
Citation: Baker, E.C.; San, A.E.;

Cilkiz, K.Z.; Littlejohn, B.P.; Cardoso,

R.C.; Ghaffari, N.; Long, C.R.; Riggs,

P.K.; Randel, R.D.; Welsh, T.H., Jr.;

et al. Inter-Individual Variation in

DNA Methylation Patterns across

Two Tissues and Leukocytes in

Mature Brahman Cattle. Biology 2023,

12, 252. https://doi.org/10.3390/

biology12020252

Academic Editor: Giovanni Fiorito

Received: 25 December 2022

Revised: 31 January 2023

Accepted: 1 February 2023

Published: 5 February 2023

Copyright: © 2023 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Inter-Individual Variation in DNA Methylation Patterns across
Two Tissues and Leukocytes in Mature Brahman Cattle
Emilie C. Baker 1, Audrey E. San 1,2,3, Kubra Z. Cilkiz 1, Brittni P. Littlejohn 1,3, Rodolfo C. Cardoso 1 ,
Noushin Ghaffari 4, Charles R. Long 1,3, Penny K. Riggs 1 , Ronald D. Randel 1,3, Thomas H. Welsh, Jr. 1,2

and David G. Riley 1,*

1 Department of Animal Science, Texas A&M University, College Station, TX 77845, USA
2 Texas A&M AgriLife Research, College Station, TX 77845, USA
3 Texas A&M AgriLife Research & Extension Center at Overton, Overton, TX 75684, USA
4 Department of Computer Science, Prairie View A&M University, Prairie View, TX 77446, USA
* Correspondence: david.riley@ag.tamu.edu

Simple Summary: Epigenetic modifications such as DNA methylation can influence gene expression
and phenotype. Variation in DNA methylation patterns between individuals may contribute to
phenotypic variation. The object of this study was to quantify the inter-individual variation in DNA
methylation patterns of the anterior pituitary, amygdala and leukocytes harvested from two groups
of Brahman females, one prenatally stressed and one control. There was little overlap between the
sites and areas that exhibited high inter-individual variation between the two groups. The interaction
between the prenatal environment and cow genotype could be responsible for the differences in
location of the variation. The variation also appeared to be tissue specific, providing support for
DNA methylation’s role in tissue specific gene expression. Genes that displayed high variation in
methylation are active in biological pathways important to immune response, hormone production
and behavior. This was the first characterization of the inter-individual variation of DNA methylation
in somatic cells of beef cattle. Further research characterizing how methylated regions interact with
gene expression and the environment may give useful insight into how cow performance is affected.

Abstract: Quantifying the natural inter-individual variation in DNA methylation patterns is important
for identifying its contribution to phenotypic variation, but also for understanding how the environment
affects variability, and for incorporation into statistical analyses. The inter-individual variation in DNA
methylation patterns in female cattle and the effect that a prenatal stressor has on such variability have
yet to be quantified. Thus, the objective of this study was to utilize methylation data from mature
Brahman females to quantify the inter-individual variation in DNA methylation. Pregnant Brahman
cows were transported for 2 h durations at days 60 ± 5; 80 ± 5; 100 ± 5; 120 ± 5; and 140 ± 5 of
gestation. A non-transport group was maintained as a control. Leukocytes, amygdala, and anterior
pituitary glands were harvested from eight cows born from the non-transport group (Control) and
six from the transport group (PNS) at 5 years of age. The DNA harvested from the anterior pituitary
contained the greatest variability in DNA methylation of cytosine-phosphate-guanine (mCpG) sites
from both the PNS and Control groups, and the amygdala had the least. Numerous variable mCpG sites
were associated with retrotransposable elements and highly repetitive regions of the genome. Some of
the genomic features that had high variation in DNA methylation are involved in immune responses,
signaling, responses to stimuli, and metabolic processes. The small overlap of highly variable CpG
sites and features between tissues and leukocytes supports the role of variable DNA methylation in
regulating tissue-specific gene expression. Many of the CpG sites that exhibited high variability in DNA
methylation were common between the PNS and Control groups within a tissue, but there was little
overlap in genomic features with high variability. The interaction between the prenatal environment
and the genome could be responsible for the differences in location of the variable DNA methylation.
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1. Introduction

Epigenetic mechanisms influence gene expression without changing the underlying
DNA sequence. One epigenetic modification is DNA methylation, which typically occurs
through the addition of a methyl group to the 5′ carbon of the nitrogenous base cytosine
in mammals [1]. Most DNA methylation occurs at cytosine-phosphate-guanine (CpG)
sites and clusters of CpG sites known as CpG islands [2]. Methylation can influence gene
expression by changing the accessibility of the gene to the needed transcription factors and
influencing the splicing of transcripts. Considering the influence epigenetic modifications
have on gene expression, variation among DNA methylation patterns within individuals
can contribute to phenotypic variation [3]. Inter-individual variation of DNA methylation
has been observed in different human populations as early as the germ cell stage [4,5].
Comparison of methylation patterns of neutrophils from a group of healthy individuals
identified over 12,000 inter-individual variable fragments throughout the autosomes [6].
Similar patterns were observed in peripheral blood monocytes in humans [7]. Variation in
DNA methylation patterns throughout the genome could contribute to variations in behav-
ior, immune response, growth, and responses to the environment and drug treatments.

There is a strong genetic component to inter-individual DNA methylation varia-
tion [8,9]. Single nucleotide polymorphisms at CpG sites can directly lead to variation in
methylation patterns and affect expression levels by altering recognition sites for transcrip-
tion factors and DNA methyltransferases [10,11]. The amount of inter-individual variation
is often tissue dependent. Human neuron cells had higher inter-individual variation in
DNA methylation patterns relative to non-neuron cells [12]. Time and environment also
influence the inter-individual variation of DNA methylation, as inter-individual varia-
tion tends to increase over time [13,14]. In twins, it was found that a large contributor to
inter-individual variation in DNA methylation patterns was environmental factors [15].
The interaction between genetics and different uterine environments (maternal smoking,
maternal depression, maternal body mass index) was the best explanation for 75% of the
variably methylated regions found in neonates [16].

Prenatal and early life stress induced alterations in DNA methylation patterns of
the offspring in cattle, and some of those alterations persisted later in life [17–19]. The
prenatal environment and stressors can explain a portion of the inter-individual variability
of methylation patterns in umbilical cord tissue and whole blood [15]. However, less is
known about the effect of the prenatal environment on the inter-individual variation within
tissues involved in stress response, or on the magnitude of inter-individual variation. In
humans, the amount of inter-individual variation of methylation levels in the gene nuclear
receptor subfamily 3 group C member 1 did not differ between those who had experienced
traumatic events and those who had not [20].

Quantifying the variation in natural populations has aided in determining the rele-
vance of variation in DNA methylation patterns and the effect it has on phenotypic variation.
Understanding the variation between healthy individuals can aid in understanding how
a treatment or stressor affects normal methylation patterns [5]. The variation between
individuals is also important for statistical analysis. Variability can also make it difficult to
identify significant associations within expression data. The variation must be considered
when selecting the proper sample size and analysis methodology [21].

There has been a single study on the inter-individual variation of DNA methyla-
tion in cattle focusing on methylation patterns in spermatozoa harvested from Holstein
bulls [22]. The methylome has the potential to influence important production aspects
such as susceptibility to disease, adaptability to stressors such as heat stress, fertility and
even food intake. Variability in DNA methylation patterns between cows could result
in performance differences that impact profit. The inter-individual variation in DNA
methylation patterns has yet to be investigated in mature female cattle. Little is known
about how inter-individual variation in DNA methylation differs from tissue to tissue or
depending on how a stressor affects the variation in mature female cows. Brahman cattle
are better adapted to subtropical and tropical climates than other cattle breeds. The heat
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and insect tolerance exhibited by the Brahman breed makes them an essential part of beef
cattle production in the southern United States and areas with warmer climates. Thus, this
project aimed to classify the inter-individual DNA methylation variation in tissues and
leukocytes of mature Brahman cows through (1) visualization of the range of methylation
at sites across the genome, (2) identification of genomic features with high variability in
methylation, and (3) comparison of those results across tissues and leukocytes.

2. Methods & Materials

All procedures were done in compliance with the Guide for the Care and Use of
Agricultural Animals in Research and Teaching [23] and its earlier versions, and approved
by the Texas A&M AgriLife Research Animal Care and Use Committee.

2.1. Animal Procedures

An in-depth description of the experimental design is in Littlejohn et al. [17]. In brief,
a group of pregnant Brahman cows was transported for 2 h durations at days 60 ± 5,
80 ± 5, 100 ± 5, 120 ± 5, and 140 ± 5 of gestation. These dams exhibited increased vaginal
temperature, shrink, and increased serum cortisol and glucose in response to the trans-
portation events, confirming a physiological stress response [24]. A non-transport group
was maintained as a control. Both groups were managed under the same environmental
and nutritional conditions at the Texas A&M AgriLife Research & Extension Center at
Overton, TX (32.27◦ N, −94.98◦ W). Twenty-one heifer calves were born from the trans-
ported cows (PNS), and 18 heifer calves were born to cows that had not been transported
(Control). The heifer calves were exposed to bulls for mating at 1 year of age and annually
thereafter. From those females that remained at 5 years of age, 6 PNS and 8 Control cows
were slaughtered, and the amygdala and the anterior pituitary glands were collected. At
the time of harvest, 10 mL peripheral blood were collected via a vacuum tube venipuncture
for isolation of leukocytes. The amygdala and anterior pituitary gland were chosen because
of their importance in hormone production and stress response. Leukocytes were chosen
for the analysis as a sample set originating from outside of the brain.

2.2. Sample Preparation & DNA Extraction

The anterior pituitary and amygdala tissues were cut and weighed to 20 mg. All tissue
samples were snap-frozen with liquid nitrogen and then stored at −80 ◦C until analysis.
Before DNA isolation, tissue samples were digested with proteinase K in a water bath
at 56 ◦C, and the GeneJET Genomic DNA Purification Kit (Thermo Scientific, Waltham,
MA, USA) DNA purification protocol was used to isolate DNA from the anterior pituitary
and amygdala samples. The purified DNA samples were quantified with a NanoDrop
Spectrophotometer (NanoDrop Technologies, Rockland, DE, USA) and stored at −80 ◦C
until further analysis.

Blood samples were centrifuged at 2671× g for 30 min at 6 ◦C. The white blood cell
layer was then isolated and placed into 2-mL nuclease-free microcentrifuge tubes. The
white blood cell layer was washed repeatedly with red blood cell lysis buffer solution until
a clean cell pellet was produced. A phenol-chloroform extraction procedure was used to
extract DNA from the isolated white blood cell pellet as described by Littlejohn et al. (2018).
In brief, the white blood cell pellets were placed in an extraction buffer (100 mM NaCl,
10 mM Tris, 1 mM EDTA, pH 7.5) and 10 mg/mL proteinase K and 20% SDS was added for
proteinase K digestion. Samples were then incubated and extracted twice with an equal
volume of phenol:chloroform:isoamyl alcohol (25:24:1), and twice with an equal volume
of 1-bromo-3-chloropropane (substituted for chloroform). The DNA was precipitated by
the addition of 10% 3 M sodium acetate (pH 5.2) and one volume of isopropanol to the
solution. The isolated purified DNA was suspended in 150–200 µL TE buffer (10 mM Tris,
one mM EDTA, pH 8.0) and stored at –80 ◦C.
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2.3. DNA Methylation Analysis

Purified DNA from each tissue was submitted to Zymo Research (Irvine, CA, USA)
for reduced representation bisulfite sequencing analysis. First, the DNA was digested
with 60 units of TaqαI followed by 30 units of MspI and then purified with DNA Clean
& ConcentratorTM. Adapters containing 5′-methyl-cytosine were then ligated to the
fragments. Adapter-ligated fragments of 150 to 250 bp and 250 to 350 bp were recov-
ered using the ZymocleanTM Gel DNA Recovery KitRe and then ligated to the purified
DNA fragments. Recovered fragments were then bisulfite-treated using the EZ DNA
Methylation-LightningTM Kit. An Illumina HiSeq base calling was used to identify
and sequence reads from the bisulfite-treated libraries. After the raw FASTQ files were
quality trimmed and assessed (TrimGalore 0.6.4, FastQC 0.11.8), they were aligned to the
Bos taurus genome (ARS-UCD1.2; Rosen et al., 2020) using Bismark 0.19.0 (Babrahman
Bioinformatics, Cambridge, United Kingdom). Alignment produced binary alignment
map (BAM) files. Methylated and unmethylated read totals for each site were called
using MethylDackel 0.5.0 (Zymo Research).

2.4. Statistical Analysis

Two approaches were used to analyze the variation in DNA methylation patterns
within each prenatal treatment group and each tissue.

2.4.1. Genome-Wide Inter-Individual Methylation Variation

Methylated and unmethylated read counts for all samples in each tissue were imported
into the edgeR packages (Version 3.40.0) from Bioconductor [25]. Sites were then filtered
using the criterion of having at least 5× coverage across all samples within a group. Beta
(β) values, which estimate methylation levels using the ratio of reads mapped between
methylated and unmethylated alleles plus a normalizing factor of 1000, were calculated in
each sample at the sites that passed filtering [26]. Pearson correlation coefficients between
animals within a group were calculated using the β values of the CpG sites across the
genome. To visualize the variability of methylation at each site within each group, the β

values were used to calculate a site’s inter-individual β value range (IBR) by subtracting
the smallest β value from the largest β value at each site in the groups. Inter-individual
β value ranges have been used before to visualize the inter-individual variation in DNA
methylation patterns in blood mononuclear cells and buccal epithelial cells [27].

The variance and standard deviation of the β values of sites were used to identify CpG
sites that had high variation within a group in a tissue. Within each tissue and group, the
standard deviations at the CpG sites were filtered to find the sites that had SD ≥ 0.1. The
variance of the β values at each site was calculated, and the mean variance was calculated
for each group in each tissue. Sites with variance greater than the tissue mean variance were
identified with chi-square (χ2) tests (FDR < 0.001), after correction for multiple comparisons,
per Benjamini and Hochberg [28]. Sites that passed the filters were input into the UCSC
Data Integrator tool [29] to identify the genomic regions of the sites.

2.4.2. Genomic Feature Inter-Individual Methylation Variation

The BAM files provided from the Zymo analysis were read into the analysis program
SeqMonk (Babrahman Bioinformatics, Cambridge, United Kingdom). Genomic features
were defined for variation analysis. Four different genomic features were defined: gene
bodies, CpG islands, CpG shores (2000 bp upstream and 2000 bp downstream of CpG
islands), and promoter regions (1000 bp upstream of transcription start site and 500 bp
downstream of the transcript start site). After each feature type was defined, a bisulfite
feature methylation pipeline (SeqMonk) was applied with the requirement that the sites
within the feature have at least 5× coverage. Estimates of percentage methylation for each
cytosine within features were averaged to give an overall methylation value. Features with
no methylation values were marked as null and filtered out of the statistical analyses.
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The standard deviation of each feature within a group was calculated using the overall
methylation value. The features were then filtered using the variance intensity difference
statistical test (SeqMonk) which is used to identify high or low variance values within
a replicate set. From the standard deviations of all features, a subset was selected at
random to construct a distribution for comparison. For these analyses, the number of
standard deviations selected was equal to 1% of the total number of features. Each feature’s
standard deviation was tested to identify the probability of its value occurring outside of
the constructed distribution. False discovery rate methodology [26] was then applied to
adjust for multiple comparisons. The features with FDR ≤ 0.05 were considered to have a
high standard deviation relative to other features, and therefore highly variable in their
group. Biological pathways and functions corresponding to the highly variable features
were identified using PANTHER software [30].

3. Results
3.1. Genome-Wide Inter-Individual Methylation Variation
3.1.1. Pearson Correlation and Inter-Individual β Value Range

The numbers of CpG sites that passed filtering were different for each tissue: 63,255
in the amygdala, 1,662,183 in the anterior pituitary gland and 526,816 in the leukocytes.
Pearson correlation coefficient estimates for the β values at those sites across the genome
were high (r ≥ 0.80) between samples in each tissue (Figure 1). The strongest correlations
were between amygdala samples, with similar values among samples in the Control group
and in the PNS group (Figure 1A,B). The Pearson correlation coefficients between samples
within the PNS and Control for the anterior pituitary gland (Figure 1C,D) were lower than
the amygdala, but similar to the correlation values between leukocyte samples (Figure 1E,F).
The mean IBR was 0.0356 for the amygdala samples from the Control group (Figure 2A).
The PNS group had a similar mean IBR of 0.0354 (Figure 2B). The sites within the pituitary
gland had the largest mean IBR (Figure 2C,D), closely followed by the mean IBRs from the
leukocytes (Figure 2E,F). While each had a distinct distribution of IBR at CpG sites across
the genome, both tissues and leukocytes in each group had bimodal distributions.

3.1.2. Standard Deviation of β Values

Like the pattern observed in the inter-individual β value range (IBR) values, the tissues
and leukocytes showed distinct differences in distribution of the SD of β values of CpG
sites across the genome (Figure 3). In the amygdala, the PNS group had slightly more
CpG sites than the Control group, with SD ≥ 0.1. Seventy-four sites that passed filtering
with SD ≥ 0.1 in the PNS group were found in the Control. For the leukocytes, the PNS
group had more sites with SD ≥ 0.1 relative to the Control group (Table 1). Of the sites
identified to have SD ≥ 0.1, in the leukocytes 152 were common to both groups. The
anterior pituitary gland had the most CpG sites, with SD ≥ 0.1 (Table 1). Of those sites,
550 had a standard deviation of 0.1 or greater in both the PNS and Control groups. Pairwise
comparison between tissues and leukocytes revealed similar numbers between each pair,
with the anterior pituitary and amygdala sharing the most sites (Figure 4A). The tissues
and leukocytes from the PNS group shared slightly more sites across tissues. Pairwise, the
tissues and leukocytes shared slightly more than observed in the Control group, and again
the anterior pituitary and amygdala shared the most sites (Figure 4B).

The sites with a SD ≥ 0.1 in both tissues and leukocytes in both groups were located in
various types of repetitive elements of the genome, including short and long interspersed
nuclear elements (SINE, LINE), ribosomal RNA sequences (rRNA), and satellite elements
(Figure 5). There was no consistent pattern regarding what type of repetitive element had
the most sites located within it across the tissue types. The repetitive element type with
the most sites located within it was more consistent within tissue. In the anterior pituitary
gland, LINEs and SINEs had the most CpG sites, with SD≥ 0.1 in both the PNS and Control
groups, while LINEs and long terminal repeats (LTRs) had the most sites located within
them in the PNS and Control amygdala samples. In the Control and PNS leukocytes, LTRs
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had the most sites located within them; however, while the Control leukocytes had few
sites (n = 4) located within rRNA sequences, the PNS leukocytes exhibited 86 sites with
SD ≥ 0.1 located within rRNA sequences.
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Table 1. Number of cytosine-phosphate-guanine with high variability in DNA methylation within
treatment groups and tissues.

SD ≥ 0.1 1 Mean Variance 2 p ≤ 0.001 3

Amygdala
Control 140 2.76 × 10−4 12,471
Prenatally Stressed 178 4.81 × 10−5 11,494
Anterior Pituitary
Control 2520 4.11 × 10−5 443,391
Prenatally Stressed 1334 2.19 × 10−4 414,528
Leukocytes
Control 225 2.95 × 10−4 38,573
Prenatally Stressed 434 3.26 × 10−4 61,147

1 Number of sites with a beta value standard deviation greater than 0.1. 2 Mean variance of the beta values at
site. 3 Number of sites that had beta value variance statistically greater (χ2 test for the variance) than the mean
variance at an FDR ≤ 0.001.

3.1.3. Chi-Square Test for the Variance

The anterior pituitary in both the PNS and the Control groups had the most sites,
with a β value variance that was different from the mean variance, and the amygdala had
the least (Table 1). The leukocytes from the PNS group had more significant sites (22,574)
than the Control group. In the amygdala and the anterior pituitary, the Control group
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had more significant sites: 977 and 28,863, respectively. The tissues and leukocytes from
the Control group shared 2415 variable (FDR ≤ 0.001) sites. The Control leukocytes and
anterior pituitary gland shared the most sties, closely followed by the anterior pituitary and
amygdala (Figure 4C,D). In the tissues and leukocytes from the PNS group, 2919 variable
(FDR ≤ 0.001) sites were shared across all three. The anterior pituitary and amygdala
shared the most sites, 10,837, while the other tissue and leukocyte pairs shared considerably
fewer. The PNS and Control group for each tissue shared more sites with FDR ≤ 0.001
relative to the sites with SD ≥ 0.1 (Table 1). For the amygdala, the PNS and Control groups
shared 83.63% of the significant sites in the Control and 90.74% of the significant sites in
the PNS group. The majority of significant sites were shared between the PNS and Control
group in the anterior pituitary. The leukocytes from the PNS and Control group shared
26,963 variable sites, which was only 44.10% of the significant sites in the PNS and 69.90%
of the significant sites in the Control.

Biology 2023, 12, 252 7 of 20 
 

 

 
Figure 2. Histograms of the inter-individual beta value ranges for the cytosine-phosphate-guanine 
sites across the genome in the (A) Control amygdala, (B) Prenatally Stressed (PNS) amygdala, (C) 
Control anterior pituitary (D) PNS anterior pituitary (E) Control leukocytes, and (F) PNS leukocytes. 
The dashed lines represent the mean inter-individual beta value ranges. 

3.1.2. Standard Deviation of β Values 
Like the pattern observed in the inter-individual β value range (IBR) values, the tis-

sues and leukocytes showed distinct differences in distribution of the SD of β values of 
CpG sites across the genome (Figure 3). In the amygdala, the PNS group had slightly more 
CpG sites than the Control group, with SD ≥ 0.1. Seventy-four sites that passed filtering 
with SD ≥ 0.1 in the PNS group were found in the Control. For the leukocytes, the PNS 
group had more sites with SD ≥ 0.1 relative to the Control group (Table 1). Of the sites 
identified to have SD ≥ 0.1, in the leukocytes 152 were common to both groups. The an-
terior pituitary gland had the most CpG sites, with SD ≥ 0.1 (Table 1). Of those sites, 550 
had a standard deviation of 0.1 or greater in both the PNS and Control groups. Pairwise 
comparison between tissues and leukocytes revealed similar numbers between each pair, 
with the anterior pituitary and amygdala sharing the most sites (Figure 4A). The tissues 
and leukocytes from the PNS group shared slightly more sites across tissues. Pairwise, the 
tissues and leukocytes shared slightly more than observed in the Control group, and again 
the anterior pituitary and amygdala shared the most sites (Figure 4B).  

Figure 2. Histograms of the inter-individual beta value ranges for the cytosine-phosphate-guanine
sites across the genome in the (A) Control amygdala, (B) Prenatally Stressed (PNS) amygdala, (C) Con-
trol anterior pituitary (D) PNS anterior pituitary (E) Control leukocytes, and (F) PNS leukocytes. The
dashed lines represent the mean inter-individual beta value ranges.

3.2. Genomic Feature Inter-Individual Methylation Variation

The number of features analyzed before filtering for null values varied for each feature
type: 26,863 genes and promoter regions, 22,188 CpG islands, and 44,376 CpG shores.

As in the genome-wide variation analysis, the amygdala had the smallest number of
features tested after removing features with null values for methylation levels (Tables 2 and 3).
The amygdala also had the fewest features identified to have high variation in both the PNS
group and the Control group. The anterior pituitary had the most genomic features that had
significant variation in DNA methylation patterns, followed by the leukocytes. The significant
features for both tissues and the leukocytes made up a small fraction of the total features tested,
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with the amygdala features ranging from 0.398% to 0.897%. While the anterior pituitary had
the most features that were highly variable for the PNS and Control, they were a small portion
of the total features that were tested (Tables 2 and 3).
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Figure 5. Number of sites with a beta value standard deviation ≥ 0.1 associated with different types
of repetitive elements, long interspersed nuclear elements (LINE), short interspersed nuclear elements
(SINE), long terminal repeat (LTR), satellite regions, ribosomal RNA (rRNA) and simple repeats
throughout the genome.

Table 2. The number of genomic features with high variability in DNA methylation between cows in
the Control group.

Total Features Tested 1 Significant 2 % of Total Features Tested 3

Amygdala
Promoter 4 13,053 52 0.40%

Gene 16,828 151 0.90%
CpG 5 islands 16,808 51 0.50%
CpG shores 6 18,754 81 0.43%

Leukocytes
Promoter 15,602 168 0.94%

Gene 18,829 281 1.49%
CpG islands 20,016 216 0.01%
CpG shores 17,417 149 0.61%

Anterior Pituitary
Promoter 20,688 226 1.09%

Gene 19,083 314 1.65%
CpG islands 20,605 307 1.49%
CpG shores 30,252 446 1.47%

1 Number of genomic features tested after removal of features with null methylation values. 2 Number of genomic
features with adjusted p ≤ 0.05 for the variance intensity difference test. 3 Percent of the total number of features
with adjusted p ≤ 0.05. 4 Promoter regions were defined as 1000 bp upstream of the transcription start site of a
gene, and 500 bp downstream of the transcription start site. 5 Cytonsine-phosphate-guanine. 6 CpG shores were
defined as 2000 bp upstream and 2000 bp downstream of CpG islands.
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Table 3. The number of genomic features with high variability in DNA methylation between cows in
the Prenatally Stressed group.

Total Tested 1 Significant 2 % of Total Features Tested 3

Amygdala
Promoter 4 13,177 52 0.40%

Gene 17,021 178 1.05%
CpG islands 5 16,700 51 0.31%
CpG shores 6 19,244 7 0.04%

Leukocytes
Promoter 16,255 168 1.03%

Gene 19,290 298 1.54%
CpG islands 20,400 216 1.06%
CpG shores 29,987 149 0.50%

Pituitary Gland
Promoter 20148 372 1.85%

Gene 18,965 313 1.65%
CpG islands 20,594 313 1.52%
CpG shores 29,675 399 1.34%

1 Number of genomic features tested after removal of features with null methylation values. 2 Number of genomic
features with an adjusted p ≤ 0.05 for the variance intensity difference test. 3 Percent of the total number of
features with an adjusted p ≤ 0.05. 4 Promoter regions were defined as 1000 bp upstream of the transcription start
site of a gene and 500 bp downstream of the transcription start site. 5 Cytosine-phosphate-guanine. 6 CpG shores
were defined as 2000 bp upstream and 2000 bp downstream of CpG islands.

The magnitude of variable methylated features identified in the PNS and Control
groups was relatively similar, but few features were highly variable in more than one tissue
or leukocytes (Table 4). In the Control group, only one gene had high variability in both
tissues and leukocytes, guanylate cyclase activator 2B (GUCA2B, Bos taurus chromosome
(BTA) 3:104,021,061–104,024,316). No promoter had variable methylation in the two tissues
and the leukocytes; the anterior pituitary shared 15 with the leukocytes and four with
the amygdala (Supplementary Figure S1A). The leukocytes only shared three variable
methylated promoter regions with the amygdala. A similar trend was observed in the CpG
islands, with no features shared across all three, and few shared between two tissues and
leukocytes (Supplementary Figure S2A). No CpG shores were common to all three nor
pairs of tissues and leukocytes (Supplementary Figure S3A).

Table 4. The numbers of genomic features that had significant variation in DNA methylation in both
the Prenatally Stressed and Control groups.

Feature Anterior Pituitary Amygdala Leukocytes

Promoter 1 92 1 14
Gene 81 6 54

CpG 2 islands 73 0 26
CpG shores 3 96 0 3

1 Promoter regions were defined as 1000 bp upstream of the transcription start site of a gene and 500 bp down-
stream of the transcription start site. 2 Cytosine-phosphate-guanine. 3 CpG shores were defined as 2000 bp
upstream and 2000 bp downstream of CpG islands.

Again, only two genes exhibited high methylation variation in all three PNS group
tissues (ENSBTAG00000036102, BTA 7:68,625,875–68,685,772; ENSBTAG00000051147, BTA
4:106,051,439–106,054,690). Both genes are labeled as novel genes in the Ensembl ARS-
UCD1.2 reference genome [31]. Pairwise comparisons of tissues and leukocytes indicated
minimal overlap in genes with variable methylation (Figure 6). A single promoter region
showed variable methylation across tissues and leukocytes: the promoter region for Synap-
totagmin 4 (SYN4) (Supplementary Figure S1B). No CpG islands were variably methylated
across all tissues and leukocytes in the PNS group; however, 25 CpG islands were variably
methylated in both the anterior pituitary gland and leukocytes (Supplementary Figure S2B).
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As in the Control cows, no variable CpG shore methylation sites were shared between the
three or between the pairs of tissues and leukocytes (Supplementary Figure S3B).
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Figure 6. Overlap of gene bodies with high DNA methylation variation across the tissues and
leukocytes in the Control (A) and Prenatally Stressed (B) group.

The melanin-concentrating hormone receptor 2 (MCHR2, BTA 9:49,923,127–49,948,405)
gene had high variability in DNA methylation within the amygdala. The gonadotropin-
releasing hormone receptor (GNRHR, BTA 6:83,434,759–83,452,201) and the prolactin-
related protein 3 (PRP3, BTA 23:35,089,013–35,100,774) had highly variable DNA methy-
lation patterns in the anterior pituitary. Interleukin 36 alpha (IL36A, BTA 11:46,700,982–
46,704,288) and C-X-C motif chemokine receptor 2 (CXCR2, BTA 2:106,185,020–106,192,570)
were highly variable in the PNS group. Pathway analysis revealed that many genes and
promoter regions with variable methylation in the pituitary gland and the amygdala, such
as the ones listed above, are involved in biological pathways such as signaling, responses to
stimuli, and metabolic processes (Supplementary Table S1). The products of PRP3 and GN-
RHR are active in responses to stimuli and are integral parts of the gonadotropin-releasing
hormone receptor pathway. Genes and promoter regions of genes that were highly vari-
able in the leukocytes were involved in immune response (Table 5). Genes such as IL36A
and CXCR2 are involved in the immune response process, the inflammation mediated by
chemokine and cytokine signaling pathway (Supplementary Figure S4).

Table 5. Highly variable 1 genomic features involved in the immune response biological process 2.

Feature Name Feature Type Standard Deviation 3

Prenatally Stressed group
ENSBTAG00000020813 Promoter 4 32.97
WAP four-disulfide core domain 2 Promoter 27.23
ENSBTAG00000014329 Gene 27.19
ENSBTAG00000052841 Gene 26.61
ENSBTAG00000036102 Gene 26.02
Interleukin-34 Promoter 24.99
Secretory leukocyte peptidase inhibitor Promoter 24.6
Bovine major histocompatibility complex Promoter 24.29
Interleukin 9 receptor Promoter 23.86
Myelin oligodendrocyte glycoprotein Promoter 22.72
Transmembrane protein 176B Gene 21.44
ENSBTAG00000048980 Gene 20.35
Interleukin 36 alpha Gene 18.73
ENSBTAG00000023563 Gene 18.26
C-X-C chemokine receptor type 2 Gene 18.13
Triggering receptor expressed on myeloid cells 1 Gene 17.94
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Table 5. Cont.

Feature Name Feature Type Standard Deviation 3

Testicular cell adhesion molecule 1 Gene 17.32
Interleukin-4 Gene 16.9
ENSBTAG00000006864 Gene 16.48
Control group
Myelin oligodendrocyte glycoprotein Promoter 37.67
ENSBTAG00000045810 Gene 33.86
ENSBTAG00000020813 Promoter 33.04
ENSBTAG00000055111 Promoter 30.69
ENSBTAG00000006864 Gene 29.81
Peptidase inhibitor 3 Gene 28.62
Interleukin-34 Promoter 26.04
ENSBTAG00000051008 Promoter 25.91
Calcium-dependent phospholipase A2 Gene 24.7
ENSBTAG00000050878 Gene 24.28
Interleukin 2 receptor subunit beta Promoter 23.78
CCAAT enhancer binding protein epsilon Gene 22.53
ENSBTAG00000053521 Gene 22.38
Major histocompatibility complex, class I-related Gene 19.45
5,-aminolevulinate synthase 2 Gene 19.27
C-C motif chemokine ligand 25 Gene 18.83
C-C motif chemokine ligand 1 Gene 17.97

1 Variance intensity difference statistical test FDR ≤ 0.05. 2 Biological process identified through protein analysis
through evolutionary relationships analysis. 3 Standard deviation of mean methylation of defined genomic
features. 4 Promoter regions were defined as 1000 bp upstream of the transcription start site of a gene and 500 bp
downstream of the transcription start site.

4. Discussion

Methylation patterns in prenatally stressed Brahman cattle was first presented by
Littlejohn et al. [17]), Baker et al. [18], and Cilkiz et al. [19]. In the leukocytes harvested at
28 days of age from the same animals described in this project, there were vast differences
in DNA methylation patterns between the prenatally stressed group and the control.
Many of the differentially methylated cytosines were located within regulatory genes
active in hormone production, immune response, and development [17,18]. Differences in
methylation of the leukocytes between the two groups diminished between 28 days and
5 years of age [19]. Methylation patterns varied within each group at both time periods.
The individual variability in these patterns has been reported in humans [6] and in bovine
sperm [22]. However, methylation patterns differ greatly between species, sexes, and
tissues, suggesting the variation observed in either would not adequately portray the
inter-individual variation in bovine soma cells. This study utilized methylation data in
order to quantify the inter-individual variation in DNA methylation in peripheral blood
leukocytes, brain (amygdala), and endocrine (anterior pituitary gland) tissue samples. DNA
from the anterior pituitary contained the most variably methylated features, followed by
DNA from leukocytes. Both had substantially more methylation variability than DNA from
amygdala tissue. The same pattern was observed in the number of mCpG sites with β value
SD ≥ 0.1, as well as sites with p ≤ 0.001 for the χ2 test for the variance. While correlation
between samples in the tissues and leukocytes was large and positive, the samples from
the amygdala showed the strongest correlations, in both the PNS and Control groups,
out of the three. The amygdala had the lowest number of sites and features identified to
have higher variance estimates. Cell type and heterogeneity within a sample can influence
the variability of methylation [26,32]. Leukocytes consist of numerous cell types, such
as monocytes, leukocytes, and neutrophils, which can each have different methylation
profiles [33]. The anterior pituitary gland and the amygdala also contain numerous cell
types [34,35]. The varying cell types in a sample of one tissue can contribute to the high
variation relative to another. Isolation of a singular cell type for inter-individual variation
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analysis could prevent the confounding effect of different methylation profiles in each cell
type [6].

In the amygdala, pituitary tissues and leukocytes, CpG islands and CpG shores were
identified with high variation in methylation patterns. Sites with SD ≥ 0.1 and p ≤ 0.001
were also located within CpG islands throughout the genome. Increased inter-individual
variation within CpG shores was identified in human blood and cerebellum samples [36,37].
High levels of inter-individual variation within CpG islands have also been reported in
human germ cells [4]. The variability of methylation patterns observed here in the two
tissues and leukocytes does not follow the general trend of CpG islands being largely and
consistently unmethylated [38]. However, the number of islands identified to have variable
methylation makes up a very small percentage of the CpG islands tested.

Variation in DNA methylation of genes and promoter regions can result in variability
in gene expression [39]. Variable methylation in the dopamine receptor D4 contributes
to variations in gene expression and natural variation in bird behavior and personal-
ity [40]. Variable methylation patterns within the gene pro-opiomelanocortin in humans
may affect body weight regulation [41]. The receptor coded by MCHR2 is influenced by a
melanin-concentrating hormone in the amygdala, and can control feeling and motivational
behavior [42]. The gonadotropin-releasing hormone receptor pathway has an essential role
in mammalian reproductive function and hormone production [43]. Variation in methy-
lation patterns of genes such as GNRHR, MCHR2, and PRP3 and the pathways they are
involved in could be responsible for variation in growth, development, and responses to
environmental stressors. The promoter region for SYN4 was variable across all tissues and
leukocytes. This gene is expressed in the brain, and the product of SYN4 plays a vital role
in dopamine release [44]. Expression levels of SYN4 have been observed to have an inverse
relationship with the methylation levels of the gene [45]. The variable gene expression of
SYN4 due to DNA methylation could result in differences in behavior.

In leukocytes, numerous variable methylated features were identified to be involved
in immune system response. Pathways such as the inflammation mediated by chemokine
and cytokine signaling pathway are important for directing and controlling the migration
of immune cells within the body, and shifts in gene expression can result in altered cytokine
secretion. Similar results were found in peripheral blood monocytes in humans [7]. From
studies in human monozygotic twins, there is an abundance of variable methylated loci
around and within genes that are important for immune response [46]. In neutrophils,
it is hypothesized that hypervariable sites are essential in establishing immune system
response [47]. Variable methylation in the genes active in the immune system could lead to
gene expression differences and influence immune response [48].

Many of the CpG sites with a β value SD ≥ 0.1 were associated with short and long
interspersed retrotransposable elements and other highly repetitive regions of the genome
(Figure 5). This is comparable to what Chatterjee and colleagues [6] found in methylation
profiles of human neutrophils. Differences in DNA methylation patterns of long inter-
spersed retrotransposable elements have been associated with low and high birthweights
in humans [49]. The variable methylation patterns in sites within these elements could lead
to phenotypic differences. All tissues had sites with β value SD ≥ 0.1 within the genomic
regions that code for rRNA. Genomic sequences that code for rRNA exhibit substantial
inter-individual variation, which can influence their methylation status [50].

The sites and features identified to have high variation in DNA methylation were
mainly specific to tissue or leukocytes. Hannon and colleagues [51,52] observed similar
patterns when comparing variation in DNA methylation patterns between whole blood
and regions of the brain. In general, variation between tissues has been found to signifi-
cantly exceed the inter-individual variation within a single tissue [53]. These results were
consistent with those of Liu et al. [22], and suggested that hypervariable methylated re-
gions likely harbor tissue-specific expressed genes. The variability in methylation patterns
observed between these tissues and leukocytes potentially contributes to tissue-specific
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gene expression. The results suggest that using prediction of methylation patterns and
variability across tissues may not be feasible.

While the magnitude and distribution of CpG sites with high standard deviations
were similar between the PNS and Control groups, only a slight overlap in the location of
the CpG sites was observed in the anterior pituitary and leukocytes. Few of these were
features identified to be highly variable in both groups. This could mean that prenatal
stress in cattle influences the degree of variation in DNA methylation. There was a high
proportion of sites with a p ≤ 0.001 for the χ2 test for the variance shared between the
PNS and Control groups. The environmental factor rarely acts alone to influence the
inter-individual variation in DNA methylation patterns [54]. Interaction between the
environment and the cow genotype could be responsible for the differences in location of
the inter-individual variation.

Liu and colleagues [22] investigated the inter-individual variation of 28 semen samples
from Holstein bulls. Highly variable methylation haplotypes were determined by compar-
ing the standard deviation of the methylation levels of each region to the median standard
deviation using the χ2 test for variance. There were 1681 highly variable methylated re-
gions identified. While the highly variable regions constituted only 5.69% of total tested,
many highly variable methylated regions between individuals were associated with key
regulatory areas of gene expression. Numerous methylated regions were associated with
reproduction traits and genomic regions [22]. These results provided novel insights into
the contribution of natural DNA methylation variation to complex traits that are important
to cattle productivity and health.

This study provides the first characterization of inter-individual variation DNA methy-
lation patterns in mature Brahman females across neural and endocrine tissues and leuko-
cytes. These regions are important to consider for multiple reasons. Quantifying the
inter-individual variation present is essential for future statistical analyses and interpre-
tation of how a treatment or stressor affects DNA methylation at different genomic sites.
These hypervariable regions in the genome could be linked to important genes or regulatory
regions that contribute to complex performance traits and health in cattle.

The classical quantitative genetic decomposition of the phenotype consists of the
influences of genotype, the environment and the interaction between the two. However,
epigenetic mechanisms represent an additional source of differences among phenotypes.
Variation in epigenetic marks such as DNA methylation can help explain a portion of
phenotypic variation that cannot be explained by genetic differences. Understanding how
DNA methylation contributes to differences in phenotype will be beneficial for future
selection methods in beef cattle production systems. Characterization of the interaction of
these variably methylated regions with gene expression and the environment may provide
useful insight into cow performance in a variety of economically relevant metrics for
calf production.

5. Conclusions

Analyses of the anterior pituitary gland, leukocytes, and amygdala revealed a small
portion of various genomic features and CpG sites that contained highly variable DNA
methylation patterns in mature cows that had experienced differing prenatal conditions.
The PNS and Control groups had high variation between samples in DNA methylation
patterns of the gene and promoter regions involved in behavior, hormone concentration,
and immune response. Inter-individual variation within these genes could potentially
contribute to differences in phenotype and performance in cattle, with potential conse-
quences for overall animal health. Discordance in DNA methylation patterns between
tissues is expected and common. The minimal overlap between pairs of tissues and leuko-
cytes observed in this study also suggests that variability in DNA methylation patterns is
tissue specific. The group of cows exposed to prenatal stress exhibited a similar number of
variable methylated sites and features to the control group; the number of variable features
and sites shared was small. Each tissue differed in the amount of variable methylated
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features, which could be due to the cell type heterogeneity of the sample. Use of emerging
technologies for methylation profile analyses of single cells could enhance future studies
by reducing the noise caused by the heterogeneity of cell types within a sample, and which
contributes to observed variation.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology12020252/s1, Supplementary Table S1 presents biological
pathways genes and promoter regions of genes that exhibited variable methylation are active in. Table
S1A: List of biological pathways and the genes and promoter regions of genes that were identified
to be highly variable in the lymphocytes from the Control group, Table S1B: List of biological
pathways and the genes and promoter regions of genes that were identified to be highly variable
in the lymphocytes from the PNS group, Table S1C: List of biological pathways and the genes and
promoter regions of genes that were identified to be highly variable in the anterior pituitary from
the Control group, Table S1D: List of biological pathways and the genes and promoter regions of
genes that were identified to be highly variable in the anterior pituitary from the Prenatally Stressed
group, Table S1E: List of biological pathways and the genes and promoter regions of genes that
were identified to be highly variable in the amygdala from the Control group, Table S1F: List of
biological pathways and the genes and promoter regions of genes that were identified to be highly
variable in the amygdala from the Prenatally Stressed group. Supplementary Figures S1–S3 are
Venn diagrams showing the overlap of different genomic features between the amygdala, pituitary
gland, and leukocytes. Supplementary Figure S4 is a biological pathway that had genes with variable
methylation active in it. Figure S1: Overlap of promoter regions (1000 bp upstream of the transcription
start site and 500 downstream from the transcription start site) with high DNA methylation variation
across the tissues and leukocytes in the (A) Control and B) Prenatally Stressed group. Figure S2:
Overlap of cytosine-phosphate-guanine islands with high DNA methylation variation across the
tissues and leukocytes in the (A) Control and (B) Prenatally Stressed group, Figure S3: Overlap
of cytosine-phosphate-guanine shores (2000 bp upstream and 2000 bp downstream of cytosine-
phosphate-guanine islands) with high DNA methylation variation across the tissues and leukocytes
in the (A) Control and (B) Prenatally Stressed group, Figure S4: Inflammation mediated by chemokine
and cytokine signaling pathway.
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