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Simple Summary: Aflatoxin B1 a highly distributed and hepatotoxicant leads to liver damage and the
subsequent development of liver cancer. The aim is to study the combined genes and their function
in liver damage progression to prevent reversible liver fibrosis which is a dynamic and bidirectional
process to become irreversible liver cancer as a result of aflatoxin B1 exposure. The present study
revealed that the combined differential expressed genes of AFB1-fibrosis-related and liver cancer-
related were connected to cell process disruption, the top ten core genes were identified using four
different algorithm methods and the combined core genes showed that the BUB1B and RRM2 genes
were core genes of AFB1-liver fibrosis-liver cancer. The inflammatory-related signaling ssGSEA score
for BUB1B high expression results in a significant increase in the expression of JAK-STAT regulation
and TLR signaling with no effect on the RRM2 gene also the immune checkpoint chemotherapy-
related high expression of the BUB1B gene was showed to have a significant change in CTLA4
Blockage in TCHA LIHC patients. Our study will contribute to, the aflatoxin b1 hepatotoxicant
damaging progression could be controlled by BUB1B and RRM2 gene study.

Abstract: The molecular mechanism of the hepatotoxicant aflatoxin B1 to induce liver fibrosis
and hepatocellular carcinoma (HCC) remains unclear, to offer fresh perspectives on the molecular
mechanisms underlying the onset and progression of AFB1-Fibrosis-HCC, which may offer novel
targets for the detection and therapy of HCC caused by AFB1. In this study, expression profiles of
AFB1, liver fibrosis and liver cancer-related datasets were downloaded from the Gene Expression
Omnibus (GEO), and differentially expressed genes (DEGs) were identified by the GEO2R tool. The
STRING database, CytoHubba, and Cytoscape software were used to create the protein-protein
interaction and hub genes of the combined genes, and the ssGSEA score for inflammatory cells
related gene sets, the signaling pathway, and immunotherapy were identified using R software and
the GSEA database. The findings revealed that AFB1-associated liver fibrosis and HCC combined
genes were linked to cell process disruptions, the BUB1B and RRM2 genes were identified as hub
genes, and the BUB1B gene was significantly increased in JAK-STAT signaling gene sets pathways as
well as having an immunotherapy-related impact. In conclusion, BUB1B and RRM2 were identified
as potential biomarkers for AFB1-induced fibrosis and HCC progression.

Keywords: aflatoxin B1; hepatocellular carcinoma; fibrosis; multi-omics; hub-genes

1. Introduction

Hepatic fibrosis follows persistent liver damage from a variety of causes, such as
toxicity, viral infections, autoimmune illnesses, metabolic or genetic disorders, and autoim-
mune problems. Advanced liver fibrosis patients typically have a bad prognosis since
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hepatocellular carcinoma (HCC) frequently develops in these patients. HCC is the most
common kind of liver cancer, account for 90%. In addition, HCC is the fourth leading cause
of cancer-related death globally [1,2]. However, understanding and molecular mechanism
on progression from liver fibrosis to HCC have been limited.

Studies showed that aflatoxin B1 (AFB1) can induce carcinogenesis in the liver, stom-
ach, lung, kidney, rectal colon, breast, and gallbladder [3–8], and 4.6–28.2% of hepatocellular
carcinoma (HCC) cases are the result of AFB1 exposure [9]. In addition, edidemiological
evidence implicates that AFB1 contamination of food in leading cause of human liver
cancer. In addition, there is a high prevalence of HCC in the regions with high exposure to
AFB1 [10,11]. Although, the diagnosis of liver cancer has advanced significantly in recent
years the treatment outcomes remain inadequate [12,13]. To develop therapy options and
increase survival percentage of HCC patients, further research is urgently required on the
mechanisms underlying HCC development and its micro-environment.

A characteristic of cancer, immune cell infiltration of solid tumors is crucial to tumor
development [14]. Immune cells that infiltrate tumors may have their roles altered by
the tumor microenvironment to promote tumor growth [15,16]. The pattern of invasive
immune cell types is associated with tumor growth and patient prognosis in addition
to the characteristics of tumor autonomy [17,18]. For patients with HCC, understanding
the changed pattern of immune infiltration during AFB1-Fibrosis-HCC formation and
progression is extremely valuable.

In this study, three microarray datasets of GSE87028, GSE197112, and GSE112790 from
the GEO database were used to analyze the differentially expressed genes (DEGs). The
TCGA-LIHC cohort was used for immune cell infiltration analysis and survival analysis.
GSE87028 is an RNA-seq data set of AFB1-treated HepaRG cells, so it was selected for
studying the hepatotoxicity of AFB1. GSE197112 is a data set containing RAN-seq data of
patients with liver fibrosis and normal people, and GSE112790 is an RNA-seq data set of
HCC patients and normal controls. Through bioinformatics analysis, we aimed to provide
new insights into the molecular mechanism underlying AFB1- induced Fibrosis and HCC
development and progression, which provide new targets for the diagnosis and treatment
of HCC.

2. Materials and Methods
2.1. Data Source and Identification of DEGs

Three microarray gene expression data sets related to liver-damag (GSE78028, GSE197112
and GSE112790) were selected from the GEO database. In the GSE78028 dataset, human
terminally differentiated hepatic HepaRG cells were treated with 0 µM or 25 µM AFB1
and the DEGs were evaluated. In the GSE197112 dataset, gene expression was detected in
four patients with liver fibrosis and four normal people to study the altered genes in the
progression of human liver fibrosis. In the GSE112790 dataset, a total of 183 liver cancer
tumorous tissues versus 15 samples from normal liver were used to study the DEGs. The
volcano plots and heatmaps of the DEGs in each dataset were generated using the SRPLOT
online tool (http://www.bioinformatics.com.cn/srplot (accessed on 2 December 2022))
with a cutoff value of |log2(FC)| > 2 and p < 0.05 considered statistically significant. We
got 89 genes by overlapping the DEGs from three GEO datasets.

2.2. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) Analysis

The biological processes of GO enrichment analysis and KEGG pathway enrichment
analysis for the 89 combined DEGs among the three GEO datasets above were conducted
using the ShinyGO 0.76.2 online tool, which is an intuitive, graphical tool for enrichment
analysis. For both GO and KEGG analysis, the top 10 pathways were chosen, and an FDR
of less than 0.05 was used as a cut-off criterion.

http://www.bioinformatics.com.cn/srplot
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2.3. Protein-Protein Interaction (PPI) and Hub Gene Discovery

In order to combine biomolecular interaction networks with high throughput expres-
sion data and other molecular states into a single conceptual framework, proteins and
the functional interaction networks of the 89 combined DEGs were obtained from the
STRING database (https://string-db.org (accessed on 17 December 2022)) and graphed in
Cytoscape [19]. We utilized the CytoHubba Cytoscape plugin to investigate the hub gene
network. This plugin offers resources for investigating key nodes in biological networks by
using a variety of methods to recognize hub nodes and the connections between them and
other genes.

Different algorithms (MCC, closeness, EPC, and betweenness ranking methods) were
chosen in our study to identify the hub genes, and the top 10 hub genes were discovered.
The software has created a network with hub nodes colored according to their significance,
with red for the highest score and yellow for the lowest score.

The BUB1B and RRM2 genes were found to be the common interacting hub genes
between the utilized raking algorithms after the Venn diagram was performed on the
top 10 hub genes of each used method. The network analysis was utilized to examine
protein-protein interactions with the chosen hub genes, and the SRPLOT online tool was
used to display the BP-Go and KEGG enrichment for the interactor network.

2.4. Gene Set Enrichment Analysis (GSEA)

For the purpose of identifying the enriched gene sets based on the highly expressed
group of BUB1B and RRM2 genes, the TCGA LIHC samples were split into two groups
based on the average value for gene expression. To calculate the enrichment score, 1000 per-
mutations of the KEGG pathways (c2.cp.kegg. v7.1) and the biological process of GO gene
sets (c5.bp. v7.1) were utilized (ES). The top 10 highly significant gene sets were chosen after
the results were considered statistically significant with |NES| > 1, NOM p-value < 0.05,
and FDR q-value < 0.25. We also employ the Kaplan-Meier technique and Cox regression
to assess how BUB1B and RRM2 gene expressions affect prognosis. When performing a
Cox regression analysis, variables with p < 0.1 in univariate Cox regression were added to
multivariate Cox regression, and p < 0.05 was regarded as statistically significant.

2.5. Statistical Analysis

R software, version 4.0.5, was used to perform two-sided Spearman correlation analy-
ses between BUB1B and RRM2 genes and immune infiltrating cells in TCGA LIHC samples,
which were first analyzed using the xCELL algorithm. For performing the ssGSEA cor-
relation between BUB1B and RRM2 gene expression with memory B cells, immature B
cells, effector memory CD4+ T cells, central memory CD4+ T cell immune markers, and
T helper 2 cell immune markers gene sets, the “GSVA” package was used. The results of
spearman correlation and ssGSEA were visualized using the “tidyverse”, “broom”, “fs”
and “lubridate” packages, the area under the ROC curve (AUC) was computed and utilized
to compare the diagnostic value of these hub genes using timeROC and survival packages.

By using GraphPad Prism (version 8.0.1), the difference in BUB1B and RRM2 gene
expression between aflatoxin B1 and their control samples, fibrotic and non-fibrotic samples,
and liver tumors and normal samples were compared using an independent Student’s
t-test. Clinically, the difference between high and low BUB1B and RRM2 gene expression
and their clinical phenotype data in the TCGA LIHC was analyzed using chi- square test.
p < 0.05 was considered statistically significant. * p < 0.05, ** p < 0.01, *** p < 0.001.

3. Results
3.1. Identification and Analysis of DEGs

The microarray results from GEO database were chosen. |log2(FC)| > 2.0 and p < 0.05
were used as the standard principal values, and the volcano plots were performed using
the SRPLOT tools. The accession number GSE87028, GSE197112 and GSE112790 were
selected and the volcano plots for the selected datasets showed that the up-regulated genes

https://string-db.org
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were 1846, 1328 and 477 genes, and the down-regulated genes were 2698, 2121 and 453
genes respectively (Figure 1A). In the Venn diagram, the overlap among the 3 selected
datasets were 89 DEGs (Figure 1B), and the heatmap for their gene expression on the
selected datasets is shown in Figure 1C–E.
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Figure 1. Differentially expressed genes (DEGs) and functional enrichment analysis in AFB1-exposed,
liver fibrosis and liver cancer datasets. (A) Volcano plot of DEGs in GSE87028, GSE197112 and
GSE112790 datasets. Red color indicated up-regulated genes and blue color indicated down-regulated
genes. (B) Venn diagram of overlapping DEGs among three GEO datasets. (C–E) Heat maps of
overlapping DEGs in GSE87028, GSE197112 and GSE112790 datasets. (F) Gene ontology (GO)
biological processes (BP) enrichment analysis of 89 overlapping DEGs. (G) Kyoto encyclopedia of
genes and genomes (KEGG) pathway analysis of 89 overlapping DEGs.
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The biological categorization of the combined DEGs was examined. The DEGs were
significantly enriched in chromatid segregation and microtubule cytoskeleton organization
involved in mitosis, according to the results of GO and KEGG pathway analyses (Figure 1F),
while the KEGG pathway analysis showed that the DEGs were primarily enriched in DNA
replication, base excision, and mismatch repair (Figure 1G). Overall, the combined genes
for HCC, liver fibrosis, and AFB1 were connected to cell process disruption.

3.2. Identification and Analysis of Hub Genes

The PPI among the overlapping DEGs was constructed using the STRING online tool
(Figure 2A). The query protein was visualized through Cytoscape v3.8.1 as PPI network
visualization, and the hub genes were identified by the cytoHubba tool to generate the top-
ranked list of proteins. According to the four ranking methods in cytoHubba, the maximal
clique centrality (MCC) ranking method, the closeness ranking method, the edge percolated
component (EPC) ranking method, and the betweenness ranking method, the hub genes
were identified and top 10 hub genes by each method were selected (Figure 2B–E). The
intersection was obtained from the genes determined by these four methods, yielding
two common interacting Hub genes BUB1 Mitotic Checkpoint Serine/Threonine Kinase B
(BUB1B) and Ribonucleotide Reductase Regulatory Subunit M2 (RRM2) (Figure 2F). The
mRNA expression of these two genes were increased in AFB1 and liver cancer-related
databases, while in liver fibrosis they were decreased (Figure 2G,H). Concluded, the core
genes of AFB1-liver fibrosis-HCC were BUB1B and RRM2 genes. so the cell try to decrease
the damaging effect and convert it to irreversible damage.

3.3. Functional Enrichment Analysis of Proteins Interacting with BUB1B or RRM2

Then, we identified the functional enrichment analysis of proteins interacting with
BUB1B or RRM2 (Figure 3A). Most of these proteins were enriched in the regulation of the
mitosis pathway and mitotic cell cycle checkpoint pathway on the gene ontology biological
process pathways (GO-BP), and KEGG indicated that most of these proteins are enriched in
cell cycle process (Figure 3B,C).The proteins interacting with RRM2 were related to mitosis
regulation in GO-BP, and pyrimidine metabolism was the most enriched pathway in KEGG
for most of the proteins interacting with RRM2 (Figure 3D–F).

Following that, we used TCGA LIHC patient samples for additional future verification.
For verification of the enrichment results, the GO-BP and KEGG enrichment analyses were
identified in the TCGA LIHC patients with BUB1B and RRM2 high expression. It was
shown that cytokinetic process, regulation of spindle organization, negative regulation of
cell cycle G2/M phase transition, chromosome localization, regulation of ubiquitin protein
transferase activity, regulation of chromosome organization, metaphase plate congression,
mitotic cell cycle phase transition, regulation of mitotic cell cycle phase transition and
cytokinesis were the highly significant enriched GO-BP pathway in BUB1B high expression
patients (Table S1). In RRM2 high expression patients, the GO-BP was enriched in cytoskele-
ton dependent cytokinesis, cytokinetic process, cytokinesis, regulation of chromosome
organization, chromosome localization, mitotic cytokinesis, regulation of mitotic cell cycle
phase transition, mitotic cell cycle phase transition, regulation of cell cycle phase transition,
DNA replication (Table S2).

The KEGG enrichment analysis pathways for BUB1B high expression patient were
cell cycle, oocyte meiosis, nucleotide excision repair, DNA replication, mismatch repair,
homologous recombination, the p53 signaling pathway, base excision repair, progesterone
mediated oocyte maturation, ubiquitin mediated proteolysis (Table S3). and the RRM2
high expression group shown to have a high enrichment on oocyte meiosis, cell cycle,
p53 signaling pathway, DNA replication, homologous recombination, nucleotide excision
repair, mismatch repair, progesterone mediated oocyte maturation (Table S4). In addition,
it was showed that the clinicopathological feature between BUB1B and RRM2 genes expres-
sion and HCC patients were significantly changed in age, fibrosis Ishak score, neoplasm
histologic grade, pathologic T, race and tumor stage diagnoses (Tables S5 and S6).
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Figure 2. Identification of Hub genes in overlapping DEGs among three GEO datasets. (A) Protein-
protein interaction of the overlapping DEGs. (B–E) Maximal clique centrality (MCC) ranking method,
closeness ranking method, edge percolated component (EPC) ranking method, and betweenness
ranking method for hub genes identification. (F) Venn diagram for identifying hub genes among
different ranking methods. (G) The expression of BUB1B in three GEO datasets. (H) The expression
of RRM2 in three GEO datasets. Red color represents highest degree, and orange color represents
intermedia degree, and yellow color represents lowest degree. * p < 0.05; **** p < 0.0001.
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Figure 3. Functional enrichment analysis of proteins interacting with BUB1B or RRM2. (A) Protein
interaction network of BUB1B. (B) BP enrichment analysis of protein interaction network of BUB1B.
(C) KEGG pathway analysis of protein interaction network of BUB1B. (D) Protein interaction network
of RRM2. (E) BP enrichment analysis of protein interaction network of RRM2. (F) KEGG pathway
analysis of protein interaction network of RRM2.

3.4. BUB1B and RRM2 Are Related to Immune Cell Infiltration

There are links between BUB1B and RRM2 and immune infiltration, as well as prog-
nostic capacity. To investigate the roles of BUB1B and RRM2 genes in the immune mi-
croenvironment of HCC patients, inflammatory cell infiltration was estimated. It was
discovered that Th2 cells, pro-B cells, CD4+ memory T cells, and B cells were the highly
positively correlated inflammatory cells among the BUB1B and RRM2 genes in TCGA LIHC
(Figure 4A). The correlation between BUB1B and RRM2 genes with genes related to selected
immune signature gene sets revealed that they had a significantly high positive correlation
(Figure 4D–H). Finally, the relationship between inflammatory signaling and immunother-
apy gene sets with the expression of BUB1B and RRM2 revealed that the BUB1B high
expression group was regarded to have a significantly increased in JAK-STAT regulation
gene sets pathway (Figure 5A), while there were no significant differences comparing high
and low RRM2 genes (Figure 5C). In addition, the immunotherapy related datasets were sig-
nificantly increased in high expression of BUB1B group on CTLA4 immunotherapy related
gene sets with no effect on PD1 blockade gene sets. While no significant difference in RRM2
gene expression was found between the high and low expression groups (Figure 5B,D). So
BUB1B high expression on HCC patients related to changes in the immune-related tumor
microenvironment and also to immunotherapy.
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Figure 4. BUB1B and RRM2 are related to immune cell infiltration. (A) The correlation between
immune cell infiltration and the expression of BUB1B and RRM2 in TCGA-LIHC cohort. (B) Compar-
ison of ssGSEA scores between BUB1B high expression group and BUB1B low expression group in
TCGA-LIHC cohort. (C) Comparison of ssGSEA scores between RRM2 high expression group and
RRM2 low expression group in TCGA-LIHC cohort. (D–H) The correlation between memory B cells
immune markers, immature B cells immune markers, effector memory CD4+ T cell immune markers,
central memory CD4+ T cell immune markers, and Th2 cell immune markers with the expression of
BUB1B and RRM2. * p < 0.05; ** p < 0.01; *** p < 0.001; **** p < 0.0001.
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Figure 5. Analysis of the relationship between inflammatory signaling and cancer therapy gene sets
with the expression of BUB1B and RRM2 in TCGA-LIHC cohort. (A,B) Comparison of JAK-STAT regu-
lation gene sets, TLR signaling gene sets, and CTLA4 and PD1 blockade cancer immune therapy gene
sets between BUB1B high expression group and BUB1B low expression group. (C,D) Comparison
of JAK-STAT regulation gene sets, TLR signaling gene sets, and CTLA4 and PD1 blockade cancer
immune therapy gene sets between RRM2 high expression group and RRM2 low expression group.
* p < 0.05; ** p < 0.01.

3.5. Survival Analysis of BUB1B and RRM2 in TCGA-LIHC Cohort

Time-dependent receiver-operating characteristic (ROC) analysis was performed to
determine how these markers predict patient survival or death, and it was found that the
AUCs (area under the ROC curve) for 1, 2, and 3 years overall survival for the BUB1B
gene and the RRM2 gene, respectively, were 0.71, 0.66, and 0.65. The ROC and Kaplan-
Meier curves were used to assess their prognostic capacity (Figure 6A,B) Overall survival,
disease-specific survival, progression-free interval curve, and disease-free interval curve
than patients in the low-risk group (Figure 6C,D).
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Figure 6. Survival analysis of BUB1B and RRM2 in TCGA-LIHC cohort. (A,B) ROC curves of TCGA-
LIHC cohort. The AUC values shown the predictive efficiency of BUB1B and RRM2 on the 1-, 2-,
and 3-years survival rate. (C,D) The overall survival analysis of BUB1B and RRM2 in TCGA-LIHC
cohort. (E–H) Univariate and multivariate Cox analyses evaluated the independent prognostic value
of BUB1B and RRM2 in terms of OS in TCGA-LIH.

For TCGA LIHC patients, we conducted univariate and multivariate Cox regression
survival analyses to ascertain if the risk score plays an independent prognostic role. An
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increased risk score was strongly connected with worse pathogenic T, N, and M in LIHC
patients, according to the results of the univariate Cox regression analysis. After that, mul-
tivariate analysis showed that the BUB1B and RRM2 genes had a significantly independent
predictive value for overall survival, disease-specific survival, and progression-free interval
(Figure 6E–H) (Tables S7–S12). After controlling for confounding factors, these findings
revealed that the BUB1B and RRM2 genes were a separate predictive factor for patients
with LIHC.

4. Discussion

In recent years, despite great progress in the identification and analysis of AFB1 and its
damaging effects on the liver, we cannot prevent or decrease its irreversible hazard effect on
the liver to be converted to HCC, and its mortality remains unacceptably high. Moreover,
studies that focus on understanding their function in HCC are less clear. We hoped to gain
new insights into the molecular mechanisms underlying AFB1-induced fibrosis and HCC
development and progression through bioinformatics analysis, which should lead to new
targets for HCC diagnosis and treatment. The result showed that the BUB1B and RRM2
genes were hub genes in AFB1-liver fibrosis-HCC progression.

Our results indicate that BUB1B was significantly decreased in liver fibrosis and
increased in AFB1 and liver cancer samples, for the reason that fibrosis is reversible liver
damage and the body tries to protect itself from being damaged. It was stated that a
decreasing APC/C inhibitory protein like BUB1B triggers the activation of APC/C at
mitosis and it plays an essential function during cell proliferation by preventing the re-
replication of DNA [20,21].

The increased expression of BUB1B was considered to facilitate an inaccurate DNA
repair process termed “alternative non-homologous end joining that inaccurately repairs
DNA damages [22]. The RRM2 protein interact with key cell cycle genes and signaling
pathway proteins, such as p53, PI3K, hypoxia inducible factor-1α, Bax, and cyclin D1,
to regulate tumor cell proliferation, migratory, and invasive abilities and cell cycle pro-
gression [23–26]. Moreover, the reduction or inhibition in human cancer cells resulted in
massive chromosome loss and apoptotic cell death [27]. In addition, as tumors are “fibrotic
wounds that do not heal” and chronic fibrosis is a risk factor for cancer [28,29]. Based on
these findings, the hepatic cell is damaged and fibrosis occurs when exposed to aflatoxin
B1 and has an increase in Bub1b expression. However, the cell tries to protect itself as a
defense mechanism, which results in a decrease in BUB1B and RRM2 expressions. However,
when there is extensive damage caused by AFB1, the cell cannot compensate for all of
these damages, and an increase in gene expression and inaccurate DNA repairing occurs,
resulting in liver cancer. So, while we can control the progression of the liver-damaging
process by monitoring BUB1B and RRM2 gene expression and preventing the progression
of reversible liver fibrosis to irreversible liver cancer as a result of AFB1 exposure, we still
need to understand the functional roles and potential mechanisms of BUB1B and RRM2 in
liver fibrosis and liver cancer progression as a result of AFB1 exposure.

It is important to define the precise roles and known molecular mechanisms of BUB1B
in the initiation and progression of HCC. BUB1B was shown to be elevated in HCC tis-
sues as well as HCC cell lines, BUB1B overexpression and unfavorable clinicopathological
characteristics were positively correlated; in addition, lower recurrence-free and overall sur-
vival rates were linked to BUB1B overexpression in HCC patients, per survival studies [30].
The functional study revealed that the up-regulated BUB1B helped HCC cells proliferate,
migrate, invade, and metastasize [31]. It has also been found to be a crucial part of the
spindle assembly checkpoint in mitosis, which delays the start of anaphase and ensures
normal chromosomal segregation [32]. According to a recent study, JNK/c-Jun signaling
activity was crucial for carcinogenicity [33].

According to the present study, the majority of immune cells in HCC were significantly
positively correlated with BUB1B and RRM2. These indicators were also strongly positively
related to immune cell invasion. These findings imply that tumor immune infiltration
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may be crucial to the RRM2-mediated progression of HCC. Immune checkpoint block-
ade medications work best when immune checkpoint molecules are expressed in tumor
tissues [34–36].

Immune checkpoint receptors have the ability to either suppress or stimulate immune
response mechanisms [37]. The relationship between RRM2 and immunological check-
points was therefore examined. Moreover, a significant relationship between CTLA-4 and
BUB1B expression in HCC, suggesting that tumor immune evasion may influence the
hepato-carcinogens that BUB1B mediates. It is stated that in the TME, infiltrating immune
cells form an ecosystem and they play an important role in tumor progression and have im-
portant prognostic value [38]. In addition, Studies have shown that cytotoxic CD8+ T cells
and CD4+ helper T cells can target antigenic tumor cells and inhibit tumor cell growth [39].
In summary, the combined differential expressed genes of AFB1- fibrosis related and liver
cancer related were connected to cell process disruption. the top ten core genes were
identified using four different algorithm methods and the combined the combined core
genes showed that the BUB1B and RRM2 genes were core genes of AFB1-liver fibrosis-HCC.
Moreover, the expression of those genes was up regulated in AFB1 and liver cancer related
while they were down regulated in fibrosis related. The inflammatory cell found to have a
correlation with both BUB1B and RRM2 genes in TCGA LIHC patients. The inflammatory
related signaling ssGSEA score for BUB1B high expression have a significantly increasing
in the expression of JAK-STAT regulation and TLR signaling with no effect on RRM2 gene
also the immuno-check point chemotherapy related for high expression of BUB1B gene
showed to have a significant change in CTLA4 Blockage in TCHA LIHC patients.

Our study has limitations, and a bigger cohort is needed to further validate these
findings. Additionally, more thorough research is required to confirm the roles of the
BUB1B and RRM2 genes in the development of AFB1-fibrosis and HCC as well as their
effects on immunity using in vitro and in vivo assays. This will improve the precision of
diagnosis and prognosis and may help with the creation of a targeted therapy for LIHC.
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