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Simple Summary: It has been known for decades that immune T cells, especially due to their capacity
for powerful antigen-directed cytotoxicity, have become a central focus for engaging the immune
system in the fight against cancer. Interest in harnessing T cells for cancer immunotherapy is rapidly
growing. The latest clinical research aims to effectively use immune checkpoint inhibitor (ICI) drugs
to treat cancer patients. However, T cells can either establish a protective antitumor response, or,
in contrast, induce severe dysfunction that promotes disease progression in the majority of chronic
infection patients. The contradiction depends, to a large degree, on the interaction between immune T
cells and other tumor infiltrating cells or inflammatory cytokines around the tumor microenvironment.
This review aims to summarize the current knowledge and regulatory mechanisms of CD8+T cell
exhaustion, since reversing T cell exhaustion will definitely become a biomarker of clinical tumor
immunotherapy.

Abstract: CD8+T cell exhaustion is a state of T cell dysfunction during chronic infection and tumor
progression. Exhausted CD8+T cells are characterized by low effector function, high expression
of inhibitory receptors, unique metabolic patterns, and altered transcriptional profiles. Recently,
advances in understanding and interfering with the regulatory mechanisms associated with T cell
exhaustion in tumor immunotherapy have brought greater attention to the field. Therefore, we
emphasize the typical features and related mechanisms of CD8+T cell exhaustion and particularly
the potential for its reversal, which has clinical implications for immunotherapy.
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1. Introduction

In general, with the developing period of tumor immunotherapy, research into T
cell exhaustion has progressed rapidly. T cell exhaustion is described as a phenomenon
of markedly low T-cell functional responses in patients with sustained HIV (human im-
munodeficiency virus) infection [1]. Researchers have, therefore, hypothesized that viral
persistence is associated with T cells with impaired function [2]. Gallimore [3] and Zajac [4]
discovered that persistent viral infection is closely associated with the low affinity of MHCI
for antigenic peptides and reduces its role in T cell cytotoxicity. This was determined by
applying a staining technique in which MHCI was used to track virus-specific CD8+T cells.
Accordingly, the concept of CD8+T cell exhaustion was proposed, specifically referring
to the dysfunction of specific subsets of T cells, including cytotoxic lymphocytes, during
chronic viral infections [2,5]. It is commonly believed in the field of immunology that T cells
(especially CD8+T cells) play an indispensable role in killing tumor cells. Recently, however,
in some models, natural killer (NK) [6] cells show cytotoxic activity against diverse tumor
cell types. This activity reduces the production of cytokines, such as interferon γ (IFNγ),
and regulates adaptive antitumor immune responses, stemming a multitude of effects
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on the growth and maintenance of cancer [7]. Recently, it was reported that lymphocyte
exhaustion is not only T cell exhaustion but also NK cell exhaustion [8]. It was reported that
the multiple cell exhaustion, for instance the combination of T cell and NK cell exhaustion,
may exist in several cancer patients [9,10].

Since then, it was proved that CD8+T cell exhaustion [5,11] exists in several animal
models of chronic viral infection, mirroring the T cell exhaustion observed in multiple
cancers, such as melanoma and breast cancer. Exhausted CD8+T (TEX) cells, consisting
of heterogeneous cell populations with unique functional states, play important roles in
cancer, chronic infections, and autoimmunity [12,13]. More detailed analyses of CD8+T cell
exhaustion have since been demonstrated, and some experts in immunotherapy summa-
rized and defined the state of T cell exhaustion in 2019 [14], further clarifying the concrete
concept. All in all, we are concerned about the characteristics and mechanisms of CD8+T
cell exhaustion and emphasize approaches to reverse it for clinical applications in tumor
therapy.

2. The Features of T Cell Exhaustion

Exhausted T cells belong to a unique cell lineage composed mainly of heterogeneous
cells, including progenitor and terminal subsets [14]. In contrast to memory T cells (TMEM)
and effector T cells (TEFF), TEX cells are distinguished by the features of progressive loss of
effector functions (cytokine production and killing capacity), highly sustained inhibitory
receptor expression, distinct metabolic patterns, and unique transcriptional and epigenetic
features [14,15]. These concepts are discussed in further detail below and are illustrated in
Figure A1.

2.1. Progressive Loss of Effector Function

With regard to effector function, it is believed that TEX cells show progressive dysfunc-
tion and even loss of function [16]; high proliferation, killing capacity, and interleukin-2
(IL-2) secretion are usually diminished [17]. Subsequently, secretion of some cytokines,
such as tumor necrosis factor (TNF), is extremely reduced. Eventually T cells will partial
or complete lose T killing capacity, eventually causing CD8+T cells to form a complex set
of noncanonical hyporesponsive TEFF subsets [18]. This phenomenon has been seen in a
variety of mouse and human tumor models, including melanoma [19], chronic myeloid
leukemia [20], ovarian cancer [21], and chronic lymphocytic leukemia (CLL) [22].

2.2. Sustained and High Expression of Inhibitory Receptor Molecules

One unique characteristic of TEX cells during chronic infection or tumor immune
response is the persistent upregulation and co-expression of various inhibitory receptors
(IRs) [13], including programmed cell death protein 1 (PD-1). IRs [23] are concurrently
present on CD8+T cells at high levels, negatively interfering with T cell activation and
affecting T cell cytotoxic killing function. It is generally considered that the level of
inhibitory receptor expression on CD8+T cells greatly affects the degree of CD8+T cell
exhaustion. Without IR expression, CD8+T cells can effectively kill tumors and exert
antiviral functions. Recent studies have found that inhibitory receptors execute their
functions mainly via the following mechanisms [11,24]: (1) interfering with T cell receptor
(TCR) activation by the downstream signaling pathways; or (2) upregulating gene markers
related to CD8+T cell exhaustion.

2.2.1. PD-1

Based on previous research, the first IRs to be identified was programmed cell death
receptor-1 (PD-1), which are the family of the CD28 transmembrane protein receptors.
PD-1 interacts specifically with PD-L1 to suppress anticancer T-cell immunity in multiple
human cancers [25,26]. Numerous studies have identified additional mechanisms of PD-1
and PD-L1 activity. For example, PD-L1 triggers inhibition of T cell proliferation through
tyrosine phosphorylation in the cytosolic region of TCRs, the mutual interaction therefore
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downregulates T cell activation [27]. Barber et al. [28], analyzed the differential gene
expression in the virus-specific CD8+T cells during chronic infection and found that PD-1
largely up-regulating over-expressed in functionally TEX cells [29–31]. Typically, PD-1 is
transiently expressed in activated CD8+T cells following the acute viral infection and its
level largely keep normal after a short period of viral antigen activation. However, in
TEX cells, PD-1 is constantly expressed at high levels [30–32]. Yokosuka et al. found that
PD-1 can bind to TCRs navigates T cell exhaustion by recruiting SHP2 which are mainly
active TCR signaling pathways in the opposing aspects. Recent studies have displayed that
the blockade of PD-1 can change the exhaustion of the T cells and induce immune cells
powerfully killing cancer cells [33]. Wei et al. [34] studied the levels of PD-1 in primary
human T cells and examined T cell functions that are PD-1-sensitive (cytokine secretion,
Ca2+flux, and proliferative capacity), which was achieved by stimulating the T cells using
APC cells overexpressing PD-L1, demonstrated that high PD-1 expression of the T cells
were far inferior to the low or no PD-1 expression in cytotoxic function.

2.2.2. LAG-3

Lymphocyte activation gene 3 (LAG-3) is highly expressed on exhausted T cells
which is the family of the non-ITIM inhibitory receptor. LAG-3 mainly acts in negative
regulating the T cell cycle via the KLEELE motif [35,36]. LAG-3 connects with its ligand,
which will greatly suppress the TEFF activity, promoting immune tolerance to the tumor
microenvironment (TME). Antibodies against LAG-3 have been tested in repeated clinical
trials, particularly in metastatic breast and pancreatic cancers; blocking LAG-3 alone had
little effect on TEX function during chronic LCMV infection, however, blocking LAG-3 in
the combination of the IR of the PD-1 can forcefully regain T-cell cytotoxicity. Clinically,
there have been many breakthroughs in LAG-3-targeted therapies in recent years; for
example, the newly approved LAG-3 immune checkpoint inhibitor Relatlimab plus the
PD-1 inhibitor Nivolumab [37,38] for melanoma treatment, can more than double the
survival rate and reduce treatment side effects versus nivolumab alone. Furthermore, the
combination also has a high clinical efficacy against leukemia [39]. Fortunately, in March
2022, nivolumab [40] in combination with relatlimab (OpdualagTM) received approval in
the some areas such as USA for the treatment of unresectable melanoma [41].

2.2.3. TIGIT

TIGIT is a type of IR-containing ITIM, whose ligands include CD155, CD112, and
PVRL3. TIGIT competitively binds CD155/CD112 on the APC/tumor cells which exerts
immunosuppressive effects on CD8+T cells that are highly expressed the multiple IRs,
eventually resulting in the formation of exhausted T cells that have lost their tumor-
killing effect [31,42,43]. TIGIT binding CD155 expressed by cancer cells results in impaired
cytokine secretion by TIGIT+CD8+T cells, and their activation is inhibited. An anti-TIGIT
candidate drug can closely engage to TIGIT and consequently hinder its interaction with
CD155 [44]. Furthermore, blocking TIGIT and PD-1 has been shown more effective in
restoring the function of T cells and improving the duration of survival of the mice [45].
In some clinical cancer patients, PD-1 is co-expressed in tumor-infiltrating CD8+T cells,
and the combined blockade of TIGIT and the barrier in the PD-1/PD-L1 interactions can
greatly enhance cytotoxic effect of CD8+T cells [46]. Hence, TIGIT has become a reliable
therapeutic target for clinical tumor immunotherapy.

2.2.4. VISTA

VISTA also known as PD-1H, is a type I transmembrane protein which is encoded by
the human VSIR, and serves as a novel checkpoint target in immunotherapy [47]. It binds
to two ligands, V-set and Ig domain-containing 3 (VSIG-3) and P-selectin glycoprotein
ligand-1 (PSGL-1), which exert inhibitory T-cell activity and block effective antitumor
responses [48,49]. As currently, some researches has showed that VISTA can render patients
resistant to immunotherapy [49,50]; Kalakand et al. found that lymphocytes in the most
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melanoma patients are highly expressed the molecules of the VISTA [50]. In addition,
high VISTA expression in the T cell tightly implies the worse survival in cancer patients.
VISTA is highly expressed in many human cancers cell, therefore the clinical application
of the anti-VISTA antibody significantly improves the overall survival of patients [51,52].
Other than this, in 2020, it has published that the development of a nanomolar anti-VISTA
antibody that is expected to be used in the Phase I clinical trial [53].

2.2.5. TIM-3

T-cell immunoglobulin and mucin domain-containing molecule 3 (Tim-3), belongs
to the immunoglobulin superfamily and is a type | transmembrane glycoprotein. As a
negative regulatory immune molecule, it is expressed on DC, CD4+T cells, CD8+T cells and
several other cell types [54,55]. CEACAM1 have been acted as one of the important ligands
of TIM-3 [55]. Meanwhile, observation indicates that exhausted T cell is characterized by
high expression of IRs, in the meanwhile, including TIM-3. Interestingly, T cell exhaustion,
but nit apoptosis, can be reversed by blocking immune checkpoints and restoring cytotoxic
function [55]. Recently, according to the clinical datasets, some TIM-3 antagonistic mAbs
have been entered on clinical trials. The typical example is that TSR-022 (Cobolimab)
which are known as the a novel IgG4 anti-TIM-3 mAb entered the first phase I clinical
trial in recent years and when combined with TSR-042 demonstrate favorable safety and
efficacy [56,57].

Overall, many cell surface inhibitory receptors including PD-1, LAG3 and so on are
happened in the coregulation of T cell exhaustion [58]. Researchers have shown diverse
co-expression of multiple inhibitory receptors can damage on functionally tumor-specific
cytotoxic T cells functionally, and the degree of functional defects in T cells correlates with
the number and type of inhibitory receptors [18,31,59]. Therefore, it is strongly advised
that the combination therapy with IRs inhibitors is the more feasible options in the clinical
cancer treatments [56]. Currently, although there are many studies on inhibitory receptors,
the detailed roles and regulatory mechanisms of the downstream pathways of different
inhibitory receptors remain unclear. The molecular signaling pathways in exhausted T cells
during LCMV infection or tumor progression are shown in Figure A2.

2.3. Unique Metabolic Patterns

Metabolic regulation consequently changes throughout the T cell cycle, from special
initial naive state to the activation state after antigen presentation, and later exhaustion.
Each phase of the T cell cycle has a different metabolic pattern and activity that either
regulates or is regulated by related cellular signaling pathways, that profoundly influences
cellular activation, function and survival [60,61].

2.3.1. Naive T Cells

T cell can powerfully attack and resist pathogens and tumor cells [62–64]. Via flow
cytometry, multiple subtypes of the T cell can be visualized, in combination with selective
extracellular markers and intracellular transcription factors (TFs) [65]. The naïve T cells are
characteristics of the homogenous antigen-inexperienced cells and with distinctive marker
of CD45RA and CD62L. Therefore, it is consequently considered that naïve CD4+T cells
and CD8+T cells (characterized by CD45RA+CCR7+CD62L+CD27+CD28+IL-7Rα+) [64,66].
Succeeding antigen encounter, naïve CD4+ T cells [66,67] constantly keep differentiate
towards CD4+TEFF which are constitute of various cell types including T helper 1 (Th1),
Th17. however, CD8+T cells that encounter the specific antigen exert killing tumor ability
by differentiating the subtypes of cytotoxic T cells.

Naive T cells require lower basal metabolic activity and energy intake and produce
ATP in the comparison of the cytotoxic T cells, which are supported by the pathways
of the oxygenation (oxidative phosphorylation, OXPHOS), directly contributing to T cell
homeostasis [60,61,68].
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2.3.2. Effector T Cells

During the stage of the naïve T cells differentiate into TEFF [63], T cells will definitely
secrete large amount of the cytotoxic granules and the kind of cytokines to quickly induce
cytotoxicity. TEFF are the subtype of the cells which are basically negative for CD27 and
CXCR4, nevertheless, they highly express markers of Killer cell lectin-like receptor subfam-
ily G, member 1 (KLGR-1), the CCR10 [69] and so on and their markers are implied the
terminal phase in the T cell development.

Undoubtedly, effector T cells cannot but change their metabolic patterns to meet the
various needs of cell proliferation [70], differentiation [71,72], and effector function. These
metabolic pathways are referred to the aerobic glycolysis, mitochondrial biogenesis, therefore
accelerate the process of the respiratory chain phosphorylation (also known as OXPHOS)
and one-carbon synthesis, correlating to mechanisms that target the PI3K/AKT/mTOR
signaling pathway [73]. In TEFF, activation of the PI3K-AKT-mTOR pathway promotes aerobic
glycolysis to satisfies its own energy needs [72]. Activation of the mTOR complex leads
to the higher expression of the HIF-1α and c-Myc; these mainly upregulate the expression
of enzymes including Glucose Transporter 1 (GLUT1) associated with glucose breakdown,
thereby improving the TEFF uptake of glucose and glutamine [74,75].

2.3.3. Memory T Cells

Memory T cells, including stem cell memory T cells (Tscm), are highly expressed
the many special molecular (typically CD95, IL-2Rβ, CXCR3), while central memory T
cells (Tcm), which is characterized by the CD45RO+ CD28+CD62LhiCCR7+, establishes
memory function and quickly acts to allow for rapid and accurate recall response to any
future encounters with the same antigen or disease [69,70]. When encountering kinds of
the tumors, memory T cells can migrate to the matching immune organs mainly including
lymph nodes. Several studies have demonstrated that the in the TME, higher numbers of
memory CD8+ T cells around the tumor are remarkably beneficial in the clinical patient
positive prognosis [63,76].Memory T cell move from the aerobic glycolysis pathway to the
use of mitochondrial fatty acid oxidation (FAO) to produce more ATP [77]. During the
acute response and hypoxia status, such as growth factor deprivation, T cells may open the
AMPK signaling pathway and correspondingly inhibit mTOR signaling. During anabolism
shut-down, memory T cells switch to use glucose to synthesize lipids that undergo rapid
LAL-mediated cell-intrinsic lipolysis to generate free fatty acids for FAO, demonstrating a
degree of metabolic self-reliance [70,78].

2.3.4. Exhausted T Cells

In the tumor patients, tumor cells firstly utilize aerobic glycolysis patterns, resulting
in metabolic programming and conferring a survival advantage [79]. Likewise, exhausted
CD8+T cells in the nutrient-and oxygen-deprived TME display “metabolic plasticity” dur-
ing chronic tumor-associated antigen (TAA) stimulation [80], resulting in energy need
shortage [81–83]. Several studies have indicated that CD8+T cells which are artificially
expressed IRs mainly associate with metabolic disorders characterized by mitochondrial
energy dysregulation [84,85]; it is therefore of great clinical significance to investigate the
unique metabolic patterns of exhausted T-cells [85,86]. Current research focuses on the
following specific mechanisms [85]; (1) metabolites of the tumor itself and (2) competition
between various cells especially tumor cells and T cells in the TME for metabolic raw
materials including oxygen and ATP. Classic mouse models have shown that PD-1 causes
an increase in glucose in the TME, indicating prospective reversal of T-cell exhaustion and
improved tumor clearance [87].
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2.4. Specific Transcriptional and Epigenetic Features
2.4.1. Transcriptional Changes in Exhausted T Cells

Specific transcriptional profiles are broadly changed in the exhausted T cells compared
to state of the TEFF or TMEM CD8+T cells [86,87]; that is, specific TFs involved in various
stages of T cell differentiation might serve as promising markers of TEX.

Tox

Tox is a focused TF that regulates T cell exhaustion in the recent studies [88]. Some
studies have shown that Tox acts as a kind of the key factor during the differentiation and of
exhausted T cells and may induce T cell exhaustion [89]. Exhausted T cells highly express
Tox which can facilitate the expression of the PD-1, therefore promoting PD-1 translocation
to the CD8+T cells membrane surfaces and helping the T cell exhaustion [90].

T-Bet and Eomes

T-bet and Eomes are highly homologous in effector T cell development [91]. During
viral infection processes, the TF of T-bet and Eomes will become highly elevated with T-cell
activation [91]. Both have a lot in common in regulating cell differentiation and function,
moreover, they compete for Pdcd1 T-box region [91,92]. High nuclear T-bet strongly
represses Pdcd1 gene expression in TMEM, while low nuclear T-bet in TEX mainly repress
of Pdcd1 in the lower levels [92,93]. During T cell differentiation, T-bet shows the highest
expression level on effector T cells, whereas EOMES are inclined to subtypes of the memory
T cells. The classification of the TEX has been designated according to the expression
of Eomes, T-bet, and PD-1 [94]. According to several studies, the T-bethiEmoesloPD-1int

subset can be re-activated by PD-1 pathway blockade, whereas the EomeshiPD-1hi subset is
difficult to effectively respond to PD-1 blockade. These findings suggest that PD-1 pathway
blockades resulted in TEX epigenetic and transcriptional landscapes rewiring. It has been
established that key TFs specifically binds to distinct genes upstream in various contexts in
a specific time and space [95,96]; for example, during the acute period, the co-expressed TFs
of Eomes were effector-biased genes. In contrast, the chronic neighbors of Eomes became
progressively more upregulated over time and were involved in the immune response and
CD8+T cell differentiation [95].

Tcf-1

T cell factor 1 (TCF-1) is a TF of the canonical Wnt signaling encoded by Tcf7 and
orchestrates the Eomes-IL-2Rβ expression circuit [97,98]. Tcf-1 maintains the stemness
capacity in TEX cells and memory T cells. Mechanistically, Tcf-1 promote the TF of the
Eomes expression and navigating c-Myc expression which regulates Bcl-2, helping to
generate TEX precursor cells [99,100].

Transcription of genes encoding molecules shown to be participated in the TCR-
cytokine receptors signaling, also take part in the T cell exhaustion [101]. Moreover,
additional TFs demonstrate be involved in T cell exhaustion, IRF4 [102], BATF [103,104],
and NFATc1 [105] promote the expression of inhibitory receptors, including PD-1, and
mediate impaired cellular metabolism. Furthermore, BATF interacts with IRF4 at AP-1–IRF
consensus elements (AICEs) to modulate immune-regulatory networks [106,107].

2.4.2. Epigenetic Landscape of T Cell Exhaustion

In mammalian cells, epigenetic mechanisms enable cells to differentiate, adapt to
environmental changes, and propagate their cellular state after cell division. The epigenetic
regulation information can be inherited across several generations in organisms [108,109].
Each gene sequence code keeps extremely conserved throughout many kinds of these
cellular developments; however, epigenetic mechanisms can produce heritable phenotypic
changes without a change in DNA sequence [110].

It is reported that exhausted T cells in cancer and chronic viral infections shows dis-
tinctive patterns of special related genes expression, including the sustained expression of
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PD-1. Insights from the epigenetic studies, there has revealed that TEX cells are a unique
lineage of cells that are epigenetically different from TEFF and TMEM cells, as B cells are from
monocytes [111]. In the epigenetic landscape, TEX cells contain approximately 6000 differ-
entially accessible chromatin regions compared to TEFF and TMEM cells. Researchers have
compared acutely activated T cells with terminal CD8+TEX cells by biological database such
as ATAC analysis and found that CD8+TEX cells have many special properties, including
de novo accessibility of the region at at-22.4 kb upstream of the murine Pdcd1 (PD-1) lo-
cus [111]. The epigenetic mechanisms regulating T-cell exhaustion are stable and inherited;
for example, after PD-1 blockade, it is finest change is that there exists just almost ~10%
of the epigenetic landscape was ‘re-activated’ to resemble the effector T-cell landscape
implying that the reacquisition of the Tex strongly relates to chromatin state [112].

Overall, the transcriptional and epigenetic mechanisms of TEX are complex and fu-
ture in-depth studies on the regulatory mechanisms and factors of T-cell exhaustion are
essential [16].

3. Factors Related to the Development of T Cell Exhaustion
3.1. Duration of Antigenic Stimulation

The duration of continuous antigen stimulation is the key contributors in T cell ex-
haustion in many chronic infection mouse models [113,114]. For instance, when CD8+T
cells isolated from mice which are experiencing chronic LCMV/HBV (approximately one
week) were transferred to immunodeficient mouse models, these cells would differentiate
into normal memory T cells and ease T cell exhaustion [84]. However, if these T cells were
exposed to persistent antigen for more than half of a month or even longer, the diminished
functions of T cells would become irreversible. Researchers have shown that genes associ-
ated with TCR signaling, including EGR2 [115], EZH2 [116,117] IRF4 [118], and NR4A [119]
are highly enriched in precursor exhausted CD8+T cells, mainly due to persistent antigen
stimulation leading to T cell exhaustion.

3.2. Soluble Cytokines

During chronic infection and cancer, the TME highly exists various pro-inflammatory
factors, which greatly contribute to setting free complex negative regulatory factors, for
instance IL-10, TGF-β, and IL-2 [120,121], thereby making T cell exhaustion appeared.

3.2.1. IL-10

IL-10, a cytokine closely associated with attenuated T-cell activation, which induces
STAT-3 signaling, is upregulated in persistent infections with several viruses such as LCMV,
HBV, and EBV. In the related mouse model, blockade of IL-10 in combination with the
immune-checkpoint inhibitors targeting PD-1 or PD-L1 [122] enhances the tumor-killing
capacity of TEFF and particularly develops the response of exhausted T cells, there has been
suggested that IL-10 [123] make a specific and indispensable role in the development of T
cell exhaustion.

3.2.2. TGF-β

TGF-β [124] also be tightly linked to the promotion of T-cell exhaustion. It also
regulates immune response and maintains immune homeostasis, mainly by the way of
regulating proliferation and differentiation of various immune cells. TGF-β participates in
the development of the T-cell exhaustion and inhibits TCR signaling transduction pathways
by regulating the downstream expression of SMAD2 [125,126].

3.2.3. IL-2

Apart from IL-10/TGF-β, IL-2 also plays a key driver of the of the formation of the
CD8+T cell exhaustion. It is often thought that IL-2 is a kind of the cytokines that also known
as T cell growth factor essential for the proliferation of T cells [120,121]. Indeed, at the early
course of tumor growth, IL-2-mediated induction of BLIMP1 expression is required for
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effector CD8+T cells growth and differentiation. However, in the TME, excessive IL-2 acts
on CD8+T cells to promote their exhaustion in the later stages of continuous tumor growth.
Exhausted CD8+T cells express higher levels of IL-2Rβ, which are co-expressed the T cell
exhaustion marker including PD-1 and TIM3 and so on, therefore loss or downregulation
of IL-2Rβ tends to help to reverse the exhausted phenotypes [127]. A series of studies
targeting IL-2 found that IL-2 signal can activates STAT5, induces CD8+T cells to synthesize
large amounts of TPH1 (Tryptophan Hydroxylase 1), which produces 5-hydroxytryptophan
(5HTP) that subsequently binds to the arylhydrocarbon receptor (AhR), hence promoting
AhR entry into the nucleus, and its direct upregulation of immunosuppressive receptors,
thus instigating therapy inducing CD8+T cell exhaustion [120].

Therefore, IL-2 acts as the double-edged sword, although IL-2 signaling can promote
an exhausted phenotype, it is also a feasible pathway to reverse CD8+ T-cell exhaustion.
Initially, the earliest therapeutic applications of IL-2 were to improve immune responses
in cancer patients [128,129]. In present, combining IL-2 treatment with immune check-
points inhibitors PD-1 has striking synergistic effects for re-invigorating exhausted CD8+T
cells [130].

3.2.4. IL-21

IL-21 is mostly produced by CD4+T cells and has been shown to play a central role
in the maintenance of CD8+T cell cytotoxicity [131]. Acute and chronic infections and
pathogen invasion result in differing levels of IL-21 production change in the complex
TME, which directly influences the generation of CD8+T cells [132]. Additionally, IL-21
directly prompts the expression of BATF which has been shown to be predominantly
expressed in B and T cells [133], which are mainly involved in sustaining antiviral CD8
TEFF cytotoxicity [134] and in some cases, fostering T cells exhaustion. Thus, IL-21 may
maintain CD8+T cell responses and at least partially oppose T cell exhaustion [135].Some
studies have shown that targeting IL-21 signaling pathway in the tumor-reactive T cells
can greatly promote the generation of memory stem T cells (TSCM) with enhanced cell
proliferation [136,137].

In summary, the development and inducing factors in T-cell exhaustion is a complex
outcome driven by various factors, such as secreted cytokines, which further promote
T-cell exhaustion, therefore make the continuous deterioration and disease progression
appeared. Although a great deal has been done to aim at the effects of T-cell exhaustion,
related specific mechanisms and various complex interactions of each factor remain a gap
that requires further investigation. These concepts are discussed in further detail below
and are illustrated in Figure A3.

4. Reversion of the T Cell Exhaustion

Exhausted T cells manifest as the functionally defective state that makes the body
tolerant to tumor effects and it is almost impossible to completely reverse the exhaustion
state. However, more recent studies have reported that IL-2 has the potential to reverse
T cell exhaustion. And the underlying mechanism is that, IL-2 signals can change their
differentiation direction on precursors of exhausted CD8+T cells (PD-1+TCF1+ stem-like
CD8+T cells) [138]. Many clinical experimental researches in mice have seen that, to
some extent, blocking inhibitory receptors and inhibitory cytokines may be a key factor to
reverse T cell exhaustion and enhance anti-tumor immunity outcome in the cancer patients
especially terminal.

The clinical application of blocking PD-1 with anti-PD-1 antibodies displays successful
outcomes, and it is reported that blockade of PD-1 or PD-L1 improves the cytolytic activity
of exhausted CD8+T cells, enhances inflammatory cytokines production, and reduces the
viral load and tumor burden in a mouse model [14,31,43]; this implies that the exhausted T
cell state is not irreversible. Preclinical studies have demonstrated in various animal tumor
models, that anti-PD-1 immune checkpoint inhibitors can effectively alter T cell exhaustion,
and even CD8+T cells become more capable of fighting tumors. For instance, in a mouse



Biology 2023, 12, 541 9 of 17

melanoma model, anti-PD-1 antibodies blocked the rate of hematogenous metastasis of
B16 melanoma cells [122,139].

In addition, researchers found that blocking PD-1 in combination with other immune
checkpoint inhibitors was more effective than blocking PD-1 alone [140,141]. Immune
checkpoint inhibitors present a pathway to fight tumors; however, drug resistance remains
one of the key limitations. Using combinations of immune checkpoint inhibitors may
improve or eliminate resistance. In animal models of anti-PD-1 resistance, blocking the
negative regulatory pathway of TIM-3 aids in reversing the effects of anti-PD-1 resistance,
and therefore of T-cell exhaustion [33,59].

In the TME, various cytokines are also involved in T cell exhaustion hence, regulating
cytokines to reverse T cell exhaustion presents an effective therapeutic strategy. Previous
studies have found that the combination of IL-2 and antibodies against PD-1 was effective
in eliminating a large tumor burden and reducing viral load in a mouse model [138,142].
Similarly, blockade of IL-10 signaling may effectively improve T-cell exhaustion as well as
control persistent virus infection [143].

In the TME, tumor cells preferentially change the specific metabolic patterns such
as aerobic glycolysis to their survival. Targeting metabolic reprogramming of TME to
reinvigorate the states of exhausted CD8+T cells is a superior choice [144]. Some studies
shows that 2-DG, an inhibitor of glycolysis, was utilized to promote the production of
memory cells, resulting in enhanced metastatic cells in tumor-bearing mice persistence and
function [145]. Inhibiting glycolytic metabolism enhances CD8+ T cell memory and antitu-
mor function. Similarly, inhibiting AKT signaling in vitro promotes memory-enhancing
metabolic profile of CD8+T cell generation [83,114]. All in all, metabolic and immune
signaling are highly correlated, combining metabolic interventions with immunotherapy to
restore anti-tumor activity of exhausted T cells that is highly likely to improve response
rate to immunotherapy [144].

5. Prospect

When it comes to tumor immunity, TEX cells, a unique type of T cell, become a major
barrier, therefore “re-invigorating” TEX cells provide opportunities to improve anti-tumor
immunotherapy. Nowadays, the mechanism of T-cell exhaustion has been studied in depth,
and successful clinical cases of the reversal of TEX cells for immunotherapy have become
increasingly common. However, only some patients have achieved complete remission of
the disease, and serious side effects, including cytokine storms, have occurred. Therefore,
the mechanisms of TEX need to be further investigated, and reversing T-cell exhaustion for
clinical application requires comprehensive study to provide a sufficient theoretical basis
for subsequent clinical tumor immunotherapy. With the deepening and comprehensive
researches, we believe that the molecular mechanisms underlying T cell exhaustion will be
made clearer.

6. Summary

In the clinical aspects, cancer causes millions of deaths each year and is one of human-
ity’s greatest health challenges. After the 20th century, it is appeared that a new principle
of cancer treatment by activating the body’s own immune system’s ability to attack tumor
cells, and tumor immunotherapy has achieved good success in clinical practice. However,
with the continuous researches on the T cells in the TME during the immune response
against cancer, a new concept of “T cell exhaustion” was created. T cell exhaustion is tightly
correlated with poor prognosis of the clinical cancer and viral infection treatment. Thus,
at present, there is doubt that exploring regulatory mechanisms and reversing of CD8+T
cell exhaustion is the more wise and valid pathway in the cancer treatment. We follow
the emerging researches trends and provide a systematic review on the T cell exhaustion
especially the factors and clinical applications in the T cell exhaustion. At the same time,
we also recognize that we may be inadequately aware of the T cell exhaustion and require
more updated contents.
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Figure A1. Exhausted T cells have been induced by many chronic antigen stimulations, The effector
T cells will differentiate into the subtype of the precursor exhausted T cells even terminal effector
exhausted T cells with 3 persistent viral infections. Some typical molecules including inhibitory
receptors such as TIM-3 and PD-1 4 express differently in the precursor exhausted T (TPEX) cells
and terminal exhausted effector T (TEX), so 5 within each functional category, molecules that are
suitable for separating effector T cells (TEFF) precursor 6 exhausted T (TPEX) cells and terminal
exhausted effector T (TEX) cells. “+, ++, +++ and ++++” denote the level of ex- 7 pression; “+/−”
denote heterogeneous expression; “−” denotes lack of expression. Abbreviations: TIM-3, T 8 cell
immunoglobulin and mucin domain-containing protein 3; PD-1, programmed cell death 1; LAG-3,
lymphocyte activation gene 3 protein; TCF-1, transcriptional regulator T cell factor 1; TOX, thymocyte
selection-associated high mobility group box protein; ICOS, inducible T cell costimulatory; CXCR3,
CXC- 11 chemokine receptor-3.
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Figure A2. Interactions between co-stimulatory molecules CD80, CD86, CD28 and CD226 are crucial
for appropriate T cell activation. Immune checkpoint inhibitors, including PD-1, CTLA-4, LAG3,
TIGIT and VISTA 3 suppress T-cell signaling and induce T-cell exhaustion by interacting with related
ligands expressed on 4 APCs/tumor cells. Many inhibitory receptors on exhausted T cells have
intracellular immunoreceptor tyro- 5 sine-based inhibitory motifs (ITIMs) and/or immunoreceptor
tyrosine-based switching motifs (ITSMs). 6 However, some receptors have specific motifs, such
as KIEELE for lymphocyte activation gene 3 protein 7 (LAG3). Inhibitory receptors induce T cell
exhaustion through mechanisms including competition for ligands with positive regulator molecules
(TIGIT competes with CD226 to limit T cell function), interference 9 with TCR activation signaling
(LAG3 drives co-receptor-LCK dissociation, which hampers the signaling 10 cascade and leads to T
cell exhaustion), and upregulation of genes associated with T cell exhaustion (PD-1 11 with PD-L1
during the T cell exhaustion period recruits the PD-1/SHP2 tyrosine phosphatase complex to 12
reduce the activity of key nuclear transcription factors that are important for T cell proliferation and
differentiation, such as NF-κβ, AP-1, and NFAT).
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Figure A3. A representative figure of the features of the T cell exhaustion. After long- term exposure to
antigen in the chronic viral infection and cancer, T cells largely tend to drive a different differentiation
program. Intermediate exhausted T cells display specific features distinct from those of effector or
memory T cells, including progressive loss of effector function, highly expressed inhibitory receptors
and specific transcriptional and epigenetic regulation. For instance, the terminal stage of exhaustion
leads to partial or complete inability of T cells to pro-duce large amounts of IFN-γ, β-chemokines, or
to carry out degranulation and highly co-expressed of various inhibitory receptors (IRs), including
programmed cell death protein 1 (PD-1), cytotoxic T lymphocyte-associated antigen-4 (CTLA-4),
lymphocyte-activation gene 3 (LAG-3), T cell immunoreceptor with immunoglobulin, and so on.
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