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Simple Summary: Exaggerated morphological structures are fascinating for evolutionary biologists
and the public, and scarab beetles in particular are famous for their diverse exaggerated characters.
Here, we report a new genus and species of Mesozoic scarab beetle with unusually robust and
structured hind legs and fine color marking patterns on the dorsal and ventral surfaces of the
body. Based on morphological characters, we performed phylogenetic and morphometric analyses.
The results support the placement of this new taxon in the pleurostict lineage of scarab beetles,
consequently representing one of its earliest records. We hypothesize that the exaggerated leg
structures supported springing movements and fighting. Furthermore, the unusual marking patterns
of this fossil suggest that the new taxon exhibited diurnal foraging behavior, potentially visiting
leaves or flowers of Lower Cretaceous plants. This study provides new insights into the exaggerated
structures of Mesozoic insects and the timing of the evolution of this diverse beetle family.

Abstract: The phenomenon of exaggerated morphological structures has fascinated people for
centuries. Beetles of the family Scarabaeidae show many very diverse exaggerated characters,
for example, a variety of horns, enlarged mandibles or elongated antennal lamellae. Here, we
report a new Mesozoic scarab, Antiqusolidus maculatus gen. et sp. n. from the Lower Cretaceous
Yixian Formation (~125 Ma), which has unusually robust and structured hind legs with greatly
enlarged spurs and a unique elongated apical process. Based on simulations and finite element
analyses, the function of these structures is hypothesized to support springing to aid movement
and fighting. Based on available morphological characters, we performed phylogenetic analyses
(maximum parsimony) of the main subfamilies and families of Scarabaeoidea. The results support
the placement of Antiqusolidus gen. n. as a sister group of Rutelinae within the phytophagous lineage
of pleurostict Scarabaeidae. Furthermore, the unusual delicate color marking patterns in the fossil
specimens suggest that the new species might have been diurnal and potentially visited the leaves or
flowers of Early Cretaceous plants. This morphological and functional study on this extinct scarab
species provides new sights into exaggerated structures in Mesozoic insects.
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1. Introduction

Exaggerated body structures such as elongated appendages and large outgrowths
have always attracted the interest of biologists and the public, especially to seek the ex-
treme boundaries of marvelous nature [1]. As a highly diversified group, insects provide
an unlimited number of examples: different kinds of horns in scarab beetles (Dynastinae,
Scarabaeinae/Coleoptera) and treehoppers (Membracidae/Hemiptera); tremendously en-
larged heads in soldier ants (Formicidae/Hymenoptera) and termites (Isoptera/Blattodea);
developed mandibles in stag beetles (Lucanidae/Coleoptera); a transversely expanded
body in lace bugs (Tingidae/Hemiptera); or modified predatory forelegs in mantis (Man-
todea) [2–8]. Exaggerated structures have also been recorded in extinct insects, such as
the extremely extended abdominal segments in Jurassic Mecopterans [9] or oversized
mandibles in unicorn ants from the Cretaceous amber of Myanmar [10]. All of these struc-
tures triggered scientists’ search for answers on the how, when and why of their origin and
evolution. Moreover, the records of extinct taxa fill knowledge gaps about the development
of these characters and the corresponding species/lineages.

The functions of exaggerated structures in insects can be classified into three types:
sexual selection, locomotion/predation/feeding and sociality [1]. Among the exaggerated
structures, hind legs are normally modified for special locomotion or resource competi-
tion [11–13]. To date, there are still only a few records of extinct insects with exaggerated
or strongly modified metatibial spurs, although they can be found in many extant beetles.
However, our knowledge about the function of exaggerated structures of the hind legs
based on functional morphology studies is limited to some scattered reports [14].

In this paper, we describe a new scarab beetle from the Lower Cretaceous Yixian
Formation (~125 Ma) that has unusually robust and structured hind legs with greatly
enlarged spurs and an elongated process [15]. By using finite element analyses (FEA),
we investigated the possible function of these exaggerated hind legs. We evaluate two
possible hypotheses, “springing” and “fighting”, in order to explain the development of
these exaggerated structures. In addition, we also inferred the phylogenetic position based
on morphology and discuss the possible biology of the new taxon. We found that this
rare scarab beetle belongs to the phytophagous lineage of pleurostict Scarabs (Coleoptera:
Scarabaeidae) [16], and the distinct color marking patterns suggest that the species ha d
diurnal habits, possibly visiting the exposed parts of Early Cretaceous plants. This new
taxon enriches our knowledge of exaggerated characters, the movement habits of beetles
and the functional biodiversity of insects in the past.

2. Materials and Methods
2.1. Material

This study is based on a new fossil taxon, Antiqusolidus maculatus gen. et sp. n. Two
specimens were collected from the Yixian Formation: the holotype was collected near
Liutiaogou Village, Ningcheng County, Chifeng City, Inner Mongolia, China; the paratype
was collected near Dawangzhangzi village, Lingyuan City, Liaoning Province, China. The
age of the Yixian Formation is regarded as the Early Cretaceous (latest Barremian to earliest
Aptian) and linked to radioisotope dating of ca. 125 Ma [15,17–21]. The holotype and
paratype specimens are deposited in the Key Lab of Insect Evolution & Environmental
Changes, College of Life Sciences, Capital Normal University (CNUB, Curator Dong Ren),
Beijing, China.

2.2. Nomenclatural Acts

This published work and the nomenclatural acts it contains have been registered in
ZooBank, the online registration system for the International Code of Zoological Nomenclature
(ICZN). The LSIDs for this publication is: urn:lsid:zoobank.org:pub:EB64325E-1691-46B3-
9DBE-49452152317C; urn:lsid:zoobank.org:act:EF991CAE-B068-4C3C-A393-6A77FBD72834;
urn:lsid:zoobank.org:act:85F50205-DD91-4AFB-B92F-5553F1027D2C.
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2.3. Images

Observations were carried out under an Olympus SZ61 stereomicroscope. Digital
images were created with a Canon 5D digital camera in conjunction with a Canon MP-E
65 mm f/2.8 1-5X Macro Lens fitted to a macro rail (Cognisys).

2.4. Phylogenetic Position

The character matrix is based on previously published studies [22–24]. Thirty-seven
(37) taxa of Scarabaeoidea were selected, including two outgroup taxa: Sternolophus rufipes
(Hydrophilidae) and Hister sp. (Histeridae). A total of 34 extant species of all eight
families of Scarabaeoidea, including six subfamilies of Scarabaeidae, are included, as well
as Antiqusolidus maculatus gen. et sp. n. The data matrix (53 characters × 37 taxa) was used
to conduct a phylogenetic analysis (Text S1, Text S2) using maximum parsimony [25].

Tree search with maximum parsimony (MP) analysis was run with equal weight-
ing (EW) in TNT (version 1.5) [26] using the following settings [27]: Analyze > “tradi-
tional search”; “max. Tree” = 500,000; “random seed” = 1000; “number of additional
sequences” = 50,000; “trees to save per replication” = 10. Additionally, “tree bisection re-
connection (TBR) was utilized as the permutation algorithm of the branches. All characters
were treated as unordered and nonadditive. In our analyses, the outgroup taxon Sternolo-
phus rufipes was chosen to root the tree. The strict consensus tree was calculated based on
resulting MPT trees.

2.5. FEA Simulation for the Bumping Protection Function
2.5.1. Testing Hypotheses

A finite element analysis (FEA) was applied to evaluate the function of the exaggerated
spurs in Antiqusolidus maculatus gen. et sp. n. The first possible hypothesis of the “springing”
function was tested (for details, see Discussion section) based on a comparison with an
extant beetle, Aphthonoides armipes Bryant, 1939 (Alticinae), and two non-springing species
(Repsimus manicatus (Swartz, 1817); Gastroserica kucerai Ahrens, 2000). The first also has
exaggerated spurs that are significantly stronger than normal-sized spurs and is reported
to spring. The hind tibiae and enlarged spurs are the structures involved in the bumping
process of the Aphthonoides species. Three-dimensional models of the hind tibia and spurs
were compared using FEA.

2.5.2. The 3D Model Reconstruction of Legs

Since the new fossil taxon is preserved as compression fossils, the 3D morphology of
the fossil specimen is not well preserved. Therefore, it is not possible to infer its functional
morphology directly. Therefore, we first created a 3D model based on the fossil specimen.
Secondly, we generated three other 3D models for comparison based on a selection of
extant specimens (see above) of Alticinae (Chrysomelidae) and Melolonthinae/Rutelinae
(Scarabaeidae). Aphthonoides armipes has a very long spur on the hind tibia, very similar to
the fossil species. Repsimus manicatus (Rutelinae) has exaggerated hind legs only in males.
Gastroserica kucerai (Melolonthinae) has spurs of normal size and is not known to exhibit
jumping or fighting behavior. The specimens were scanned with a MicroXCT 400 (Carl
Zeiss X-ray Microscopy Inc., Pleasanton, CA, USA) at the Institute of Zoology, Chinese
Academy of Sciences. Scans of the hind legs were performed with a beam energy of 60 kV,
absorption contrast and spatial resolutions of 1.5625 µm, 29.5858 µm and 10.1215 µm.
All 3D models were created using visage Imaging Amira 5.2 and Geomagic Studio 12.
Segmentation was performed using a combination of automatic thresholding based on
gray-scale values and manual corrections in the three orthogonal views.
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2.5.3. FEA Simulation

A triangulated surface mesh was created and smoothed for each 3D model. The surface
files were imported into Z88Aurora V3 (http://www.z88.de/ (accessed on 15 January 2020))
for the FEA. A tetrahedral volume mesh was produced using the settings of NETGEN,
Tetrahedrons (linear) and value 5. Force loads were applied to the hind tibial base, and con-
straints were set at the tips of the spursfor elastic, linear and homogeneous materials. The
setting of SORCG with von Mises stress failure theory was selected in the solver step [28].
The figures of the stresses at corner nodes were saved in the postprocessing step. The
material properties followed Sun et al. [29], with a Young’s modulus of 3.74 ± 0.73 GPa. A
Poisson ratio of 0.3 was used here, which was measured for the lobster cuticle [30]. The den-
sity of the cuticle of this species is unknown. We chose the density value (0.89 × 103 kg/m3)
of Cybister (Coleoptera: Dytiscidae) for this study [31,32].

In the FEA part, the result of von Mises stress must be identical if one changes the
values of material properties using elastic, linear and homogeneous material settings.
However, the material properties only affect displacements and strains, whereas von
Mises stresses are only related to the external forces being applied [33]. As we are only
interested in comparing the difference in Mises stresses among the models, which could
reflect the mechanical difference between the structures, the results will be sound and
comparable among all models if we apply the same force on the same boundary conditions
and the same material properties. Herein, we chose 5N as the force for all models in
accordance with Goyens et al. [34], which represents the bite force of the mandibles in
Lucanidae (Coleoptera).

2.6. Morphometric Analyses for the Fighting Function of the Hind Legs

To investigate the hypothesis that the enlarged hind legs serve the “fighting” function,
two morphometric indices previously used for the investigation of such a hypothesis in
monkey beetles [35] were used in this study to test the degree to which possible fighting
may be linked with the exaggerated hind leg structures. The femur shape index (FSI,
width/length) and tibial shape index (TSI, width/length) are defined by the shape of the fe-
mur and tibia [35]. The indices calculated for the four studied species (Aphthonoides armipes,
Antiqusolidus maculatus sp. n., Gastroserica kucerai and Repsimus manicatus) were compared
with data from 1512 male monkey beetle specimens of 37 species (Scarabaeidae: Hopliini)
taken from the literature, for which sexual dimorphism in relation to leg weaponry or not
(fighting Hopliini and non-fighting Hopliini) was exhaustively studied (Table S1) [35,36].
Indices were also mapped into box plots.

3. Results
3.1. Systematic Paleontology

Coleoptera Linnaeus, 1758
Family: Scarabaeidae Latreille, 1802
Subfamily: incertae sedis

Genus: Antiqusolidus Lu, Ahrens, Bai, Shih & Ren gen. n.
LSID: urn:lsid:zoobank.org:act:EF991CAE-B068-4C3C-A393-6A77FBD72834
Type species. Antiqusolidus maculatus Lu, Ahrens, Bai, Shih & Ren sp. n.
Etymology. From Latin words “antiqu-” and “solidus”, meaning ancient and strong

scarab beetle. Gender is masculine.
Diagnosis. Large-sized body, nearly elliptical; frontoclypeal suture distinctly impressed;

antenna with a club; outer edge of protibia with three teeth; metacoxal plates large, at
least as long as metafemur is wide; metafemur much wider than mesofemur; mesotibia
extremely short, less than half length of mesotarsus, preapical surfaces of mesotibia with
transverse or oblique ridges or combs; first segment of mesotarsus longest; metatibia very
short too, much shorter than metafemur, with two exceptionally strong apical spurs, spurs
nearly equal in length, tightly close; side of metatibia with a long process; metatarsus longer

http://www.z88.de/
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than metatibia, first tarsomere longer than any of the others; abdominal process acute or
narrowly rounded.

Antiqusolidus maculatus Lu, Ahrens, Bai, Shih & Ren sp. n. (Figures 1 and 2)
LSID: urn:lsid:zoobank.org:act:85F50205-DD91-4AFB-B92F-5553F1027D2C
Etymology. The specific name is derived from the Latin word “maculatus-”, which

means markings, referring to its unique pattern of markings.
Material. Holotype, CNU-COL-NN2011001p/c (part and counterpart). Paratype, CNU-

COL-NN2011002. Both from the Yixian Formation: holotype collected in Inner Mongolia,
China; paratype collected in Liaoning Province, China (for details, see Section 2.1 Material).

Diagnosis. Same as the genus.
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Figure 1. Photographs and line drawings of Antiqusolidus maculatus Lu, Ahrens, Bai, Shih & Ren
gen. et sp.n. Holotype. (a,c) General habitus, dorsal view; arrows indicate structured hind legs,
scale 10 mm. (b,d) General habitus, ventral view, scale 10 mm. (e) Left foreleg, dorsal view, scale
1 mm. (f) Right hind leg, dorsal view, scale 2 mm. (g) Anterior part of head, dorsal view, scale 1 mm.
(h) Pronotum, scale 2 mm. (i) Right mesotarsi, ventral view, rectangle indicate claws, scale 1 mm.
(j) Left hind leg, dorsal view, scale 2 mm. (k) Claws of right mesotarsi, scale 1 mm.
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Description. Holotype. Body shape elongate ovoid. Length: 22.4 mm (from the apex
of the clypeus to the apex of the elytra); maximum width at middle of elytra: 12.4 mm;
pronotum narrower than elytra; with many markings and color patterns of stripes and
large spots on the pronotum, elytra, pygidium, abdomen and legs (Figure 1a–d).

Head. Length: 3.5 mm; width: 5.0 mm; narrower than pronotum; clypeus sub-
trapezoid, front nearly straight, with broad, rounded angles; frontoclypeal suture curved;
eyes large; mandible protruding beyond labrum (Figure 1g); labrum and clypeus well
separated, with their principal surfaces both facing dorsally.

Pronotum. Length 4.8 mm, width 8.8 mm, 1.8 times as wide as long, widest part
at the middle, slightly narrower than elytra, obviously wider than the head; anterior
emarginated, front angles acute and slightly protruding, hind angles obtuse; three distinctly
large symmetrical spots on either side of the midline, two patches at the midline and
arranged up and down (Figure 1h).

Scutellum. Triangular, posterior apex acuminate.
Elytra. Length 14.4 mm, width 6.2 mm, about 2.3 times as long as wide, widest at the

middle; with nine visible longitudinal striae formed by regular, symmetrical large patches
(between first stria and fourth stria; between second stria and sixth stria; between sixth
stria and seventh stria; on ninth stria) (Figure 1a,c).

Pygidium. Length 2.7 mm, width at base, 5.6 mm; exposed and transverse, slightly
convex; with two large triangular markings, meeting at the middle.

Ventral thoracic surface covered with three large triangular markings (Figure 1b,d).
Abdomen. Length 8.2 mm; abdominal process acute and narrowly rounded; with six

visible ventrites and 2–6 with banded markings at base; first ventrite length 2.2 mm, second
0.8 mm, ventrites of both third and fourth 0.9 mm, fifth 1.4 mm, and the last 1.5 mm.

Legs. Robust and strong, especially hind legs. Profemur about 2 times as wide as
long; protibia with three outer teeth and one inner spur; protarsus preserved with only
three segments in this specimen (Figure 1e). Mesofemur 2.3 times as wide as long, with
a large patch; mesotibia extremely short, less than half of mesotarsus; mesotarsus with
five segments, first segment longest (Figure 1i). Hind legs enlarged; metafemur 2 times as
wide as long, with a large oval patch, almost near margin; the outer surface of metatibia
slightly concave, inner terminal extending to the tarsal median and forming an elongated
process, end of inner side with one irregular spot; metatibia with two exceptional strong
apical spurs, much stronger than spurs in mesotibia, longer than half length of metatarsi,
two spurs nearly equal in length, tightly close, almost equal to the elongated process;
metatarsus longer than metatibia, with five segments, the first one longer than all the others
(Figure 1f,j).

Measurements. Bodylength/bodywidth/headlength/headwidth/pronotumlength/pronotum
width/elytra length/elytrawidth, inmm: CNU-COL-NN2011001: 22.4/12.4/3.5/5.0/4.8/8.8/14.4/6.2.

Morphological variability. In the paratype, the basic pattern of markings in prono-
tum and elytra are the same but variable in detail (Figure 2a–c). The elongated pro-
cess is located on the outer side of the metatibia and is shorter than the holotype spec-
imen, about half of the length of spurs. Body length/body width/head length/head
width/pronotum length/pronotum width/elytra length/elytra width, in mm: CNU-COL-
NN2011002: 21.6/11.8/3.2/4.8/4.3/8.7/14.2/5.7, a little bit smaller than the holotype.

Notes. The sexes of the holotype and paratype are unknown due to limited preservation.
From the characters of the hind legs, it is highly possible that the holotype and paratype
are of opposite sexes (see Discussion section).
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3.2. Comparative Morphology and Phylogenetic Analyses

Antiqusolidus maculatus is placed incertae sedis, and according to the character compar-
ison and phylogenetic analyses, Antiqusolidus is probably closely related to the subfamily
Rutelinae. Antiqusolidus can be easily placed in the superfamily Scarabaeoidea due to
the following key synapomorphies: antenna with club; prothorax highly modified for
burrowing, with large, tubular coxae and dentate protibiae with only one spur; and tergite
VIII forming a true pygidium and not concealed by the tergite VII [37,38]. Its assignment
to the family Scarabaeidae is likely due to the following characters: eye divided by a
canthus (excluding Ochodaeidae), venter smooth without dense setae (excluding Pleoco-
midae, Glaphyridae), six visible abdominal ventrites (excluding Lucanidae, Passalidae,
Diphyllostomatidae, Trogidae, Glaresidae, Diphyllostomatidae), and pygidium exposed
(excluding Geotrupidae, Hybosoridae, Belohinidae) [38].

The assignment of Antiqusolidus to any of the other subfamilies of Scarabaeidae can
be reasonably excluded by the combination of the following characters: clypeus without
teeth (excluding it from Chironinae), eyes large, visible from above (excluding it from
Aegialinae, Eremazinae, Aulonocneminae, Termitotroginae), antennal insertions visible
from above (excluding it from Dynamopodinae), scutellum exposed (excluding it from
Scarabaeinae), pygidium exposed (excluding it from Aphodiinae), mesepimeron not pro-
truding and invisible from above at the base of elytron (excluding it from Cetoniinae),
metaventrite not longer than abdominal sternites (excluding it from Orphininae and Allid-
iostomatinae), outer edge of protibial with three teeth (excluding it from Phaenomeridinae),
and protibial spurs present (excluding it from Aclopinae) [39–42]. From the remaining
three subfamilies, namely, Melolonthinae, Dynastinae and Rutelinae, the new fossils show
the following differences (Table 1) [37,43]. According to results based on the available
characters, Antiqusolidus seems to be more similar to Rutelinae.

Table 1. Key characters to distinguish Melolonthinae, Dynastinae, Rutelinae and Antiqusolidus gen.n.

Characters Melolonthinae Dynastinae Rutelinae Antiqusolidus gen.n.

Mandible Invisible from the dorsal
view

Visible from the
dorsal view

Invisible from the dorsal
view, or sometimes slightly
visible

Visible from the
dorsal view

Labrum
At least partly visible, or
concealed beneath clypeus
or apparently absent

Concealed beneath
clypeus or apparently
absent

At least partly visible, or
concealed beneath clypeus
or apparently absent

Partly visible
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Table 1. Cont.

Characters Melolonthinae Dynastinae Rutelinae Antiqusolidus gen.n.

Color

Usually reddish brown or
black, sometimes with
metallic blue or green
luster or distinctly marked
with patches of scales

Usually testaceous,
brown or black

Dull browns and yellows
(nocturnal species) to
brightly patterned and
brilliantly metallic, even in
silver and gold

Color marking
pattern

Claws

Simple, cleft, toothed,
serrate or pectinate usually
paired, equal in thickness
and length

All subequal in size

Unequal in length or size,
and frequently weakly split
at apex; one claw of each
pair reduced

Seems unequal in
length or size

Eyes
Not or only slightly
protuberant, or strongly
protuberant

Not or only slightly
protuberant

Not or only slightly
protuberant, or strongly
protuberant

Strongly
protuberant

Frontoclypeal
suture

Absent or incomplete, or
indistinctly impressed, or
distinctly impressed

Absent or incomplete
Absent or incomplete, or
indistinctly impressed, or
distinctly impressed

Distinctly impressed

Ratio of elytral
length to pronotum
length

1.55–4.55 0.45–2.52 1.6–4.1 3

Mesoventral
process

Absent or not extending to
middle of mesocoxal cavity,
or extending at least to
middle of mesocoxal cavity

Extending at least to
middle of mesocoxal
cavity

Absent or not extending to
middle of mesocoxal cavity,
or extending at least to
middle of mesocoxal cavity

Absent

Abdominal process Broadly rounded or
angulate, or absent

Acute or narrowly
rounded, or broadly
rounded or angulate

Acute or narrowly
rounded, or broadly
rounded or angulate, or
absent

Acute or narrowly
rounded

Tarsi Normally thin and
undeveloped

Normally stubby and
developed

Normally stubby and
developed

Thin and
undeveloped

Our phylogenetic analysis supports that Antiqusolidus is closely related to Rutelinae.
The MP analysis using the traditional search resulted in the two most parsimonious trees
with 179 steps, a consistency index (CI) = 0.36 and a retention index (RI) = 0.71. MP analysis
supported the placement of Antiqusolidus gen. n. in one of the phytophagous lineages
of pleurostict Scarabaeidae (Figure S1). In the strict consensus tree, Antiqusolidus gen. n.
was nested within the clade Rutelinae, which, however, was polytomous and not better
resolved (Bremer support = 1). The current phylogenetic placement of Antiqusolidus gen. n.
must, however, be considered preliminary, since scarab dung beetles were nested in this
analysis within the pleurostict Scarabaeidae (Figure S1); their monophyly has been proven
in many previous studies [16,44].

3.3. The Function of the Exaggerated Hind Legs

Here, we tested two hypotheses about the function of the extremely modified hind legs:
“springing” and “fighting”. To test the hypothesis of a “springing” function, the studied 3D
models were classified into two groups: the normal-sized spur group (Figure 3h,i, Repsimus
manicatus, Gastroserica kucerai) and the exaggerated spur group (Figure 3f,g, Aphthonoides
armipes, Antiqusolidus maculatus gen et sp. n.). The comparison of the maximal von Mises
stress among all models (Figure 3e) shows that the values of the maximal von Mises stress
(MMS) of the normal-sized spur group are significantly higher than those of the exaggerated
spur group. Specifically, within the exaggerated spur group, the MMS of Aphthonoides
armipes is lower than that of Antiqusolidus maculatus sp. n. The distributions of the von
Mises stress in all models were greatly unbalanced. Most high von Mises stresses were
focused or near the tips of spurs (Figure 3f–i). Based on the Concentration Index (CI) of
the high von Mises stress (top 50% of maximum von Mises stresses) defined in this study,
which reflected a mechanical failure, we found that the Concentration Index (CI) of the
normal-sized spur group is significantly lower than that of species in the exaggerated spur
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group. In other words, the value of the Concentration Index (CI) is lower, and the high
von Mises stress will be more focused on limited elements of the FEA model. The results
indicated that exaggerated spurs could disperse more external force (lower MMS when
under the same force); in return, they could generate a higher counter-acting pushing force
when moving.
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the scene when the beetle falls down. Abbreviations: mf: metafemur; mtb: metatibia; mts: metatarsi;
sp: spur. (e) The comparison of the maximal von Mises stress (MMS, blue histogram) and Concentra-
tion Index (CI, red histogram) of the high von Mises stress among all models. (f–i) Three-dimensional
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Another possible function of the exaggerated hind legs of the fossil taxon is their use
as devices associated with fighting for access to females. The values for the two indices
(FSI, TSI) of Antiqusolidus maculatus were within the range of the male monkey beetle with
exaggerated hind legs (Figure 4, red star), which could suggest the fighting function of the
hind legs of Antiqusolidus maculatus. Repsimus manicatus is a typical species from Rutelinae
with exaggerated hind legs, which is also within the range (Figure 4, green circle). The
other two species studied (Aphthonoides armipes, Gastroserica kucerai) are divided from the
above two species with FSIs and TSIs closer to the ranges of non-fighting Hopliini (Figure 4,
black triangle and orange square), which is consistent with their behavioral tendency to
not use their hind legs to fight.
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4. Discussion
4.1. Phylogenetic Position of Antiqusolidus gen. n.

Although the results of our phylogenetic analysis are not entirely consistent with
currently accepted phylogenetic hypotheses for Scarabaeoidea [16,44,45], our findings
provide some evidence that Antiqusolidus is closely related to the subfamily Rutelinae.
Consequently, our results might shed new light on the timing of the origin of phytophagous
scarab beetles in the Early Cretaceous. Our new taxon would represent one of the earliest
records of Mesozoic pleurostict scarab beetles and can contribute to the study of their
divergence time and of related lineages based on molecular evidence calibrated using
the fossil record or using total-evidence phylogenetics. Antiqusolidus gen. n. supports
that phytophagous scarab beetles arose at the beginning of angiosperm dominance [45,46]
(orange star in Figure 5).
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in Phanerozoic. The phylogenetic tree and divergence time of some Scarabaeidae lineages were
adapted from Ahrens et al. [16]. The three colored curves represent the diversity of plant species
(blue line for pteridophytes, red line for gymnosperms, green line for angiosperms) throughout
the Phanerozoic (adapted from 80). Stars represent the earliest fossil records in the related group:
Antiqusolidus maculatus gen. et sp. n. (orange star, ~125 Ma) and Pelidnotites atavus Cockerell, 1920
(green stars, 48.6–40.4 Ma), for Rutelinae; Cretomelolontha transbaikalica Nikolajev, 1998 (125–112 Ma),
for Melolonthinae; undescribed cetoniine (40.4–48.6 Ma) for Cetoniinae; and Oryctoantiquus borealis
Ratcliffe & Smith, 2005 (44.6–46.8 Ma); for Dynastinae (green stars).

4.1.1. The Earliest Record of Phytophagous Scarab Beetles

Normally, scarabaeoids feed on a wide range of plant and animal matter and can be basi-
cally separated based on two kinds of feeding habits: phytophagous and saprophagous [47].
Based on the fossil record, it was formerly widely believed that the phytophagous chafers
first appeared in the Cenozoic after the diversification of angiosperms [48]. Recently, findings
from some fossil evidence from the Mesozoic but also fossil-calibrated molecular phyloge-
nies have rejected that hypothesis. To date, phytophagous scarab beetles are known from
the Early Cretaceous, including Melolonthinae Cretomelolontha transbaikalica (the Early Creta-
ceous 125–112 Ma), some species belonging to Sericini (the Early Cretaceous ~125 Ma) and
some glaphyrides (e.g., Cretoglaphyrus from the Early Cretaceous ~125–122 Ma) [46,49,50].
However, the systematic assignment of some of them is debatable due to their poor preser-
vation (e.g., Cretoglaphyrus and Sericini). Based on comparative morphological evidence
and the results of our phylogenetic analysis, Antiqusolidus gen. n. is possibly closely re-
lated to Rutelinae and thus to the generally phytophagous pleurostict scarab subfamilies
(Melolonthinae, Dynastinae and Rutelinae) [16].

It is hard to determine what kinds of plants and which parts were eaten by An-
tiqusolidus. In the age of its occurrence, gymnosperms occupied most terrestrial habitats,
whereas angiosperms appeared soon after (green line and red line in Figure 5). As a plant
visitor, Antiqusolidus chafers might have been associated with both of them, but normally,
beetles that are presumably closely related to Antiqusolidus prefer angiosperms because
gymnosperms have hard leaves and special aromatic hydrocarbons, except for some beetles
that were small enough to dig into the seeds or stems related to the gymnosperms, for
example, the beetle families Scolytidae and Boganiidae [51,52]. Furthermore, the soil and
litter revolution triggered by angiosperms provided a more suitable habitat for larvae
of scarab beetles [16]. After comparing the size and structure of gymnosperms and an-
giosperms recorded in the same age, we think this Rutelinae beetle was likely a visitor of
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basal angiosperms or a visitor of gymnosperm lineages: Bennettitales (e.g., Williamsonia,
Bennettitales) (Figure S2).

4.1.2. Intraspecific Morphological Variability

We found some variations within Antiqusolidus maculatus regarding the length and
position of the elongated metatibial process (Figure 1c,h). This variability could be in-
terpreted as sexually dimorphic hind legs, which also appear in many extant insects,
such as the subtribe Heterosternina of Rutelinae (e.g., Heterosternus, Promacropoides and
Macropoides) [53–56], Hopliini of Melolonthinae (e.g., Pachycnema, Heterochelus, Denticnema
and Hoplocnemis) [35], Macrodactylini of Melolonthinae [57], leaf beetles (Sargra femorata,
Chrysomelidae) [58], leaf-footed bugs (Coreidae, Hemiptera) and several others [59,60].
Meanwhile, the characters of exaggerated spurs and color marking patterns of the body in
holo- and paratypes could be considered stable characters of this species.

4.2. Exaggerated Hind Legs and Their Possible Functions

Antiqusolidus maculatus gen. et sp. n. has unusually robust and structured hind legs,
consisting of a thick and strong metafemur and a metatibia armed with greatly enlarged
spurs and an elongated process (Figure 1f,j). Normally, predation and feeding traits are
associated with exaggerated structures in the anterior part of the body, such as forelegs
(e.g., praying mantises), mouthparts (e.g., larval antlions, some weevils or soapberry bugs)
and antennae (e.g., genus Streblocera in Braconidae) [61]. Traits associated with locomotion,
e.g., jumping, swimming or digging, seem to be possibly related to exaggerated hind legs
(e.g., flea beetles, water beetles or dung beetles) [62–64]. Furthermore, organisms with
jumping legs are often recognizable by their enlarged femora and elongated tibia, such as
in Orthoptera and flea beetles. Correspondingly, swimmers have coxae that are immovably
fused to the thorax, a streamlined body, retractable hind legs or inflexible hairs in legs;
diggers often have short femora, strong and toothed tibiae, and weak tarsi [13]. Clearly,
the structures in this fossil are unique and special, which is not immediately related to
any known typical exaggerated insect structures or their specific functions, as we have
discussed before. In contrast, sexual selection seems to be a possible hypothesis as long
as any exaggerated structures are different between males and females. After a close
examination of the fossils, although their sex remains unknown to us, we find some clues
that favor the two hypotheses about “springing” and/or “fighting”.

4.2.1. Exaggerated Spurs on Hind Legs with Possible “Springing” Function

The tibiae in beetles commonly bear a pair of spurs on the inner margins [65]. It
is strange that this fossil has unusually large metatibial spurs on the outer margin. The
“springing” hypothesis would imply that Antiqusolidus gen. n. cannot make real jumps
like Orthoptera but that the spurs can provide bumping protection when the beetle falls
down and provide a higher pushing force when moving, which could be summarized as
“springing”. This feature is known to exist in a genus of the flea beetle, Aphthonoides, which
has a very long spur in the hind tibia that is as long as the tibia (Figure 3a,f). Aphthonoides
is also believed to be a low-speed jumper [14]. In this fossil, the function of the developed
femur, strong tibia and long spurs is probably related to small bouncing movements from
the ground to lower plants (for example, a lower angiosperm from the Early Cretaceous:
Archaefructus sinensis) or bumping protection when escaping from predators.

The “springing” hypothesis was supported by the FEA, which showed a lower MMS
and lower concentration of von Mises stress in the fossil than the normal-sized spur group.
Furthermore, the similar pattern of the von Mises stress of Antiqusolidus gen. n. and
Aphthonoides provides further evidence for the similar spring function of the hind legs.
The actual values of von Mises stresses and strains developed in this study should be
interpreted with caution because of the complicated bio-structures and our simplified
assumptions of homogeneous and isotropic material properties. However, we can interpret
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the relative performance of different legs with confidence to draw qualitative conclusions
by applying identical material properties and scaling the models appropriately [66].

4.2.2. Elongated Process with Possible “Fighting” Function

The alternative and second possible hypothesis of a “fighting” function would mean
that the structures can be used as devices to fight with competitive males to enhance
the successful passing of its genes [67]. Only limited cases of mating behavior have been
reported in the Mesozoic fossil record, including respective structures such as the pronotum,
antennae, abdominal segments, etc. [9,68–71]. Antiqusolidus gen. n. is probably the oldest
record with hind leg dimorphism for beetles. Based on their unique shape and structure,
and also considering our knowledge of the biology of extant scarab beetles, it is most
plausible that these hind legs with their elongated process were used as a device to drive
away competitive male rivals. To further understand their lifestyle, behavior and function,
more evidence from this extinct group is needed.

4.3. Possible Biology Inferred from Marking Pattern

Preserved color markings are rare and generally lost during fossilization. Such records
are so far limited to membranous wings, such as those of Orthoptera, Homoptera and
Neuroptera, or parts of abdomens. Such preserved characteristics (e.g., delicate markings)
are so far lacking in beetles [72–74]. Interestingly, color marking patterns almost cover
the whole body and elytra of A. maculatus gen. et sp. n., which is especially obvious in
the holotype.

In beetles, while diurnal and nocturnal species are both highly diverse in their color
patterns, diurnal species generally have a higher frequency of being multicolored or having
color patterns [75]. This generally goes hand in hand with mimetism or mimicry [76,77].
Focusing on scarab beetles, most extant chafers are simply and uniformly colored, being
inconspicuous in their natural environment (nocturnal species often have colors from dull
brown to yellow, and diurnal species have various shades of green or yellow that are
in harmony with their surroundings) [78,79]. According to the data collected (Table S2
and Figure S3), shining leaf chafers with bright marking patterns (e.g., Parastasiina and
Rutela) are diurnal and sometimes flower visitors [80,81]. Furthermore, marking patterns
are well preserved for this fossil beetle and have great similarity to the extant Rutelinae
(e.g., Lutera nigrita, Promacropoides gloriagaitalis and Rutela dorcyi) [53,80]. Besides Rutelinae,
some similar marking patterns also existed in several diurnal beetles, such as Melolonthine
and rose chafers [38,81]. Overall, the marking patterns of Antiqusolidus suggest that they
were active plant feeders in the daytime and might have also been flower visitors [82].

Alternatively, the marking pattern of Antiqusolidus could in fact be mimicry. In this
hypothesis, Antiqusolidus maculatus might have used its markings, especially the transverse
belt markings on the abdomen, to imitate vespoid wasps (Vespoidea), which have stingers
to give a warning to the predators. However, this assumption can be rejected since the
origin of vespoid wasps is far later than when Antiqusolidus occurred [18].

5. Conclusions

The present study describes a new species belonging to the family Scarabaeidae,
Antiqusolidus maculatus gen. et sp. n., from the Early Cretaceous. The new species has
greatly enlarged spurs and an elongated metatibial process, which may have been used
for springing movements, for bumping protection after purposely falling off, as a pushing
force when walking to avoid predation, or for fighting with competitive males for potential
mates. In addition, the unusually sophisticated marking patterns on the pronotum, elytra,
pygidium, abdomen and legs suggest that the new species might have been diurnal and
potentially visited the exposed parts of plants. Future discoveries of more well-preserved
fossil beetles for in-depth studies are expected to further contribute to our knowledge of
ancient behaviors.
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