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Simple Summary: Over 70% of the liver comprises of parenchymal cells (named hepatocytes) and
the rest 30% of cells are the non-parenchymal cells, which include macrophages (resident Kupffer
cells), hepatic stellate cells, endothelial and immune cells. Alcohol consumption can cause liver injury,
which is known as alcohol-associated liver disease (ALD). ALD development is partially based on
the activation of non-parenchymal liver cells. In this review, we will address the mechanisms of
ALD progression and will analyze the contribution of most of the liver non-parenchymal cells to
alcohol-induced liver damage.

Abstract: Now, much is known regarding the impact of chronic and heavy alcohol consumption
on the disruption of physiological liver functions and the induction of structural distortions in the
hepatic tissues in alcohol-associated liver disease (ALD). This review deliberates the effects of alcohol
on the activity and properties of liver non-parenchymal cells (NPCs), which are either residential or
infiltrated into the liver from the general circulation. NPCs play a pivotal role in the regulation of
organ inflammation and fibrosis, both in the context of hepatotropic infections and in non-infectious
settings. Here, we overview how NPC functions in ALD are regulated by second hits, such as gender
and the exposure to bacterial or viral infections. As an example of the virus-mediated trigger of liver
injury, we focused on HIV infections potentiated by alcohol exposure, since this combination was
only limitedly studied in relation to the role of hepatic stellate cells (HSCs) in the development of
liver fibrosis. The review specifically focusses on liver macrophages, HSC, and T-lymphocytes and
their regulation of ALD pathogenesis and outcomes. It also illustrates the activation of NPCs by the
engulfment of apoptotic bodies, a frequent event observed when hepatocytes are exposed to ethanol
metabolites and infections. As an example of such a double-hit-induced apoptotic hepatocyte death,
we deliberate on the hepatotoxic accumulation of HIV proteins, which in combination with ethanol
metabolites, causes intensive hepatic cell death and pro-fibrotic activation of HSCs engulfing these
HIV- and malondialdehyde-expressing apoptotic hepatocytes.

Keywords: alcohol-associated liver disease; liver macrophages; hepatic stellate cells; hepatocytes;
T-cells; HIV
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1. Introduction

Excessive alcohol consumption is a global healthcare problem with enormous social,
economic, and clinical consequences. While chronic and heavy alcohol consumption causes
structural damage and/or disrupts normal organ function in virtually every tissue of the
body, the liver sustains the greatest damage, since it is the primary site of ethanol metabolism.
Chronic and heavy alcohol consumption disrupts normal liver function and eventually
causes hepatic structural damage, resulting in alcohol-associated liver disease (ALD).

In the liver, the most potent ethanol-metabolizing cells are hepatocytes. These parenchy-
mal cells account for ~70–80% of the liver mass [1] and are the first cell type to sustain an
alcohol-induced injury for the initiation of the disease process. However, it is the other
~20–30% of the liver mass, lumped together as the non-parenchymal cells (NPCs), which
promote the progression of liver disease. These NPCs are the Kupffer cells, sinusoidal
endothelial cells, hepatic stellate cells, and immune cells. This review deliberates the effects
of alcohol on the activity and properties of NPCs, which are either residential or infiltrated
into the liver from the general circulation. These cells play a pivotal role in the regulation
of organ inflammation and fibrosis, both in the context of hepatotropic infections and in
non-infectious settings. We will also address the important alcohol-induced alterations in
the functions of some liver NPCs, such as macrophages, T cells, and hepatic stellate cells,
which contribute to alcohol-associated liver disease progression. In addition to alcohol, the
behavior of these cells is regulated by other secondary hits, such as gender and infection, etc.

2. Role of Liver Macrophages in ALD

There is a longstanding recognition of the critical role that macrophages play in
the inflammatory response to alcohol. The first suggestion of this role was from early
studies of Thurman and colleagues, who used techniques that either ablated the total liver
macrophages [2] or blocked macrophage inflammatory signaling using TLR4 KO mice [3].
These studies showed that removing inflammatory macrophage function from the liver
greatly reduced alcohol-induced liver inflammation and overall pathology. This led to
the idea that although Kupffer cells are non-inflammatory under basal conditions, they
become “activated” by alcohol and subsequently drive liver injury [2,4,5]. Subsequent
studies showing that alcohol induces bacterial translocation from the intestine [6,7] further
supported this idea that alcohol initiates a gut-to-liver crosstalk causing a pro-inflammatory
response of the hepatic macrophages that produce alcohol-associated liver disease [8–10].

Over the years, our understanding of the nature and diversity of liver macrophages
has dramatically increased. In particular, new developments in single-cell technologies
have expanded our understanding of the situation in normal livers and in disease processes.
More recently, studies have begun to provide insight into the diversity and evolution of
liver macrophage changes that specifically occur in ALD. Nonetheless, detailed functional
information about specific macrophage populations has been difficult to obtain, and we
currently have a situation where the knowledge of transcriptome-defined macrophage
subsets has outstripped our understanding of the functions of these subsets. Nonetheless,
new information about their function has recently emerged, and thus, a new picture of liver
macrophages in ALD is beginning to emerge.

Alcohol consumption induces changes in liver macrophage populations that appear
to play a key role in inflammatory liver injury, fibrosis, and disease resolution [11–13]. One
of the problems in studying these changes is the multiplicity of mouse models, many of
which do not closely resemble the pathology in humans with ALD. In one commonly used
diet, the Lieber–DeCarli liquid diet for alcohol administration [14], there are several phases
of macrophage changes. Within the first 3 days of alcohol exposure, there is a burst of
KC apoptosis followed by the rapid restoration of the KC population within a week [15].
Work from the Weinman lab demonstrated that this initial apoptosis burst was induced by
alcohol dependent S574 phosphorylation of the transcription factor FOXO3, changing its
transcriptional specificity to promote apoptosis [16,17]. Kupffer cell loss was associated
with the entry of infiltrating MΦs and a transient increase in the LPS sensitivity. After
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10 days of continued ethanol exposure, adaptations seemed to occur. The LPS sensitivity
was reduced back to baseline, the Kupffer cell numbers were restored, and intrahepatic
MΦs mRNA expression showed the prominence of anti-inflammatory cytokines and anti-
inflammatory MΦ markers. These data suggest that MΦ populations in the liver evolve
dynamically after alcohol exposure.

Longer-term exposure to the LD diet shows that the IM populations evolve as well. Af-
ter 4 weeks of Lieber–DeCarli alcohol feeding in mice, the total KC numbers are decreased,
and circulating Ly6C+ monocytes enter the liver where they differentiate into MΦs with
at least two different phenotypes, possessing pro- or anti-inflammatory gene expression
patterns [11,18,19]. Subsequent studies showed that the KCs were not the dominant inflam-
matory cells and that a subfraction of the IMs, the recently recruited Ly6C high IMs, were
largely responsible for inflammation [19]. In humans, immunohistochemistry [20] and gene
deconvolution approaches [21] have shown the diversity of macrophage phenotypes in
advanced alcohol-associated liver disease with the expression of multiple different subsets
of both inflammatory and non-inflammatory macrophage populations.

To better identify the functions of macrophage populations in alcohol, we used
a new mouse model for ALD that more closely resembles ASH [22]. This involves
16-week exposure of the mice to a high-fat chow diet supplemented with 10–20% alcohol in
the drinking water. This treatment generates severe steatosis, inflammation, ballooning
degeneration, and zone 3 pericellular fibrosis, which is histologically similar to moderately
severe alcohol-associated steatohepatitis [22]. A single-cell RNA sequence analysis of liver
macrophage populations from this model identified multiple KC and IM populations that
differed from those in chow-fed mice. The bulk of the alcohol-associated KCs were non-
inflammatory and expressed genes related to scavenger receptors, endocytosis, and lipid
metabolism. Less abundant KC subsets were present as well and these had transcriptomic
signatures that predicted functions associated with inflammation and extracellular matrix
degradation. While the total KC numbers were similar in the chow- and alcohol-fed mice,
IMs were much more abundant in alcohol-fed mice, where their abundance increased from
about 10% to more than 50% of the total liver macrophages. IMs were also heterogeneous
with one of the largest subsets, showing a classic pro-inflammatory signature characterized
by NF-κB activation and pro-inflammatory cytokine production.

It has been difficult to establish the function of liver macrophage subsets by in vitro
assessments. One of the problems is that macrophage phenotypes are environment-dependent
and that they change rapidly upon removal from the cellular environment. To overcome this
problem, we and others have used in vivo diphtheria toxin-based selective cell ablation [23,24].
Mice expressing Cre recombinase driven by the Kupffer cell-specific Clec4f promoter were
crossed with Rosa26-DTR expressing mice to generate KC-specific DTR expression [25].
Sustained KC ablation was achieved by administering DT every 3 days for the final month
of the 16-week alcohol exposure, and these mice were compared with similar DT-treated
Clec4f-DTR mice on a control chow diet. Preliminary studies using this system have
provided new insights into the role of KCs during alcohol consumption [26]. In the control,
the chow-fed mice, there was no obvious effect of KC ablation. The mice appeared healthy,
there was no weight loss, no induction of liver inflammation or fibrosis, and no loss of
liver function. In the alcohol-fed mice, sustained KC ablation produced very different
results. There was an increase in the IM content of the liver, an increase in inflammatory
cytokine expression and ALT, an increase in hepatic fibrosis, and a loss of differentiated liver
functions manifested by an increased serum bilirubin, increased PT/INR, and a decrease in
expression of liver-specific genes such as albumin. These results suggest that Kupffer cells
play a broad protective role in ALD. At first glance, this result appears to contradict the
studies from more than 20 years ago that showed Kupffer cell ablation ameliorating alcohol-
induced liver injury [2,5]. However, those earlier studies used ablation methods that killed
both KCs and IMs. To try to clarify this discrepancy, we used a global macrophage-targeting
method, LysM-Cre-dependent DTR expression, to ablate the total liver macrophages, both
KCs and IMs. When fed alcohol, these global macrophage-depleted mice developed reduced
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inflammation compared to wild-type alcohol-fed mice. Thus, the effects of selective KC
depletion are dramatically different than global macrophage depletion, demonstrating a
primarily hepatoprotective effect of KCs in a mouse model of ALD.

In summary, liver macrophages are critical components of the liver’s response to
alcohol. Their functions are illustrated in Figure 1. Upon alcohol exposure, major changes
occur in hepatic macrophage populations. Embryonic Kupffer cells undergo apoptosis and
are partially replaced by monocyte-derived KCs, which accounts for the increased hetero-
geneity of the KC population. At the same time, the quantity of infiltrating macrophages
within the liver greatly increases. The combination of in vitro analysis, single-cell gene
expression analysis, and selective cell ablation all show that the infiltrating macrophages
are the primary inflammatory cells that drive liver inflammation and injury. While there
are minor pro-inflammatory KC subsets, the bulk of KCs are hepatoprotective, and they
appear to oppose inflammation and fibrosis and preserve hepatocellular function. Selective
removal of KCs without removing IMs from the alcohol-exposed liver can result in liver
failure, while the removal of both KCs and IMs together reduces liver injury.
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3. The Role of T Cells in the Immunopathogenesis of ALD

The association between excessive alcohol consumption and increased susceptibility
to infection has been documented since the late 1700s [27,28]. This relationship is now
firmly established, and severe ALD is well-known to be an immunocompromised state,
rendering patients highly vulnerable to overwhelming bacterial infections [29–31]. As
the first line of defense, the innate arm of the host immunity is the vanguard to bacterial
pathogens [32], and this may reflect the extensive research efforts in characterizing the
dysfunctional innate immunity in ALD [33,34]. Notably, increasing evidence reveals the
key role of adaptive immunity in the antimicrobial armamentarium [35], and particularly,
T cells are thought to be central [36]. Multiple studies reveal a consistent failure of the
T-cell response in patients with alcohol-related liver disease [37]. Both the quality and
quantity of the anti-bacterial T-cell responses are diminished in ALD, characterized by
lymphopenia [38], increased levels of T-cell apoptosis [39], an altered balance between T-cell
subtypes [40,41], and a reduction in the migratory capability of T cells [42]. As previously
shown, the T-cell cytokine production is skewed in ALD, with a loss in the frequency of
T-cells producing antibacterial IFNγ in response to the bacterial challenge and the domi-
nance of immunosuppressive IL10 [43]. The balance between IL10 and IFNγ is crucial to
allow an appropriate state of host immunity and pathogen defense. IL10 directly impedes
pathogen clearance through the potent inhibition of T-cell, monocyte, and neutrophil func-
tions, while conversely, IFNγ is a potent activator of these activities. When this equilibrium
is skewed toward IL10, it enables the establishment of an immunological landscape that
promotes the persistence of infection [44]. Multiple mechanisms have been suggested to
underpin the malfunction T-cell response in ALD, including ethanol-mediated alterations
in T-cell metabolism [45,46] and increased T-cell immunosenescence [47]. Our data reveal
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the role of checkpoint receptors in mediating the impaired anti-bacterial T-cell responses in
ALD. These checkpoints are regulatory receptors, found on the surface of immune cells
as soluble forms, which keep the immune response ‘in check’. Acting as gatekeepers,
they ensure that the immune response, when prompted by infection, is effective but not
excessive. They maintain the homeostatic equilibrium between protective antimicrobial
immunity and immunopathology [48]. The expression of inhibitory checkpoint receptors
to constrain T-cells responses is, in turn, defined by the environment. During inflammation
and in the presence of high levels of antigenemia, inhibitory checkpoint receptors are
upregulated to ‘switch off’ immune responses, so to limit excessive immunopathology.
However, a persistent hyper-expression of the inhibitory checkpoint receptors leads to
immune “exhaustion”, which is associated with a sequential loss of immune activities,
including T-cell proliferation, secretion of cytokines, cytotoxic functions, and priming of
the pro-apoptotic pathways, causing a progressive immune shutdown [49–52]. In 2015, we
showed the involvement of two inhibitory checkpoint receptors in impairing anti-bacterial
T-cell responses in alcoholic hepatitis (AH), namely, programmed cell death 1 (PD1) and
T-cell immunoglobulin and mucin domain-containing protein 3 (TIM3). Importantly, we
demonstrated that the observed anti-bacterial dysfunction in AH was not permanent but
reversible through an ex vivo blockade of PD1/TIM3, and we showed that favorable IFNγ

antibacterial responses could be restored and that neutrophil antimicrobial functions could
be augmented [43]. Indeed, checkpoint receptor blockade is proving to be effective at rescu-
ing deranged/exhausted immunity in cancer, including hepatocellular carcinoma, and has
obtained FDA approval for restoring anti-tumor immunity, with improved response rates
and good safety profiles [53,54]. Following on from studies revealing the role of checkpoints
in nosocomial infections and septic shock [55], clinical trials of PD1 blockade in bacterial
sepsis have found it to be well-tolerated and associated with immune restoration [56,57].
Their clinical safety and efficacy in the context of ALD is yet to be explored. To add a
further layer of complexity, we have also described the involvement of the soluble forms
of checkpoint receptors in promoting immune paresis in ALD, and these may also confer
therapeutic utility [58].

Recent evidence has described the role of unconventional T-cell populations in the de-
ficient antimicrobial response in ALD, including the mucosa-associated invariant T (MAIT)
cells, CD1-restricted T cells, and γδ T cells that utilize MR1, CD1 molecules, and BTN/BTNL
molecules to respond to lipid, metabolic, or other antigenic stimuli [33]. We have focused
on the MAIT compartment: these innate-like CD161-positive T cells are fundamental to the
immune control of gut microbiota, bacterial infection, and inflammatory diseases. Initially
characterized in the intestinal mucosa, they are the most prevalent population of intrahep-
atic T cells and exist in high frequencies in the systemic circulation. In response to riboflavin
metabolites of bacterial origin, MAIT cells perform their antibacterial functions by secreting
cytokines (IFNγ/TNFα/IL-17) and killing infected cells [59]. We found a broad spectrum
of dramatic quantitative and functional impairments of blood MAIT cells in ALD patients,
which was driven by the loss of gut integrity and increased translocation of gut bacteria
to the systemic circulation. MAIT cells were found to be in a state of ‘poised’ activation,
displaying an increased expression of activation markers, but lacking in lineage-specific
transcription factors and having significantly compromised antibacterial cytokine and
cytotoxic responses [60].

The most common cause of death in patients with ALD is the development of serious
bacterial infections, and whilst the current guidelines recommend intensive and early
antibiotic therapy, this has led to the development of multidrug-resistant bacteria [61]. These
infections are associated with a higher incidence of septic shock and/or rapid deterioration
of the liver function and death. As such, there is a pressing need to explore new paradigms
for anti-infective therapy, and host-directed immunomodulatory therapies are a promising
approach. The extensive array of defective antimicrobial T-cell responses in ALD significantly
contributes to the immunodeficiency observed in these patients and offers new opportunities
for therapeutic intervention [62]. This paradigm is illustrated in Figure 2.
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3.1. ALD and HSC Activation

HSCs play a leading role in liver fibrosis development and are highly instrumental
in the progression of ALD to end-stage liver disease [63]. Following prolonged liver
injury, HSCs are activated to become myofibroblasts producing an extracellular matrix
(ECM). ECM is indispensable for liver regeneration, but its overproduction and inability to
destroy an excessive ECM promotes fibrosis. HSC-activating factors include the induction
of inflammatory cytokine cascades, oxidative stress, metabolic reprogramming via the
upregulation of autophagy and endoplasmic reticulum stress, and iron overload [64–67].
These cytokines are secreted by immune cells such as innate lymphoid cells, KC, and
bone-derived macrophages [64]. The interaction between HSCs and immune cells regulates
the progression of alcohol-associated liver fibrosis via the suppression of NK and T cells
by alcohol [68]. Oxidative stress induced by acute and chronic ethanol administration
increases TGFβ production in HSCs, followed by an activation of collagen genes, with the
further perpetuation of activated HSC phenotypes through ECM remodeling [69].

HSCs contribute to alcoholic steatohepatitis by releasing chemokines and proinflam-
matory cytokines, such as MCP1, TNFα, and IL-6, as well as latent TGFβ, which suppresses
STAT1-activated apoptosis in HSCs [70,71]. In addition, HSCs induce alcohol-associated
liver steatosis via triggering the hepatocyte cannabinoid receptor CB1R by HSC-derived
endocannabinoid, therefore regulating SREBP1-dependent lipogenesis [72,73]. Importantly,
not only can damaged hepatocytes activate HSCs, but HSCs can also program hepatocytes
for de novo lipogenesis in response to alcohol-induced hepatic cysteine deficiency and
glutathione depletion, as a result of the methionine cycle disruption [74]. The crosstalk
between hepatocytes and HSCs is established not only via contact cell-to-cell interactions
or cytokine/chemokine production, but via the release of extracellular vesicles (EV), such
as exosomes and apoptotic bodies, which are known to induce liver fibrosis [75]. In fact,
hepatocyte apoptosis and the release of apoptotic bodies have been demonstrated as an
important factor that induce HSC pro-fibrogenic activation [76].
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The role of HSCs in liver fibrosis development, with an emphasis on alcohol-related
molecular interactions, retinol metabolism, and signaling pathways has already been re-
ported in many excellent review articles [63,72,77–79]. However, liver fibrosis pathogenesis
may be exacerbated by simultaneous exposure to many “second hits”. Here, we choose
to elaborate on less-known aspects of alcohol-induced liver fibrosis, namely, on the po-
tentiation of the effects of alcohol metabolism by hepatocyte infection. In this regard, some
mechanisms of HIV-induced liver fibrosis development in the context of alcohol exposure will
be overviewed as a clinically relevant but under investigated problem, leading to end-stage
liver disease progression triggered by alcohol abuse in the HIV-infected patient cohort.

In addition to infections, the last part of this review will also disclose the role of
another second hit, gender, which also regulates the behavior of major NPCs in ALD.

3.2. Alcohol Metabolites Affect the Crosstalk between Hepatocyte and Hepatic Stellate Cells to
Facilitate Liver Fibrosis Progression: Potentiation by Infectious Agents (HIV)

Alcohol-induced liver damage is facilitated by many infections. While a lot of pub-
lications indicate the role of already characterized viral hepatotropic infections (such as
HCV and HBV) exacerbated by alcohol abuse, almost nothing is known about Human
Immunodeficiency Virus (HIV), which in combination with alcohol, induces significant
liver injury with the progression to liver fibrosis [80].

HIV remains a global threat, with approximately 38.4 million active infections and
40.1 million HIV-related deaths [81]. While many may be tempted to think of HIV as a
relic of the past, the emerging data suggests otherwise. By the end of 2021, approximately
1.5 million HIV incidences and 650,000 mortalities were reported [82]. There are many
reasons for HIV-related mortality, and liver failure is one of them. Liver disease is among
the leading organ injuries related to HIV-induced mortality, especially, with the link to
antiretroviral therapy-induced longevity among people living with HIV (PLWH) [83,84].
While co-infections of HIV with hepatotropic viruses notoriously contribute to the frequently
observed liver disease in HIV-infected individuals [85], alcohol abuse is another significant
trigger of liver disease [81]. This is because hepatocytes are the primary site for ethanol
metabolism. In addition, alcohol abuse is twice more frequent among people living with
HIV (PLWH) than among HIV-uninfected individuals [80]. Moreover, the pathomecha-
nisms of alcohol-induced liver damage among PLWH are not quite clear, while the outcome
of the disease to liver fibrosis is quite frequent. Hence, this section of the review aims
to highlight the role of hepatic HSCs (as major inducers of liver fibrosis) in alcohol- and
HIV-related liver injury.

It is known that interactions between injured hepatocytes and HSCs can promote
fibrosis development [86,87]. There are various ways by which damaged hepatocytes can
induce HSC profibrotic changes, such as via cytokine/protein release [88], acetaldehyde-
malondialdehyde hybrid adducts [89], exosomes [90], and apoptotic bodies [91]. In fact, al-
cohol exposure can induce hepatocyte apoptosis, which plays a profibrotic role in HSCs [92].
However, the intensity of apoptosis is moderate in alcoholic hepatitis, which might be
enhanced by the combination of several triggers of cell death. Hepatotropic viruses are
the potent triggers of ethanol-induced liver injury [93]. In fact, it has been shown that
the combination of HCV with ethanol induces potent apoptosis, and the engulfment of
the formed apoptotic bodies (ABs) by HSCs mediates fibrosis development [94]. This
is confirmed by epidemiological data indicating a higher frequency of liver fibrosis in
HCV+ alcohol-exposed patients than in alcoholic hepatitis patients [95]. While HCV that is
potentiated by alcohol is an already characterized mechanism of liver fibrosis development,
studies are very limited in HIV+ alcohol, where the frequency of fibrosis development is
also high. This made us initiate this section with an overview of how HIV combined with
alcohol to trigger hepatocyte apoptosis, followed by HSC profibrotic activation after the
internalization of hepatocyte ABs.
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3.3. Hepatic Apoptotic Bodies as Activators of Liver Fibrosis under HIV-Alcohol Exposure

According to liver homeostasis, hepatocyte apoptosis usually correlates with HSC
profibrotic activation. This phenomenon is profoundly expected, given the high regener-
ative ability of the liver. However, HSC profibrotic activation may not lead to any major
liver impairment if only a few hepatocytes undergo apoptosis. This may be different for
massive acetaldehyde production in HIV-infected hepatocytes. In fact, we previously re-
ported on massive hepatocyte apoptosis induced by the combined treatment of hepatocytes
with ethanol metabolites (acetaldehyde) and HIV [96]. Hence, hepatocyte apoptosis in the
presence of ethanol serves as an acetaldehyde-mediated HIV clearance. However, profi-
brotic genes were activated in HSCs when HIV-bearing ABs were internalized by HSCs [91].
Therefore, it becomes expedient to understand the mechanisms of acetaldehyde and HIV-
induced hepatocyte apoptosis.

HIV is acceptably hepatotoxic [96], but not generally considered hepatotropic. How-
ever, several studies have detected HIV in the liver [97–99]. The affinity of activated
HIV-infected T lymphocytes to the liver may provide some explanation [100]. Moreover,
the liver’s anatomical proximity to the gut [101], the largest HIV reservoir, is another
important rationale for HIVs presence in the liver [102]. While the aforementioned reasons
may support the presence of HIV in the liver, HIV entry into CD4-negative hepatocytes is
required for HIV-induced pathogenicity in the liver. Unlike CD4-positive immune cells,
HIV endosomal internalization into non-permissive CCR5/CXCR4-rich hepatocytes me-
diates HIV entry [103]. While this only supports low-level HIV entry [104], a significant
amount of HIV accumulates in hepatocytes in the presence of a second hit, such as ethanol
and its metabolite, acetaldehyde [96]. The mechanisms of acetaldehyde-induced HIV ac-
cumulation, which resulted in hepatocyte apoptosis, can be explained by two significant
factors: (1) acetaldehyde-induced alkalinization of the hepatocyte endosome [105,106] and
(2) the generation of reactive oxygen species [85].

3.4. Alcohol-Induced Endosomal Alkalinization Supports HIV Accumulation in Hepatocytes

Hepatocytes are considered non-permissive to HIV because they lack CD4. However,
hepatocyte richly expresses HIV-co-receptors, CCR5, and CXCR4 [96,107], which interact
with HIV envelope glycoproteins for HIV entry. Moreover, HIV entry through endocytic
internalization has also been described as an alternative HIV entry pathway for CD4-
negative cells [103]. While the endocytic HIV entry pathway is a non-canonical HIV entry
mechanism, substantial supporting evidence for this pathway is available. Marechal et al.
demonstrated receptor-mediated endocytosis of HIV in monocyte-derived macrophages [108].
Similarly, another study suggested endocytosis as the mechanism for HIV entry into T cells
and monocytes after blocking CD4 receptors with antibodies [109]. A recent study also
validated endocytosis as the HIV entry mechanism for CD4-negative cells [103]. Hepatocytes
that are CD4 negative are therefore, not exempted from the endocytic internalization of HIV.
In fact, we demonstrated the HIV endocytic internalization in hepatocytes [90].

Meanwhile, antigens that are internalized through the endocytic pathways are canoni-
cally fated for degradation by the pH-dependent (acidic) endosomal/lysosomal system [110].
This may explain why only low-level HIV is detected in intact hepatocytes [96,104], but due
to acetaldehyde-dependent alkalinization of endosomal compartments, more HIV survives
in alcohol-exposed hepatocytes. However, HIV survival in the endosome may be sustained
when the lysosome degradation function is impaired. In fact, bafilomycin-mediated lyso-
some alkalinization, which impaired lysosome functions, increased HIV infectivity in HeLa
Magi cells [111]. Similarly, alcohol is known to alkalinize lysosomes [106], resulting in
prolonged survival of HIV in the endosomal/lysosomal system, where they were fated for
degradation [90]. This explains why we observed an accumulation of HIV gag RNA and
proteins in hepatocytes exposed to acetaldehyde [96].
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3.5. Alcohol-Induced HIV Accumulation Triggers Reactive Oxygen Species Generation

Substantial evidence exists to support HIV as a potent trigger for ROS generation,
both in vivo and in vitro. Elbim et al. observed a positive correlation between HIVs viral
load and ROS generation [112]. Another salient observation was the ROS generation due
to acetaldehyde-induced HIV accumulation in hepatocytes [96]. A clinical study observed
a reduction of thioredoxin and an abundant antioxidant in the lymphoid tissues of AIDS
patients [113]. The elevation of lipid peroxidation products in the serum of HIV-infected
individuals, compared to the controls, is another valid clinical evidence of HIV-induced
ROS generation [114]. Staal et al. also observed glutathione and cysteine depletion among
AIDS patients [115].

In addition, HIV proteins have been reported as a modulator of HIV-induced ROS
generation. For example, HIV TAT (trans-activator of transcription) was observed to in-
duce hydrogen peroxide [116]. HIV gag protein, p24, is another HIV protein that triggers
ROS generation, as detected by 2′,7′-dichlorodihydrofluorescein [96]. Other studies re-
vealed gp120, an HIV envelope protein, to be a trigger of oxidative stress [117,118]. Viral
protein R (Vpr) is also an HIV protein that has been shown to induce oxidative stress
in Schizosaccharomyces pombe cells [119]. While most HIV proteins trigger ROS gener-
ation, they do this through various mechanisms. For example, ROS generated by HIV
TAT in ECV-304 cells was attenuated by NADPH oxidase inhibitors. Hence, NADPH is
the mechanistic pathway for HIV TAT-induced ROS generation [120]. Mitochondria is
another organelle involved in the HIV-induced ROS generation, particularly by Vpr [121]
and HIV TAT [122]. The activation of NOX4 by the Vav/Rac/PAK pathway has also been
observed by HIV Nef [123]. In addition to HIV-mediated ROS release, ROS may be released
by host cells as a defensive mechanism against HIV [124].

Whether ROS is mediated by cellular defense mechanisms or as a direct effect of
HIV pathogenicity, it leads to oxidative stress and cell death. In fact, immune cell deple-
tion, which is a typical feature of HIV pathogenesis, is triggered by ROS [125]. Similarly,
we observed HIV-induced death in hepatocytes exposed to acetaldehyde in CYP2E1-
overexpressing liver cells [126]. While ethanol and acetaldehyde trigger the generation of
ROS in HIV-containing hepatocytes, they also induce HIV accumulation via a change in
the lysosomal pH, leading to oxidatively induced apoptosis [90]. Recent studies showed
that N-acetylcysteine, a potent antioxidant, can reverse hepatocyte oxidative death by the
restoration of lysosome functions [126]. This suggests the involvement of ROS-induced
lysosome impairment in hepatocyte apoptosis. In fact, our data revealed crosstalk between
lysosome and mitochondria as the mechanisms for ROS-induced hepatocyte apoptosis [126].
While this process seemed beneficial since it provided clearance of HIV-accumulated hepa-
tocytes, it is also a detrimental event. This is because the hepatocyte-derived ABs, when
engulfed by HSCs, activate profibrotic genes in these cells, while the activation of pro-
fibrotic genes was not observed when ABs generated from HIV-infected lymphocytes were
internalized by HSCs [96].

3.6. Apoptotic Bodies Derived from HIV and Acetaldehyde-Exposed Hepatocytes Induce HSC
Profibrotic Activation

HSC activation after ABs engulfment has previously been observed [127]. Moreover,
as demonstrated by comparing the pro-fibrotic effects of ABs derived from hepatocytes vs.
ABs derived from lymphocytes, only the ABs of hepatocyte origin could activate HSCs [96].
Beyond the cell origin of ABs, the mechanisms of HSCs activation may depend on the type
of agent that induces apoptosis. For example, studies that utilized UV as an apoptotic trig-
ger indicate Toll-like receptor (TLR)-9 as the mechanistic pathway for HSC activation [128].
This may be attributed to the ability of UV to efficiently disintegrate DNA into the CpG
motifs required to activate the TLR9 [129]. However, this is not the case when both acetalde-
hyde and HIV induce apoptosis of hepatocytes, as we recently demonstrated in vivo [91].
Therefore, it becomes paramount to decipher the contents of hepatocyte ABs generated
from the combined treatment with acetaldehyde and HIV (ABAGS+HIV). An enormous
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amount of HIV proteins and an oxidative product, malondialdehyde (MDA), were ob-
served as part of ABAGS+HIV cargo [91], and these ABAGS+HIV express phosphatidylserine,
which acts as the “eat me” signal for HSCs [130].

To complement the aforementioned ABAGS+HIV characteristics, HSCs were found
to express ligand bridge proteins, Gas6, ProS, AXL, and phosphatidylserine recognition
receptor [91]. Interactions between the ligand bridge proteins and AXL mediates ABAGS+HIV
entry into HSCs [91]. Since internalized ABAGS+HIV contains HIV proteins and MDA, the
HSC activation should highlight the pathways that are mediated by oxidative stress and/or
HIV proteins. In our recent study, JNK inhibitors attenuated HSC profibrotic activation
by ABs via the ERK1/2 pathway [91]. Likewise, N-acetyl cysteine attenuated ERK1/2
and HSC profibrotic activation [91]. This suggests that profibrotic activation in HSCs is
partly triggered by oxidative stress through the JNK-ERK1/2 pathway. Given that an
oxidative product, 4-Hydroxy-2, 3-nonenal, activated the JNK pathway in the study of
Parola et al. [131], MDA from hepatic ABAGS+HIV may have triggered the observed JNK-
ERK1/2 pathway. In addition, the JAK-STAT3 pathway is another ROS-dependent pathway
for HSC profibrotic activation [132]. Our data demonstrated HSC profibrotic attenuation
by an ROS-triggering hepatic ABs in a STAT3-silenced HSC. This confirms the involvement
of the JAK-STAT3 pathway after ABAGS+HIV engulfment by HSCs, while the JAK-STAT1
pathway was suppressed [91].

While hepatocyte apoptosis provides the premises for HIV and acetaldehyde/ROS-
induced hepatic fibrosis, inhibiting hepatocyte apoptosis may seem like the best target for
clinical intervention. However, this may have detrimental consequences, since acetaldehyde-
induced hepatocyte apoptosis is an avenue for HIV clearance from these liver cells, and the
suppression of this clearance leads to increased HIV DNA expression and even HIV DNA
integration into the human genome, as has been shown by treatment cells with pan-caspase
inhibitor [96]; the profibrotic effects of the MDA and HIV-containing ABAGS+HIV can be
attenuated by augmenting antiretroviral therapy by liver-targeted antioxidants.

3.7. Sex Differences in NPC Properties in ALD

Here, we present the data on gender-dependent regulations of NPC functions. Along
with infection, gender is considered as a second hit for ALD that regulates its progression.
In fact, it has long been recognized that the consequences of alcohol consumption are dif-
ferent in males and females [133–137]. Men have lower median platelet counts and higher
serum creatinine, ALT, and GGT concentrations [133]. A small study indicated that females
have higher mortality in acute alcoholic hepatitis [133]; however, later data from TREAT
consortium did not find significant differences between genders [138]. These discrepancies
could be explained by the fact that the diagnosis of AH in most cases was made based on a
combination of clinical and laboratory data and without histological confirmation. Several
studies indicate that alcohol metabolism is different between males and females [136,137,139].
Other studies have noted differences in hepatocyte proliferation/regeneration and alcohol-
induced hepatocyte apoptosis [140]. Gonadectomy experiments suggest that these path-
ways are in part, regulated by sex hormone signaling [141]. Some of the differences were
reported to be dependent on the sex-specific hormone milieu of the animal, but others persist
even in cells isolated from males and females, independent of endogenous hormones [136].
Thus, sex differences in non-parenchymal cell signaling in ALD are influenced by altered
hepatic metabolism of alcohol as well as sex differences in non-parenchymal cells themselves.
Recent studies revealed that males’ and females’ liver disease progression differ in innate
and adaptive immunity, fibrosis signaling, and other pathways that involve multiple NPC
populations [135,141–144]. Single-cell RNA-sequence studies confirmed that the alcohol
effect on every liver cell population was indeed sex-specific [145].

3.8. Sex Differences in Macrophage Properties

Female livers have a greater number of liver macrophages (Kupffer cells) per gram
tissue [146]. In addition, a lower percentage of Kupffer cells is present in the vicinity of
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hepatic stellate cells (HSCs) in female livers compared with males [147], and therefore, less
fibrotic tissue is present under normal conditions.

After alcohol exposure, females exhibit injury more quickly than males. Moreover,
levels of nuclear factor kappa B are doubled in female livers compared with male liv-
ers after ethanol treatment [148]. The expression of MyD88, a downstream signaling
molecule or TLR signaling, was only found to be significantly induced in the livers of
female alcohol-exposed mice [149]. These differences suggest higher sensitivity of female
liver macrophages to endotoxin/LPS. In fact, in vivo estrogen treatment increases the sen-
sitivity of hepatic macrophages to endotoxin [148]. Another study confirmed that estrogen
has a major influence on the susceptibility of Kupffer cells to gut-derived LPS, resulting
in increased proinflammatory cytokine production, which could be a major contributing
factor to the increased risk of alcohol-associated liver disease in women [150]. Anti-estrogen
(toremifene) treatment reduced the effects of alcohol in females but had no effect on the
production of TNF-alpha by isolated Kupffer cells or liver inflammation.

Several studies reported sex differences in chemokine induction by alcohol treatment.
Higher CCL-2 chemokine levels produced by liver macrophages in response to alcohol
in females could explain greater injury in females, since the Ccl2 gene deficiency protects
mice against alcohol-associated liver injury [151]. Other studies report that sex differences
in chemokine induction by alcohol treatment were dependent on diabetic condition [152],
suggesting that there is a complex interplay between sex and alcohol response.

Some studies have noted that, in addition to higher sensitivity to endotoxin, females
have higher levels of endotoxemia [148,153].

Hepatocyte-produced oxysterols are crucial for maintaining Kupffer cell identity and
phenotypes through LXRα signaling [154]. Studies of 27-hydroxycholesterol (27-HOC) have
demonstrated that this signaling can be sex-specific. Researchers have shown that 27-HOC
administration oppositely affected inflammation in female and male macrophages. These
sex-opposed inflammatory effects of 27-HOC were shown to be estrogen-dependent [155].

Sex differences in macrophages were reported not only in the liver but also in the
adipose tissue [156]. Female mice after alcohol exposure had greater adipose tissue inflam-
mation in vivo, and they showed an increased expression of TNFα and CCL-2, while IL-6
induction in adipose tissue was not sex-specific. These data correlated with an increase in
macrophage activation markers and induced expression of TLR receptors in adipose tissue
macrophages.

Taken together, macrophages in females demonstrate higher pro-inflammatory signal-
ing in the presence of alcohol, which is likely mediated by estrogen, hepatocyte-derived
factors, and alterations in TLR signaling.

3.9. Sex Differences in T-Cells Functions

It is well-known that many T-cell subpopulations are altered in patients with alcohol
use disorders (AUD) and ALD. Several of these changes are sex specific. Almost one
out of four patients with AUD have high CD4 and CD8 double-positive T cells, and the
frequency of this event was three times more in women than in men [157]. CD4+ CD8+
double-positive T cells have been associated with autoimmune diseases and inflammation,
suggesting that alcohol may modulate liver T-cell responses in a sex-specific way. A study
of the T-cell population in the livers of ALD patients confirms that higher Th17 and lower
T-regs in ALD patients correlated with poor survival. This study noted that males with ALD
had significantly lower T-regs, while females showed a higher pro-inflammatory cytokine
production that was correlated with complications and a poor 90-day outcome [158].

Another study suggested that T-cell differences could be attributed to differentially
regulated signaling pathways in the dendritic cells in females compared to males. These
differences were exacerbated by ethanol treatment [159]. Female dendritic cells treated
with ethanol were unable to activate antigen-specific cytotoxic T cells (CTLs), as shown by
the reduced expression of CD44, CD69, and the decreased production of IFNγ.
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While recent studies have uncovered the role of Th17 signaling in ALD progression [160]
and previous studies have demonstrated the sex-specific role of IL-17A in various dis-
eases [161–163], more investigations of sex-specific pathways in T-cell responses in the liver
are necessary.

3.10. Sex Differences in HSC Properties

Very few studies explored sex differences in HSCs in alcohol-induced liver disease.
However, some results from other disease models indicate that HSC signaling is sex de-
pendent. NASH models suggest that the estrogen-mediated crosstalk between hepatocytes
and HSCs may contribute to sex differences in non-alcoholic fatty liver disease through
an anti-fibrogenic function of the sphingosine 1-phosphate [164]. Several studies have
reported that estrogen therapy improved hepatic fibrosis and inhibited the activation of
HSCs [165,166]. While some studies reported a direct effect of the estrogen receptor signaling,
others indicated that active estrogen metabolites, with little or no affinity for ERα and ERβ,
could mediate the anti-fibrotic effect of estrogens through ER-independent pathways [166].
In vitro studies reported that in cultured HSCs, estradiol-inhibited type I collagen produc-
tion, alpha-SMA expression, and cell proliferation [167]. These findings seem to contra-
dict the notion that females are more susceptible to alcohol-induced fibrosis progression
and at a higher risk of developing cirrhosis, independent of disease severity [133,168,169].
The data suggest that more complex molecular mechanisms are involved in sex-differences
in HSC activation that is induced by alcohol.

A recent study identified histone demethylation enzymes, KDM5B and KDM5C, which
have sex-specific roles in HSCs after alcohol exposure. In female mice, KDM5B and KDM5C
promoted alcohol-induced HSC activation and fibrosis development in mice and humans,
while in males, HSC activation was KDM5B and KDM5C independent [170]. This study
also suggested that sex differences were mediated by an estrogen-dependent mechanism
that involved female-specific Ahr and Arnt transcriptional repression by KDM5B and
KDM5C, and AhR pathway inhibition in activated HSCs [170]; however, other mechanisms
were not excluded.

Taken together, there are pro- and anti-fibrotic mechanisms involved in HSC sex
differences in ALD.

4. Conclusions

In ALD:

• There is a replacement of embryonic KC with monocyte-derived KC. KCs mainly play
a hepatoprotective role and participate in phagocytosis and matrix remodeling, while
a minor part is pro-inflammatory. Inflammation is related to infiltrating macrophages
that cause hepatocyte dedifferentiation and fibrogenesis. In ALD, the selective removal
of KCs without removing IMs from the alcohol-exposed liver can result in liver failure,
while the removal of both KCs and IMs together reduces liver injury. This is illustrated
by Figure 1.

• Impaired anti-bacterial protection is due to dysfunctions in the innate immunity and T cells
based on depleted T-cell frequencies, increased cell apoptosis, imbalanced T-cell subsets,
impaired production of cytokines, and the reduced ability to kill bacteria (Figure 2).

• The significant trigger for profibrotic activation is the engulfment of apoptotic bodies
by HSCs, which is induced by ethanol metabolites and can be further potentiated
by viral infections, including HIV. This apoptotic body formation is regulated by the
induction of oxidative stress due to the lysosome dysfunction-dependent accumulation
of HIV proteins in ethanol-exposed hepatocytes.

• There is a sex difference in the regulation of liver NPCs number/functions in macrophages
and HSC, while the sex-dependent regulation of endothelial and immune cells requires
further clarification.
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