al. [71],
Jennings et al. [72], and Qi et al. [15]. Adenosine up to 500 µM did not induce cytotoxicity
in cultured organotypic hippocampal slices [71] and normal human dermal fibroblasts [72].
Qi et al. [15] found that the effect of adenosine was concentration-dependent and saturated
at 500 µM in suppressing excitatory transmission in layer 4 of the rat barrel cortex. Interest-
ingly, 100 µM adenosine has been shown to maintain inflammasome activity and increase
the duration of the inflammatory response through cAMP/PKA/CREB/HIF-1α pathway
and A2AR, respectively, in mice deficient in Il1r, Nlrp3, Asc, P2X7, and caspase-1 primed
with lipopolysaccharide [73].

The relative MMP in living cells can be a direct measurement of mitochondrial function.
Excessive ROS production induces rapid depolarization of MMP and damages mitochon-
drial proteins and enzymes, leading to impaired oxidative phosphorylation and disrupted
ATP generation [74]. Adenosine is a purine metabolite essential for the synthesis of ATP,
the main energy source for cellular metabolism [75]. We observed that FRDA fibroblasts
treated with BSO demonstrated reduced MMP, aconitase activity, and ATP levels, which is
in line with previous studies [35,76]. Interestingly, pre-treatment with adenosine increased
the MMP and ATP levels in BSO-treated FRDA fibroblasts. Xu et al. [77] observed that
100 µM adenosine restored the MMP in Wistar rat cardiomyocytes upon exposure to H2O2.
Olatunji et al. [78] also demonstrated that adenosine isolated from C. cicadae attenuated
the dissipation of MMP in glutamate-induced oxidative stress in PC-12 cells. Furthermore,
Kalogeris et al. [79] showed that co-incubation of 10 µM adenosine with 1 ng/mL tumor
necrosis factor alpha (TNF-α) attenuated apoptosis and increased MMP and ATP levels in
human microvascular endothelial cells (HMEC-1). Janier et al. [80] observed that adenosine
increased ATP levels in the heart tissue of New Zealand White rabbits upon exposure to
ischemia and reperfusion injuries. In contrast, adenosine did not increase the MMP in
C57BL/6J mice oocytes during meiotic maturation [81].

Aconitase, an enzyme of the Krebs cycle localized in mitochondria, is a prototypical
example of a multifunctional protein. It is involved in the metabolic regulation of iron
for maintaining ROS homeostasis. Aconitase has been reported to be severely affected
in FRDA [82]. Indeed, while the activity of the mitochondrial enzyme is determinant
for the metabolic flux through the tricarboxylic acid in the mitochondria, the cytosolic
counterpart of the aconitase is known to regulate the overall iron metabolism of mammalian
cells tightly. Our results indicate that pre-treatment with adenosine failed to increase the
aconitase activity following exposure to BSO. Likewise, Lian and Stringer [83] also observed
that pre-treatment with glutamine, a precursor of glutathione, did not rescue impaired
mitochondrial aconitase activity in the rat cortical astrocytes upon exposure to cortical
spreading depression and fluorocitrate, an inhibitor of the Krebs cycle. Not surprisingly
in view of the critical role of aconitase in cell metabolism, inactivation of mitochondrial



Biology 2023, 12, 559 13 of 20

aconitase through an oxidative post-translational mechanism may lead to severe loss of
aconitase activity.

Mitochondrial proteins are encoded by either nDNA or mtDNA, with approximately
99% of proteins encoded solely by nDNA. Therefore, nDNA-encoded mitochondrial pro-
teins are the major determinant of mitochondrial abundance and mtDNA copy number
following oxidative stress [84]. In this study, we assessed mitochondrial biogenesis of the
respiratory chain, which is dependent on subunits encoded by both nuclear and mtDNA
genes [85,86]. There was no significant difference in the SDH-A/COX1 ratio between the
negative control and FRDA fibroblasts treated with BSO, indicating BSO did not alter
mitochondrial biogenesis. Similarly, Aquilano et al. [87] found that increased mitochondrial
biogenesis was not affected by the depletion of glutathione (GSH) in SH-SY5Y cells exposed
to BSO, as the level of mitochondrial proteins such as heat shock protein 60 (Hsp60), COX,
and cytochrome c remained unchanged. Interestingly, adenosine significantly increased
the SDH-A/COX1 ratio in FRDA fibroblasts treated with BSO, indicating mitochondrial
biogenesis may involve nDNA-encoded mitochondrial proteins. Moreover, SDH-A acts
as a mitochondrial mass marker, as it is correlated with mitochondrial porin or voltage-
dependent anion channel, the most abundant mitochondrial protein found in the outer
membrane [88,89]. Vincent et al. [90] observed that low expression of SDH-A resulted
in low mitochondrial mass in myofibers derived from patients with myofibrillar myopa-
thy. Kalogeris et al. [79] demonstrated that HMEC-1 cells incubated with adenosine for
1–8 days increased the levels of mitochondrial biogenesis markers and mediators, including
PPARGC1A, NFE2L2, porin, and cytochrome c oxidase subunit 4 (COX4, nDNA-encoded)
in a time-dependent manner.

Several key factors, such as NRF1, TFAM, PPARGC1A, and NFE2L2, have been found
to modulate mitochondrial biogenesis. The PPARGC1A and NFE2L2 regulate mitochondrial
biogenesis by activating NRF1, leading to enhanced expression of TFAM, which is necessary
for the replication and transcription of mtDNA [91–93]. In this study, BSO-treated FRDA
fibroblasts showed increased expression of NRF1, TFAM, and NFE2L2 but not PPARGC1A.
Therefore, we postulated that BSO may induce low-level oxidative stress in FRDA fibrob-
lasts and, thus, activates mitochondrial biogenesis through an NFE2L2 signaling cascade.
Marmolino et al. [94] reported that the expression of PPARGC1A remained unchanged
in FRDA primary fibroblasts following exposure to H2O2, possibly due to low-level and
chronic oxidative stress induced by H2O2. Additionally, BSO depleted the level of GSH in
murine embryonic fibroblasts but upregulated the level of NFE2L2, suggesting its crucial
role in cellular adaptive mechanisms following oxidative stress [95]. Furthermore, Aquilano
et al. [96] demonstrated that BSO-treated SH-SY5Y cells increased the gene expression and
protein levels of NFE2L2, superoxide dismutase 2 (SOD2), and γ-glutamylcysteine ligase
(γ-GCL).

In the present study, adenosine modulated the expression of NRF1, TFAM, and NFE2L2
and increased nDNA-encoded mitochondrial proteins involved in mitochondrial biogenesis.
This is in line with the recent findings of Walsh et al. [97], demonstrating that NFE2L2
activators reduced the protein levels of NFE2L2 and glutathione reductase, whereas the
combination of NRF1 and NFE2L2 activators reduced the protein levels of complex II, III, IV,
and V in C2C12 myoblasts upon exposure to H2O2. Walsh et al. [97] postulated that both
NRF1 and NFE2L2 work synergistically to regulate a transcriptional process to promote
adaptive homeostasis in response to stressful stimuli. Accordingly, Min et al. [98] also found
that adenosine-induced nuclear translocation of NFE2L2 and increased the protein levels
of ARE in primary rat microglial and BV2 cells. In contrast to our observation, Kalogeris
et al. [79] demonstrated an elevation of protein levels of PPARGC1A and NFE2L2 up to
1.5- to 4-fold higher compared to negative control in HMEC-1 cells following incubation
with 1 µM adenosine for 2-5 days. In addition, they also revealed that adenosine could
mediate the preservation of mitochondrial mass in HMEC-1 cells following TNF-α-induced
apoptosis by increasing the expression of PPARGC1A.
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Adenosine is a metabolite generated in response to hypoxia, injury, or inflammation,
eliciting its protective or damaging responses through adenylyl cyclase inhibitory A1R
and A3R and the adenylyl cyclase stimulatory A2AR and A2BR. Our observation is in line
with previous findings [99–101]. Enhanced levels of extracellular adenosine have been
reported to activate cytoprotective signaling through A1R in mediating the modulation of
coronary flow, heart rate and contraction, cardioprotection, inflammatory response, cell
growth, and tissue remodeling [99]. On the other hand, Castro et al. [100] demonstrated
the protective effects of intraarticular injections of liposomal adenosine or A2 agonist
against mitochondrial oxidized material and ROS burden in a mouse model of obesity-
induced osteoarthritis. In addition, adenosine regulated metabolic functions through
receptor-dependent mechanisms involving A1R and A2AR, and the formation of ROS and
reactive nitrogen species in response to neuroinflammation in mixed glial cells and an
animal model of neuroinflammation induced by intracerebroventricular administration of
lipopolysaccharide [101].

Our findings show that adenosine possessed protective effects against BSO-induced
oxidative stress and cell death in FRDA fibroblasts. Adenosine reconstructed mitochon-
drial function and regulated mitochondrial biogenesis, contributing to mitochondrial ROS
and cellular iron homeostasis. The NRF1, TFAM, and NFE2L2 are the key regulators of
mitochondrial biogenesis (Figure 7).

Figure 7. Proposed mechanism in which adenosine improves mitochondrial function and biogenesis
in FRDA fibroblasts following BSO-induced oxidative stress. Illustration was created using Microsoft
PowerPoint Professional Plus 2019. ATP, adenosine triphosphate; BSO, L-buthionine sulfoximine;
COX1, cytochrome c oxidase subunit 1; Fe-S, iron–sulfur; FXN, frataxin; GSH, glutathione; mtDNA,
mitochondrial DNA; NFE2L2, NFE2-like bZIP transcription factor 2; NRF1, nuclear respiratory fac-
tor 1; PPARGC1A, PPARG coactivator 1 alpha; ROS, reactive oxygen species; SDH-A, succinate
dehydrogenase subunit A; TFAM, transcription factor A, mitochondrial; ∆Ψm, mitochondrial mem-
brane potential.
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5. Conclusions

Our study demonstrated that adenosine targeted mitochondrial defects in FRDA,
contributing to improved mitochondrial function and biogenesis, leading to cellular iron
homeostasis. Therefore, we suggest a possible therapeutic role for adenosine in FRDA.
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BSO L-buthionine sulfoximine
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cDNA complementary DNA
CNS central nervous system
COX1 cytochrome c oxidase subunit 1
CO2 carbon dioxide
DMEM Dulbecco’s Modified Eagle Medium
DMSO dimethyl sulfoxide
FBS fetal bovine serum
FDA Food Drug and Administration
Fe-S Iron–sulfur
FRDA Friedreich’s ataxia
FXN frataxin
GAA guanine–adenine–adenine
h hour
HMEC-1 human microvascular endothelial cells
H2O2 hydrogen peroxide
HSD Tukey’s honestly significant difference
LHON Leber’s hereditary optic neuropathy
mM millimolar
MMP/∆Ψm mitochondrial membrane potential
mtDNA mitochondrial DNA
MTT 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide
nDNA nuclear DNA
NFE2L2 NFE2-like bZIP transcription factor 2
NIGMS National Institute of General Medical Sciences
NRF1 nuclear respiratory factor 1
PC-12 rat pheochromocytoma
PPARGC1A PPARG coactivator 1 alpha
RNA ribonucleic acid
ROS reactive oxygen species
RT-qPCR reverse transcription quantitative real-time polymerase chain reaction
SD standard deviation
SDH-A succinate dehydrogenase subunit A
TFAM transcription factor A, mitochondrial
TNF-α tumor necrosis factor alpha
v/v volume/volume
µM micromolar
◦C degree Celsius
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