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Simple Summary: Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and/or
defective insulin production in the human body. Corn silk (CS), an abundant, readily available
and affordable waste product of corn cultivation, has extensive therapeutic applications against
various diseases including T2DM. Although the antidiabetic potential of CS is well-established,
the understanding of the mechanism of action (MoA) behind its reported antidiabetic potentials is
lacking. Hence, determining its MoA may provide laudable insight contributing towards developing
an effective drug candidate for combating the ill effects of T2DM.

Abstract: Type 2 diabetes mellitus (T2DM) is characterized by insulin resistance and/or defective
insulin production in the human body. Although the antidiabetic action of corn silk (CS) is well-
established, the understanding of the mechanism of action (MoA) behind this potential is lacking.
Hence, this study aimed to elucidate the MoA in different samples (raw and three extracts: aque-
ous, hydro-ethanolic, and ethanolic) as a therapeutic agent for the management of T2DM using
metabolomic profiling and computational techniques. Ultra-performance liquid chromatography-
mass spectrometry (UP-LCMS), in silico techniques, and density functional theory were used for
compound identification and to predict the MoA. A total of 110 out of the 128 identified secondary
metabolites passed the Lipinski’s rule of five. The Kyoto Encyclopaedia of Genes and Genomes
pathway enrichment analysis revealed the cAMP pathway as the hub signaling pathway, in which
ADORA1, HCAR2, and GABBR1 were identified as the key target genes implicated in the pathway.
Since gallicynoic acid (−48.74 kcal/mol), dodecanedioc acid (−34.53 kcal/mol), and tetradecanedioc
acid (−36.80 kcal/mol) interacted well with ADORA1, HCAR2, and GABBR1, respectively, and are
thermodynamically stable in their formed compatible complexes, according to the post-molecular
dynamics simulation results, they are suggested as potential drug candidates for T2DM therapy via
the maintenance of normal glucose homeostasis and pancreatic β-cell function.

Keywords: ADORA1; cAMP signaling pathway; chromatography; corn silk; GABBR1; HCAR2; in
silico techniques; systems biology; African traditional medicine; type 2 diabetes mellitus

1. Introduction

Diabetes mellitus (DM), a chronic, uncurable metabolic disease characterized by
elevated blood glucose levels, is a significant contributor to morbidity, mortality, and
health costs worldwide [1]. In 2021, an estimated 24 million adults (20–79 years old) in
Africa were living with DM and approximately 13 million of these adults remain undi-
agnosed [2]. The International Diabetes Federation (IDF) stipulated that, in 2021, around
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4,234,000 South African adults had DM out of a total adult population of 37,416,800, indicat-
ing a prevalence of 1 in 11 adults [3]. Type 2 diabetes mellitus (T2DM) is the most prevalent
type of diabetes, constituting roughly 90% of all DM cases [4], and, if left untreated, can
result in severe complications, including kidney disease, ocular damage, cardiovascular
diseases (e.g., stroke and heart attack), increased risk of bone fracture, nerve damage, skin
conditions, and hearing impairment [5]. The pathogenesis of T2DM lies in defective insulin
production by β-cells and/or insulin resistance in insulin-sensitive cells [5]. Although
the efficacy of many synthetic hypoglycaemic drugs such as sulfonyl ureas, biguanides,
alpha-glucosidase inhibitors, thiazolidinediones, and non-sulfonyl urea secretagogues are
undoubtedly potent in the management of T2DM [6], their limitations, including long-
term regimens, high cost, efficacy and individual variability as well as the elicitation of
considerable side effects (nausea, weight gain or loss, cardiovascular complications, and
gastrointestinal discomforts) have undermined their application in clinical practice [7].
Consequently, cost-effective therapeutic agents with significant antidiabetic activity and
little or no toxic effects are highly sought out as alternative T2DM therapeutics [8].

Medicinal plants (MPs) have been utilized in traditional medicine systems for cen-
turies, offering a wealth of knowledge and therapeutic possibilities for the treatment of
various ailments, including T2DM [7]. Currently, over 1200 species of plants have been
traditionally used as natural antidiabetics globally, many of which are being explored for
their potential hypoglycaemic properties [8]. For example, corn silk (CS) is an abundant
waste plant material of corn, Zea mays (L.) which has been used in traditional medicine
for several applications, including as a potential remedy for T2DM [9,10]. Corn silk is
described as pale green, yellow, or light brown thread-like strands, crucial for the suc-
cessful pollination of corn kernels [11]. A considerable number of phytochemicals have
been identified in CS, including phenolic acids, flavonoids, carotenoids, tannins, sterols,
volatile compounds, sugars, vitamins, minerals, polysaccharides, proteins, and peptides
responsible for a diverse range of promising pharmacological properties not limited to
antioxidant, anti-hyperlipidemic, antibacterial, anti-cancer, antihypertensive, antidiabetic,
diuretic, and kaliuretic [7,8,12], making CS a valuable natural resource for healthcare ap-
plications [12,13]. Although numerous studies have reported the promising antidiabetic
action of CS [11,14–19], additional research is needed to establish the mechanism of antidi-
abetic action for it to be considered as a possible therapeutic agent in the management of
T2DM [20].

With the rapid development in technology, the field of drug discovery has been rev-
olutionized, accelerating the discovery and development of therapeutic drugs [21]. This
expands the possibilities of quickly identifying, designing, optimizing, and developing new
therapeutic agents [22]. The use of computational techniques such as network pharmacol-
ogy (NP), molecular docking, and molecular dynamics (MD) simulation is essential in drug
discovery, allowing for the understanding of interactions between drugs and their target
proteins at different biological levels [23]. Network pharmacology (NP) integrates systems
biology, network science, and pharmacology to provide a comprehensive understanding of
the mechanisms of drug action, the prediction of drug targets, the pathogenesis of diseases,
and the optimization of therapeutic outcomes [24]. The interaction between drug targets
and multiple components such as proteins, genes, and signaling pathways in a biological
system are better explored using NP analysis [25], providing a unique perspective on
drug action and disease mechanisms by considering the complexity of biological systems
in order to provide insights into drug development and optimization [26]. Interestingly,
there have been numerous studies that have investigated the antidiabetic mechanism of
action (MoA) of natural products, plants, or plant fractions using NP [19,27–30]. Molecular
docking is a cost-effective, fast, and reliable computational method, employed in drug
discovery, medicinal chemistry, and structural biology, to examine the interactions between
a small molecule (ligand) and a target biomolecule, typically a protein [31]. Natural prod-
ucts, plants, and plant fractions may be assessed against different targets implicated in
disease emergence (and in this case, T2DM), such as key enzymes and genes, thus allowing
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for a comprehensive understanding of the antidiabetic potentials of CS typically against
these targets through this approach [23,29]. Molecular dynamics (MD) simulation on the
other hand, being a powerful computational technique, is used to the study the behaviour
and interactions of atoms and molecules over time [32,33]. The approach similarly pro-
vides insight into protein–ligand interactions and the MoA of therapeutic agents, which
can prove useful in the discovery and development of therapeutic agents, particularly
T2DM [33–36]. The integration of various technologies, particularly NP, molecular docking,
and MD simulation, as adopted in this study, should provide information towards iden-
tifying novel therapeutic agents from CS, which can be discovered and/or developed as
alternative agents for the management of T2DM [37]. The present study is thus aimed at
studying the antidiabetic MoA of secondary metabolites in various extracts of CS, with
key targets implicated in T2DM through metabolomic profiling, NP, molecular docking,
and MD simulation for the discovery and development of novel therapeutic agents for the
management of T2DM.

2. Materials and Methods
2.1. Silk Collection, Processing and Extract Preparation

Fresh CS of the commercial hybrid ILHYB22, a commonly consumed cultivar in South
Africa, was harvested at the Cedara College of Agriculture in KwaZulu Natal, South Africa.
The CS was washed with water to remove dirt and other contaminants before being air-
dried for three days [38]. The dried CS was then powdered to a constant weight using an
electric grinder (SM-450, Mills, MRC Laboratory Instruments, Twickenham, UK) [39]. The
powdered materials were used for the preparation of extracts (aqueous, hydro-ethanol,
and ethanol). Briefly, for the preparation of the aqueous extract, 150 g of CS powder was
boiled at 100 ◦C in 1.5 L distilled water for 30 min [39,40], followed by filtration (Whatman
No.1 filter paper) and lyophilization (Telstar Lyoquest Arctic, Tokyo, Japan) [10]. The
hydro-ethanol and ethanol extracts were prepared by macerating approximately 100 g
each of CS powder in 1 L of 50% ethanol and absolute ethanol, respectively, at 150 rpm,
using an orbital shaker (Labnet Orbit LS, Edison, NJ, USA) for three days, followed by
filtration (Whatman No.1 filter paper) [39]. The filtrates were concentrated using a rotary
evaporator (HEI-VAP Core, 571-01310-00, Heidolph, Schwabach, Germany) and the leftover
water from the hydro-ethanol filtrate was subsequently lyophilized to complete the extract
preparation [39]. All the extracts were refrigerated at 4 ◦C until needed [10].

2.2. Ultra-Performance Liquid Chromatography-Mass Spectrometry Analysis

Four samples of CS [raw and three extracts (aqueous, hydro-ethanolic, and ethano-
lic)] were used for identification of the phytoconstituents present in CS through ultra-
performance liquid chromatography-mass spectrometry (UPLC-MS) analysis according to
the methods of Mangana et al. [41] and Mangana et al. [42]. Analysis of the CS samples
was performed by utilizing a Water Synapt G2 quadruple time-of-flight mass spectrometer
which was connected to a Waters Acquity UPLC-combined photo diode array detector
(Milford, Massachusetts, United States of America). Extraction of the sample was per-
formed with 2 g of each sample by employing a solvent system containing 50% methanol
and 0.1% formic acid for 24 h at room temperature. The samples were then vortexed
(model VX-200 S0200, Labnet, Edison, NJ, USA) for 1 min and extraction was performed
using an ultrasonic bath (SS-6508T, Sunshine Scientific Equipment, Delhi, India) for 1 h. A
volume of 1 mL of the residue was then withdrawn and centrifuged (mySPIN 12, Thermo
Scientific, Waltham, MA, USA) at 14,000× g rpm 5 min. Ionization was accomplished using
an electrospray source using a cone voltage of 15 V and capillary voltage of 2.5 kV, wherein
only the negative mode was employed. Nitrogen was employed as the desolvation gas
at 650 L h−1 and the desolvation temperature was set to 275 ◦C. A Waters UPLC BEH
C18 column (2.1 × 100 mm2, 1.7 µm particle size) was utilized and 2 µL was injected for
analysis. The gradient commenced at 95%, consisting of 0.1% (v/v) formic acid (solvent
A) and 5% acetonitrile (solvent B). This was followed by a gradient of 60%, consisting
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of 0.1% solvent A and 40% solvent B at 9 min; 30% solvent A and 70% solvent B over
9.1 min; 100% solvent B at 14 min; and 95% solvent A and 5% solvent B at 14.01 min. The
conditions thereafter remained constant to a total run time of 15 min, with solvent A at
95% and solvent B at 5%. Acquisition of data was performed through employment of
MassLynx4.1 software. The detection and confirmation of compounds were processed
using the MS-DIAL and MS-FINDER software 2.0 (RIKEN Center for Sustainable Resource
Science: Metabolome Informatics Research Team, Kanagawa, Japan). Principal compo-
nent analysis (PCA) scores plot was applied as previously discussed by [42] using the
database Metaboanalyst (https://www.metaboanalyst.ca/MetaboAnalyst/) (accessed on
1 July 2022).

2.3. Network Pharmacology
2.3.1. Pharmacokinetic Properties of Corn Silk Phytoconstituents

The pharmacokinetic properties of the UPLC-MS identified secondary metabolites
of CS were evaluated using Lipinski’s rule of five (Ro5) on the SwissADME server (http:
//www.swissadme.ch/; accessed on 30 July 2022) to predict their drug-likeness prop-
erty [25]. The Simplified Molecular Input Line Entry System (SMILES) of the CS secondary
metabolites were obtained from PubChem website (https://pubchem.ncbi.nlm.nih.gov/;
accessed on 30 July 2022) to identify orally bioavailable compounds [25]. Compounds with
2 or less violations (<5 hydrogen bond donors; ≤10 hydrogen bond acceptors; molecular
weight ≤ 500 g/mol and partition co-efficient < 5) were considered to pass the pharmacoki-
netics analysis [43].

2.3.2. Acquisition of CS Phytoconstituents and T2DM-Associated Targets

The acquisition of therapeutic targets related to phytoconstituents of CS and T2DM
was achieved as previously reported by Akoonjee et al. [29]. Identification of target genes
related to CS secondary metabolites was performed through employing both Swiss Tar-
get Prediction (STP) (http://www.swisstargetprediction.ch/; accessed on 1 August 2022)
and Similarity Ensemble Approach (SEA) (https://sea.bkslab.org/; accessed on 1 August
2022) databases to avoid biases, while the T2DM-related target genes were identified from
GeneCards database (https://www.genecards.org/; accessed on 1 August 2022). Subse-
quently, Venny 2.1 (https://bioinfogp.cnb.csic.es/tools/venny/; accessed on 10 August
2022) was employed to identify and characterize the overlapping targets between CS
secondary metabolites and T2DM target genes [30].

2.3.3. Protein–Protein Interaction Network Construction and Analyses of KEGG
Enrichment Pathway, Gene Ontology, and Compound–Target Pathway of Overlapping
Target Genes

The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database
(https://string-db.org/; accessed on 1 September 2022) was utilized to correlate the net-
work analysis of the overlapping T2DM target genes related to CS secondary metabolites
and Kyoto Encyclopaedia of Genes and Genomes (KEGG) pathway enrichment analy-
sis to identify key T2DM-related signaling pathways associated with the overlapping
genes [28]. The Database for Annotation, Visualization and Integrated Discovery (DAVID)
(https://david.ncifcrf.gov/tools.jsp; accessed on 11 November 2022) was adopted to exe-
cute gene ontology analysis related to this study, while the software Cytoscape 3.6.0 with
the built-in merger algorithm was employed to correlate and visualize compound–target
network pathways and gene–compound interaction networks [29].

2.4. Molecular Docking and MD Simulation of T2DM-Related Target Genes with CS
Secondary Metabolites

Following NP analysis, the key CS secondary metabolites and targets identified
were subjected to molecular docking, as previously reported [44,45]. Briefly, the X-ray
crystal structures of the identified key T2DM-related target genes such as adenosine
receptor A1 (ADORA1) (PDB ID: 5UEN) and gamma-aminobutyric acid type B recep-
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tor subunit (GABBR1) (PDB ID: 4MQF) were obtained from RSCB Protein Data Bank
(https://www.rcsb.org/; accessed on 1 September 2022), while the X-ray crystal structure
of the target gene hydroxycarboxylic acid receptor 2 (HCAR2) (AlphaFold ID: Q8TDS4)
was obtained from AlphaFold protein structural database (https://alphafold.ebi.ac.uk/; ac-
cessed on 1 September 2022). Preparation of the T2DM-related target genes was performed
using USCF Chimera v 1.16 through the removal of water molecules and protein residue
connectivity [44]. Three-dimensional (3D) conformers of the CS secondary metabolites
as well as the reference standards metformin and resveratrol were obtained from Pub-
Chem (https://pubchem.ncbi.nlm.nih.gov/; accessed on 1 September 2022) as previously
reported [30]. The addition of Gasteiger charges and non-polar hydrogen atoms was per-
formed on USCF Chimera v 1.16 for optimization of the 3D conformers [45]. Thereafter,
the optimized secondary metabolites were individually docked at the active site of their
respective T2DM-related target genes (ADORA1, HCAR2, and GABBR1) using Autodock
Vina Plugin on Chimera v 1.16 [44]. The docking of the CS phytoconstituents at the active
sites of the therapeutic targets was performed through the adjustment of the grid box coor-
dinates to match the established x, y, and z coordinates of the native ligand obtained with
Discovery Studio version 21.1.0. Docking protocol validation was carried out to prevent
pseudo-positive binding conformations [45] by measuring root mean square deviation
(RMSD) of docked ligands from the reference pocket bearing the native ligands in the ex-
perimental co-crystal structures of ADORA1 (Figure 1a), HCAR2 (Figure 1b), and GABBR1
(Figure 1c), following optimal superimposition [45]. The RMSD values (0.5 Å) obtained
between the docked ligands from the native inhibitor in the 3D structures of ADORA1,
HCAR2, and GABBR1 indicated the same binding orientation, ultimately validating the
protocol adopted [45]. Based on the docking scores, the five complexes with the best pose
(most negative docking score) against each target was selected for further analysis through
a 120 ns MD simulation, as detailed by Sabiu et al. [46].
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Figure 1. Superimposed structure of (a) ADORA1 (grey) with native inhibitor (purple), metformin
(blue), resveratrol (red), and ligand with highest docking score (green); (b) HCAR2 (grey) with native
inhibitor (purple), metformin (blue), resveratrol (red), and ligand with highest docking score (green);
(c) GABBR1 (grey) with native inhibitor (purple), metformin (blue), resveratrol (red), and ligand with
highest docking score (green).

The GPU version with the AMBER 18 package (Centre for High Performance and
Computing) system with the FF18SB variant of the AMBER force field was used for the
MD simulation analysis. To generate atomic partial charges for the CS compounds, AN-
TECHAMBER was utilized, employing the restrained electrostatic potential (RESP) and the
general amber force field (GAFF) procedures. The Leap module of AMBER 18 was used to

https://www.rcsb.org/
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add hydrogen atoms and Na+ and Cl- counterions to neutralize all systems. These systems
were then placed in orthorhombic boxes filled with TIP3P water molecules, ensuring that
all atoms were within 8 Å of any box edge. An initial minimization of 2000 steps was
conducted, applying a restraint potential of 500 kcal/mol to both solutes. This minimization
included 1000 steps using the steepest descent method, followed by 1000 steps using the
conjugate gradients method. Subsequently, a full minimization of 1000 steps was performed
using the conjugate gradient algorithm without any restraint. Gradual heating from 0 K to
300 K was carried out for 50 ps, ensuring all systems maintained a consistent number of
atoms and volume. During this process, a potential harmonic restraint of 10 kcal/mol and
a collision frequency of 1.0 ps were applied to the solutes within the systems. Following
heating, an equilibration estimating 500 ps of each system was carried out wherein the op-
erating temperature and pressure were kept consistent at 300 K and 1 bar, respectively, for
simulation of an isobaric–isothermal ensemble [46]. Furthermore, additional features, such
as several atoms and the pressure were kept constant, mimicking an isobaric–isothermal
ensemble. The system’s pressure was maintained at 1 bar, employing the Berendsen’s
barostat, while the MD simulation lasted for 120 ns. In each simulation, the SHAKE algo-
rithm was employed to constrict the bonds of the hydrogen atoms. The step size of each
simulation was 2 fs and an SPFP precision model was used. The simulations coincided with
the isobaric–isothermal ensemble (NPT), with randomized seeding, the constant pressure
of 1 bar maintained by a pressure-coupling constant of 2 ps, a temperature of 300 K, and
Langevin thermostat with a collision frequency of 1.0 ps [46]. The post-dynamics data were
examined as previously described by Aribisala et al. [44]. Post-MDS parameters such as root
mean square deviation (RMSD), root mean square fluctuation (RMSF), radius of gyration
(RoG), solvent accessible surface (SASA), and number of hydrogen bonds were investigated
using the CPPTRAJ module incorporated in the AMBER 18 suite. The free binding energy
of the formed complexes were calculated using the Molecular Mechanics/GB Surface Area
(MM/GBSA) method, as detailed by Sabiu et al. [46]. The average binding free energy was
calculated over 100,000 snapshots obtained from the 120 ns trajectory. The free binding
energy (∆G) for each molecular species (complex, ligand, and protein) was calculated using
the expressions [(1)–(5)] below:

∆Gbind = Egas + Gsol − TS (1)

∆Gbind = Gcomplex − Greceptor − Gligand (2)

Egas = Eint + Evdw + Eele (3)

Gsol = GGB + GSA (4)

GSA = γSASA (5)

The ligand–receptor complexes’ interaction at the active sites in each treatment case
was identified with post-MDS and visualized using Discovery Studio version 21.1.0 [44].

2.5. Quantum Chemical Calculations

The electronic properties of the compounds were investigated using the density func-
tional theory (DFT) method available in the Gaussian 16 suite while Gauss View v 6.0 to
view the output files [47]. The functional Becke3-Lee–Yang–Parr (B3LYP) method combined
with the 6–31 + G(d,p) basis set was employed for the geometry optimization of the com-
pounds [47]. The study assessed the conceptual DFT (cDFT); namely, the energies of the
lowest unoccupied molecular orbital (ELUMO) and the highest occupied molecular orbital
(EHOMO). Thereafter, other chemical descriptors such as energy gap (∆E), ionization energy
(I), electron affinity (A), chemical hardness (
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potential (Cp), global electrophilicity (ř) were calculated using the equations below, as
described previously [47].

∆E = ELUMO − EHOMO (6)

I = −ELUMO (7)

A = −EHOMO (8)
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3. Results
3.1. Metabolomic Profiling
3.1.1. Ultra-Performance Liquid Chromatography-Mass Spectrometry

The data obtained with respect to the 128 identified phytoconstituents from the metabo-
lites of the investigated CS extracts by UPLC-MS analysis is presented in Supplementary
Table S1 and was confirmed on the chromatograms produced from MassLynx (Supplemen-
tary Figure S1).

3.1.2. Principal Component Analysis

The principal component analysis results, which indicated the presence of differences
(qualitative and quantitative) between the various samples of the CS, are presented in
Supplementary Figure S2a. The highest amount of variance between the raw CS and
various extracts (aqueous, hydro-ethanolic, and ethanolic) was 67% (46.8% observed in
principal component 1 and 20.2% between the samples in principal component 2). Among
the samples investigated, the aqueous, hydro-ethanol, and raw CS samples showed more
similarity in the chemical diversity of the phytoconstituents in comparison to the ethanolic
CS. There were variations in the amount of secondary metabolites present in the different
samples of CS, as observed in Supplementary Figure S2b.

3.2. Drug Candidate Filtering/ADME Property Analysis

A total number of 110 phytocompounds from the 128 identified from the UPLC-MS
analysis passed the Lipinski’s Ro5, while 18 compounds, which revealed more than one
violation of the rules, were excluded (Supplementary Table S2).

3.3. Identification of Overlapping Targets of Secondary Metabolites within SEA and STP Databases

In total, 1040 targets from the STP database and 843 targets arising from the SEA
database were obtained. The result of the Venn diagram analysis disclosed the presence of
20.6% (322 genes) of the prevalent overlapping targets being common to the two databases
(Figure 2).
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Figure 2. Identification of overlapping targets linked to secondary metabolites present in corn silk
between SEA and STP databases [SEA: similarity ensemble approach; STP: Swiss target prediction].

A total number of 13,395 targets were identified via the GeneCards predictions based
on the findings of the retrieval of the T2DM gene targets from the related databases.
Mapping the 322 compound-related targets to the CS secondary metabolites revealed 274
(2%) common targets directly related to T2DM (Figure 3).
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3.4. PPI Network Analysis

The 274 CS-T2DM overlapped genes arising from the STRING algorithm revealed
274 nodes connected to a network, with 2011 edges. The average node degree was 14.7,
while the average local clustering coefficient and the PPI enrichment p-value were 0.448
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and <1.0 × 10−16, respectively. While the edges are characterized by the number of degrees
for each target (with the highest number of degrees meaning the best network); however,
five targets, SLC37A, HPSE, MLNR, GABBR1, and PTAFR (circled in Figure 4), had no
interaction with any (Figure 4).
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KEGG Pathway Enrichment Analysis

The results of the KEGG pathway enrichment analysis on the 274 intersecting targets
using the STRING database revealed 13 signaling pathways implicated in T2DM asso-
ciated with the genes related to the CS constituents (Table 1). The identification of the
different signaling pathways implicated in T2DM related to the identified genes of the CS
phytoconstituents and T2DM target genes were performed through the use of a bubble
chart (Figure 5). The bigger the bubble, the lower the false discovery rate of the signaling
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pathway and the more significant. Thus, the cAMP pathway was the key signaling pathway
with the highest significant degree (26), a good strength score (0.95), and the lowest false
discovery rate of 1.88 × 10−14. A PPI network of the 26 target genes in the cAMP pathway
is shown in Figure 6 and there were 54 reported interactions between these 26 nodes, in
which the average node degree and average local clustering coefficient are 4.15 and 0.421,
respectively. The PPI enrichment p-value of the 26 target genes in the cAMP pathway was
2.34 × 10−11. However, 4 (HTR1A, PTGER3, HCAR2, PTGER2) of the 26 target genes had
no interactions with the remaining 22 genes, indicating no connectivity to the network
(Figure 6).
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Table 1. Pathway enrichment analysis results of the 274 intersecting targets involved in 13 signaling
pathways implicated in T2DM.

Pathway
Code Description Degree Total Strength False

Discovery Rate Genes

hsa04933

AGE-RAGE
signaling pathway in
diabetic
complications

11 98 0.91 4.88 × 10−6
MMP2, SERPINE1,
NOX4, F3, JUN, NOX1,
RELA, HRAS, VEGFA

hsa04917 Prolactin signaling
pathway 5 69 0.72 8.80 × 10−3 NFKB1, RAF1, RELA,

ESR1, HRAS

hsa04915 Estrogen signaling
pathway 12 133 0.81 1.08 × 10−5

MMP2, RAF1, RARA,
EGFR, PRKACA, PGR,
JUN, MMP9, GABBR1,
ESR1, HRAS, HSPA8

hsa04664 Fc epsilon RI
signaling pathway 5 66 0.73 7.50 × 10−3 RAF1, PLA2G4A, ALOX5,

PLA2G4B, HRAS

hsa04660 T cell receptor
signaling pathway 9 101 0.81 1.30 × 10−4

NFKB1, IL2, RAF1, JUN,
RELA, PTPN6, RHOA,
HRAS, PTPRC

hsa04370 VEGF signaling
pathway 8 57 1.00 2.77 × 10−5

SPHK2, RAF1, SPHK1,
PLA2G4A, PTGS2,
PLA2G4B, HRAS, VEGFA

hsa04071 Sphingolipid
signaling pathway 10 116 0.79 6.82 × 10−5

NFKB1, SPHK2, RAF1,
SPHK1, ADORA1,
ABCC1, ROCK1, RELA,
RHOA, HRAS

hsa04910 Insulin signaling
pathway 9 133 0.69 7.50 × 10−4

PYGM, RAF1, BRAF,
HK2, FASN, PRKACA,
PTPN1, HK1, HRAS

hsa04911 Insulin secretion 5 82 0.64 1.59 × 10−2
FFAR1, KCNMA1,
PRKACA, CAMK2A,
ATP1A1

hsa04931 Insulin resistance 7 107 0.67 3.10 × 10−3
PYGM, NFKB1, PTPN11,
MGEA5, PTPN1,
RPS6KA3, RELA

hsa04024 cAMP signaling
pathway 26 208 0.95 1.88 × 10−14

NFKB1, GLI1, RAF1,
CREBBP, EP300, BRAF,
SSTR5, ADRB2,
PRKACA, PDE4D,
PDE4C, PTGER3,
ATP2A1, ADORA1,
ADRB1, JUN, HTR1D,
GABBR1, PDE4A,
HCAR2, DRD1,
CAMK2A, ROCK1, RELA,
RHOA, ATP1A1

hsa03320 PPAR signaling
pathway 8 75 0.88 1.11 × 10−4

FABP4, PPARG, FABP5,
MMP1, RXRG, FABP3,
RXRB, RXRA

hsa04066 HIF-1 signaling
pathway 13 106 0.94 2.63 × 10−7

HMOX1, SERPINE1,
NFKB1, GAPDH,
CREBBP, EP300, EGFR,
HK2, LDHB, CAMK2A,
RELA, HK1, VEGFA
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3.5. Gene Ontology Analysis

The gene ontology analysis performed on the 274 intersecting targets of the secondary
metabolites present in the CS and T2DM revealed 494 biological processes, 75 cellular
components, and 296 molecular functions. Out of the 494 biological processes reported, the
top 10 were identified (Figure 7a), where drug response reported a degree of 30 with the
lowest p-value of 1.3 × 10−16. Additionally, of the 74 cellular components reported, the top
10 components were identified (Figure 7b) and an extracellular exosome was observed with
a degree of 78 with the lowest p-value of 7.7 × 10−16. Similarly, from the 296 molecular
functions, ion binding was among the top 10 functions, having a degree of 174 and the
lowest p-value of 2.8 × 10−18 (Figure 7c).

3.6. Compound–Target Pathway Network Analysis

Compound–target pathway network analysis revealed 63 nodes (26 related to the
cAMP signaling pathway and 37 related to the secondary metabolites present in the CS)
interacting with one another through 87 edges (Figure 8a). Additionally, it was revealed
that the target ATP1A1 had no interactions with any of the compounds or metabolites
and was excluded from further analysis (Figure 8a). The gene–compound interaction
networks revealed that adenosine A1 receptor (ADORA1) (Figure 8b), hydroxycarboxylic
acid receptor 2 (HCAR2) (Figure 8c), and gamma-aminobutyric acid type B receptor subunit
1 (GABBR1) (Figure 8d) target genes connected to the highest number of bioactive secondary
CS metabolites (15, 11, and 8, respectively).
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3.7. Molecular Docking Analysis of Identified Secondary Metabolites Present in CS against
ADORA1, HCAR2, and GABBR1 in the cAMP Signaling Pathway

The results of the molecular docking analysis for the identified phytoconstituents
present in the CS against adenosine A1 receptor (ADORA1), hydroxycarboxylic acid re-
ceptor 2 (HCAR2), and gamma-aminobutyric acid type B receptor subunit 1 (GABBR1)
targets arising from the NP analysis are presented in Table 2. Quing hau sau, phaseic acid,
and tetradecanedioc acid reported the highest negative docking scores against ADORA1,
HCAR2, and GABBR1, respectively. All the secondary metabolites present in the CS had
higher or equal negative docking scores against ADORA1, HCAR2, and GABBR1 compared
to metformin (reference standard), except glutaric acid against HCAR2. Quing hau sau and
phaseic acid as well as caffeic acid were also found to have the highest negative docking
scores as compared to resveratrol (reference standard) against ADORA1 and HCAR2, re-
spectively. While the gene agonists 2-Chloro-n6-cyclopentyladenosine, butyric acid, and
baclofen were docked against ADORA1, HCAR2, and GABBR1, respectively, quing hau sau
and cyperine were observed to reveal most negative docking scores against ADORA1. This
is in comparison to 2-Chloro-n6-cyclopentyladenosine, with all the compounds exhibiting
higher docking scores against HCAR2 relative to the gene agonist, butyric acid, and an
observed reversed trend against GABBR1 (Table 2).
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Table 2. Molecular docking scores of identified secondary metabolites against cAMP pathway genes
(ADORA1, HCAR2, and GABBR1).

Target Compounds Docking Score
(kcal/mol)

ADORA1 Quing hau sau −8.5
Cyperine −7.9
Domesticoside −6.9
Gallicynoic acid B −6.4
Ginsenoyne e −6.3
Caffeic acid −6.3
Caffeoyl tartaric acid −6.3
Methyl geranate −6.1
Tetradecanedioic acid −5.7
Traumatic acid −5.6
7-acetoxy-5,6-dimethoxycoumarin −5.6
Methylisocitric acid −4.9
(-)-6-((2S,3R,4R,5S,6R)-3,4-dihydroxy-6-
(hydroxymethyl)-5-methoxytetrahydro-2H-pyran-2-
yloxy)-8-hydroxy-3-methyl-1H-isochromen-1-one

−4.8

Isorhamnetin 3–6 malonyl glycoside −4.8
Phellodendric acid −4.7
Metformin −4.6
Resveratrol −8.0
2-Chloro-n6-cyclopentyladenosine (gene agonist) −7.3
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Table 2. Cont.

Target Compounds Docking Score
(kcal/mol)

HCAR2 Phaseic acid −6.9
Caffeic acid −6.6
4-hydoxycinnamic acid −6.2
Dodecanedioc acid −5.6
Sebaic acid −4.9
Citraconic acid −4.8
CNPD0447999 −4.7
Pimelic acid −4.7
Sarmentose −4.7
Syndic acid −4.7
Glutaric acid −4.6
Metformin −4.7
Resveratrol −6.5
Butyric acid (gene agonist) −3.4

GABBR1 Tetradecanedioc acid −5.8
Dodecanedioc acid −5.7
Methylisocitric acid −5.6
Quinic acid −5.5
xi-2,2,6-Trimethyl-1,4-cyclohexanedione −5.4
Sebaic acid −5.1
Pimelic acid −5.0
Glutaric acid −4.7
Metformin −4.6
Resveratrol −6.4
Baclofen (gene agonist) −5.9

3.8. Molecular Dynamics (MD) Simulation of Identified Secondary Metabolites against ADORA1,
HCAR2, and GABBR1 Genes from the cAMP Signaling Pathway

The free binding energies of the top five CS compounds against each of the investigated
targets following a 120 ns of MD simulation is presented in Table 3. Against ADORA1, all the
top five compounds have higher binding free energy compared to the reference standards.
Conversely, only 4-hydoxycinnamic acid had lesser free binding energy relative to the
standards against HCAR2. A partly similar trend was observed in GABBR1, with quinic
acid and Xi-2,2,6, trimethyl-1,4-cyclohexanedione having lesser binding free energy than the
reference standards. In summary, gallicynoic acid B (−48.74 kcal/mol), dodecanedioc acid
(−34.53 kcal/mol), and tetradecanedioc acid (−36.80 kcal/mol) had the highest binding
affinities for ADORA1, HCAR2, and GABBR1, respectively (Table 3).

The structural and conformational alterations resulting from the binding of the CS
phytoconstituents to the elucidated targets were evaluated by the different thermodynamic
parameters (Table 4). The average RMSD (4.10 Å) of the apo-gene ADORA1 was lower
compared to the ADORA1 complexes (standards and compounds) except ginsenoyne E
(3.48 Å) and Quing hau sau (4.06 Å) (Table 4). Additionally, after 5 ns of simulation, when
the atoms in each system had equilibrated, the fluctuation began thereafter within 2 Å and
7.5 Å till the end of the simulation (Figure 9a). With respect to HCAR2, the bound systems
of some CS phytocompounds revealed hyped average RMSD values relative to the apo–
HCAR2 (9.64 Å) except phaseic acid–HCAR2 (7.08 Å), dodecanedioc acid–HCAR2 (7.80 Å)
and 4-hydoxycinnamic acid–HCAR2 (9.46 Å); in fact, the RMSD values of these three
compounds were lower compared to metformin (9.54 Å) and resveratrol (9.10 Å), which
was lower compared to the latter compound (Table 4). There was a significant fluctuation in
the HCAR2 system relative to the other genes, with caffeic acid contributing to most of the
observed fluctuation between 10 Å and 12.5 Å (Figure 9b). Against GABBR1, the unbound
system (1.97 Å) was lower compared to the bound systems of the CS phytocompounds
and standards, except tetradecanedioc acid (1.54 Å) and quinic acid (1.69 Å) (Table 4). The
system fluctuates between 1 Å and 3.5 Å after equilibrating at 16 ns, while the lowest
and highest fluctuation in the GABBR1 system was observed in tetradecanedioc acid and
dodecanedioc acid, respectively (Figure 9c).
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Table 3. Thermodynamic components of identified secondary metabolites present in CS against
target genes in cAMP pathway.

Energy Components (kcal/mol)

Compound ∆EVdW ∆Eelec ∆Ggas ∆Gsolv ∆Gbind

ADORA1
Cyperine −34.29 ± 3.40 −12.89 ± 3.14 −47.18 ± 4.44 15.34 ± 2.60 −31.84 ± 3.68
Domesticoside −42.99 ± 3.22 −19.59 ± 7.79 −62.58 ± 7.48 28.53 ± 6.08 −34.05 ± 3.72
Gallicynoic acid B −47.88 ± 3.06 −18.32 ± 8.06 −66.20 ± 8.19 17.47 ± 4.65 −48.74 ± 4.86
Ginsenoyne e −52.55 ± 3.32 −5.20 ± 2.36 −57.75 ± 4.24 9.87 ± 1.94 −34.05 ± 3.72
Quing hau sau −40.15 ± 2.20 −5.63 ± 3.60 −45.78 ± 4.38 13.74 ± 3.58 −32.04 ± 2.56
Metformin −2.78 ± 3.10 −93.28 ± 110.41 −96.05 ± 111.67 85.26 ± 104.62 −10.80 ± 7.76
Resveratrol −6.80 ± 6.62 −8.12 ± 9.86 −14.92 ± 14.89 9.61 ± 9.82 −5.31 ± 5.62
HCAR2
Caffeic acid −17.94 ± 3.06 −37.51 ± 10.87 −55.45 ± 10.01 28.61 ± 8.60 −26.83 ± 3.60
Dodecanedioc acid −36.58 ± 3.16 −31.29 ± 8.71 −67.87 ± 8.55 33.34 ± 6.29 −34.53 ± 4.21
4-hydoxycinnamic
acid −21.38 ± 2.04 −15.31 ± 9.12 −36.69 ± 8.70 22.11 ± 5.79 −14.50 ± 4.1

Phaseic acid −29.88 ± 3.78 −8.14 ± 7.54 −34.80 ± 7.20 17.40 ± 6.55 −17.40 ± 3.90
Sebaic acid −24.65 ± 3.89 −29.39 ± 15.43 −54.04 ± 13.34 32.12 ± 11.32 −21.92 ± 4.24
Metformin −0.01 ± 0.15 107.28 ± 28.17 107.28 ± 28.15 −107.27 ± 28.14 0.01 ± 0.07
Resveratrol −23.40 ± 5.18 −8.87 ± 4.24 −32.27 ± 5.84 15.97 ± 3.94 −16.31 ± 4.25
GABBR1
Dodecanedioc acid −31.61 ± 4.00 −43.03 ± 14.45 −74.64 ± 15.77 40.17 ± 11.38 −34.46 ± 5.56
Methylisocitric acid −14.85 ± 3.36 −32.17 ± 14.21 −47.01 ± 13.67 29.01 ± 9.53 −18.00 ± 5.52
Quinic acid −10.90 ± 4.99 −33.92 ± 20.44 −44.82 ± 22.61 31.78 ± 16.50 −13.04 ± 6.99
Tetradecanedioc acid −28.26 ± 3.79 −45.28 ± 15.18 −73.54 ± 13.64 36.73 ± 9.51 −36.80 ± 5.25
Xi-2,2,6, trimethyl-1,4-
cyclohexanedione −15.51 ± 5.75 −5.03 ± 4.48 −20.55 ± 8.63 8.81 ± 4.35 −11.74 ± 5.15

Metformin −2.53 ± 2.66 −273.87 ± 95.97 −276.40 ± 96.89 271.81 ± 93.74 −4.59 ± 4.68
Resveratrol −28.78 ± 2.12 −11.87 ± 4.09 −40.65 ± 4.81 22.55 ± 2.82 −18.09 ± 2.87

∆EvdW: van der Waals energy; ∆Eelec: electrostatic energy; ∆Egas: gas-phase free energy; ∆Gsolv solvation free
energy and ∆Gbind: total binding free energy.

The top five compounds and resveratrol in complex with ADORA1 had higher average
RMSF values than the unbound ADORA1 (1.93 Å) and metformin–ADORA1 (1.88 Å)
(Table 4). The compounds under investigation exhibited random fluctuations upon binding
to ADORA1, with noticeable fluctuations at residues 230–270 between 1.0 Å and 6.5 Å
(Figure 10a). The bound systems decreased, with fluctuations between 1 Å and 5.8 Å until
amino acid residue 25, before a major increase above 12 Å after residue 350. Contrary to
the trend in ADORA1, the average RMSF of the apo gene (HCAR2) was higher (2.57 Å)
compared to the bound systems (CS compounds and resveratrol) except 4-hydoxycinnamic
acid–HCAR2 (2.85 Å) and metformin (2.63 Å) had higher mean RMSF values compared
to the apo–HCAR2 (2.57 Å). Most of the CS compounds revealed reduced RMSF values
compared with resveratrol. Minimal fluctuation was observed in the RMSF plot between 1 Å
and 5 Å until residue 300 till the end of the simulation, with increased fluctuation between
8 Å to 15 Å (Figure 10b). Similarly, the unbound GABBR1 (1.29 Å) had lower average
RMSF values relative to the bound GABBR1 complexes [dodecanedioc acid–GABBR1
(1.49 Å), quinic acid–GABBR1 (1.34 Å), xi-2,2,6, trimethyl-1,4-cyclohexanedione–GABBR1
(1.58 Å) and metformin–GABBR1 (1.63 Å)] except methylisocitric acid–GABBR1 (1.27 Å),
tetradecanedioc acid–GABBR1 (1.25 Å), and GABBR1–reservatrol (1.22 Å).There was a
reduced swaying between residues 0 and 225, fluctuating in the range of 0.75 Å to 3 Å,
while higher fluctuations were noticed around residues 225, 250, 280, and 310 from 0.5 Å to
3.5 Å (Figure 10c).
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Table 4. Post-molecular dynamics parameters of identified metabolites of CS against targets of cAMP
pathway.

Compound RMSD (Å) RMSF (Å) ROG (Å)
Number of

H-bonds SASA (Å)

ADORA1

ADORA1 4.10 ± 0.60 1.93 ± 0.86 28.64 ± 0.39 173.53 ± 9.20 22,151.21 ± 602.21
Cyperine 5.93 ± 1.04 2.18 ± 1.16 29.04 ± 0.26 167.97 ± 9.25 22,745.86 ± 336.02
Domesticoside 4.81 ± 0.90 2.29 ± 1.43 28.55 ± 0.32 162.94 ± 9.61 22,760.33 ± 405.56
Gallicynoic acid B 6.71 ± 1.10 2.12 ± 1.59 28.39 ± 0.27 171.58 ± 9.69 21,996.14 ± 357.48
Ginsenoyne e 3.48 ± 0.53 2.12 ± 1.55 28.59 ± 0.27 170.93 ± 9.60 21,484.73± 426.66
Quing hau sau 4.06 ± 0.48 2.06 ± 0.98 28.51 ± 0.27 170.30 ± 9.68 22,366.55 ± 398.10
Metformin 6.26 ± 0.77 1.88 ± 0.86 28.39 ± 0.36 136.77 ± 8.90 17,546.87 ± 446.41
Resveratrol 4.10 ± 0.66 2.11 ± 1.02 29.16 ± 0.39 143.60 ± 8.90 18,462.50 ± 314.93

HCAR2

HCAR2 9.64 ± 1.13 2.57 ± 2.39 24.24 ± 0.74 158.21 ± 10.58 20,865.81 ± 899.36
Caffeic acid 11.37 ± 1.67 2.25 ± 1.68 22.98 ± 0.63 166.40 ± 9.39 19,469.28 ± 645.20
Dodecanedioc acid 7.80 ± 0.80 2.21 ± 1.76 24.06 ± 0.33 160.98 ± 9.42 20,231.01 ± 515.88
4-hydoxycinnamic acid 9.46 ± 1.30 2.85 ± 2.29 23.70 ± 0.86 163.67 ± 9.43 20,516.00 ± 677.56
Phaseic acid 7.08 ± 0.53 2.07± 1.30 23.17 ± 0.27 158.70 ± 9.61 20,100.35 ± 631.16
Sebaic acid 9.73 ± 9.73 2.13 ± 1.55 23.20 ± 0.60 160.16 ± 9.14 20,546.94 ± 553.95
Metformin 9.54 ± 1.09 2.63 ± 1.91 24.70 ± 0.44 156.60 ± 9.51 20,894.76 ± 554.19
Resveratrol 9.10 ± 1.00 2.25 ± 1.96 23.79 ± 0.43 168.97 ± 10.01 20,736.27 ± 550.78

GABBR1

GABBR1 1.97 ± 0.37 1.29 ± 0.50 23.11 ± 0.18 203.89 ± 9.56 17,313.73 ± 317.08
Dodecanedioc acid 2.21 ± 0.46 1.49± 0.57 23.49 ± 0.24 205.08 ± 9.77 17,372.46 ± 384.40
Methylisocitric acid 2.23 ± 0.39 1.27 ± 0.52 22.73 ± 0.18 205.83 ± 9.77 17,499.85 ± 327.27
Quinic acid 1.69 ± 0.28 1.34 ± 0.96 23.41 ± 0.19 211.12 ± 9. 11 17,117.23 ± 356.12
Tetradecanedioc acid 1.54 ± 0.24 1.25 ± 0.48 23.35 ± 0.17 211.77 ± 9.96 17,361.58 ± 314.41
Xi-2,2,6, trimethyl-1,4-
cyclohexanedione 2.06 ± 0.38 1.58 ± 0.93 23.50 ± 0.25 207.06 ± 9.60 17,688.30 ± 388.06

Metformin 2.15 ± 0.47 1.63 ± 1.29 23.53 ± 0.22 207.00 ± 9.78 17,616.59 ± 385.58
Resveratrol 2.21 ± 0.35 1.22 ± 0.46 22.69 ± 0.14 205.87 ± 9.81 16,994.73 ± 319.80

RMSD: root mean square deviation, RMSF: root mean square fluctuation, ROG: radius of gyration: SASA: solvent
accessible surface, H-bonds: hydrogen bonds.
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The mean RoG values of the cyperine–ADORA1 (29.04 Å) and reservatrol–ADORA1
(29.16 Å) complexes was higher than the apo-gene (28.64 Å). However, the other bound
complexes and metformin revealed RoG values lower than those of ADORA1 (Table 4).
An inconsistency in the stability of all the systems was observed for the initial 30 ns, after
this time, the stabilities of the individual systems, particularly metformin, appear to tend
towards 120 ns, except ginsenoyne E (Figure 11a). In the same vein, against HCAR2, the
RoG values of the bound systems of the CS compounds (including dodecanedioc acid,
which was marginally lower) and resveratrol were reduced, compared with HCAR2 (24.24).
Caffeic acid (22.98 Å) was the lowest among the co-compounds and resveratrol (23.79 Å). A
reduced trend in the stabilities of the systems at around 20 ns was observed, which was
then stable throughout the rest of the simulation (Figure 11b). Against GABBR1, the RoG
values of all the CS compounds and metformin were higher than the apo-gene (23.11 Å),
and resveratrol (22.69 Å) was the lowest (Figure 11c).
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The intramolecular hydrogen bonds formed between the complexes were analyzed
and are depicted in (Figure 12a–c). Typically, against ADORA1, a reduction in the number of
hydrogen bonds formed was observed across all the complexes, including cyperine (167.97),
domesticoside (162.94), gallicynoic acid B (171.58), ginsenoyne E (170.93), and quing hau
sau (170.30), relative to apo–ADORA1, with the highest average number of hydrogen bonds
(173.53). The lowest number of hydrogen bonds was observed in metformin (136.77) and
resveratrol (143.60) (Figure 12a). On the contrary, for HCAR2, there was an increase in
the number of hydrogen bonds in the bound systems of the CS compounds relative to
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the unbound HCAR2 (158.21); this was also observed for the reference standards, except
metformin (156.60) (Figure 12b). The increase in the number of hydrogen bonds was
expressed in this order: phaseic acid (158.70) < sebaic acid (160.16) < dodecanoic acid
(160.98) < 4-hydoxycinnamic acid (163.67) < caffeic acid (166.40) (Table 4). A similar trend
was observed with GABBR1 when the bound systems of GABBR1 and the CS compounds
and standards were higher compared to the apo-gene (203.89) (Figure 12c).

The investigation of the complexes was extended to include an analysis of the sol-
vent accessibility and surface area (SASA). Against ADORA1, the mean SASA values of
cyperine (22,745.86 Å), domesticoside (22,760.33 Å), and quing hau sau (22,366.55 Å) are
marginally higher compared to the unbound ADORA1 (22,151.21 Å), though gallicynoic
acid B-ADORA1 (21,996.14 Å) and ginsenoyne E-ADORA1 (21,484.73 Å) had the lowest
SASA values among the CS compounds. However, the mean SASA value observed for the
reference standards, and the metformin–ADORA1 (17,546.87 Å) and resveratrol–ADORA1
(18,462.50 Å) complexes are lesser compared to apo–ADORA1 (Figure 13a). Furthermore,
for HCAR2, the CS compound bound complexes reflected reduced SASA values relative to
the apo-gene (20,865.81 Å). While the SASA values of the reference standards [metformin
(20,894.76 Å), resveratrol (20,736.21 Å)] are marginally lower than the apo-gene, caffeic
acid (19,469.68 Å) depicted the lowest SASA values. A downward trend around 15 ns was
observed for all the systems, which became stable until the end of the simulation period
(Figure 13b). Similarly, the complexes of the CS compounds and standards were higher com-
pared with the apo-gene (17,313.17 Å), except for quinic acid (17,117.23 Å). An inconsistency
of all the systems was witnessed throughout the simulation period (Figure 13c).

The data obtained regarding the interaction plots of the investigated CS metabolites
(based on the results of the thermodynamics profiles) against each of the established target
genes (ADORA1, HCAR2, and GABBR1) revealed diverse bond types such as hydrogen
bonds (conventional, carbon, and π-donor), attractive charge, van der Waals, amide π-stacked,
π-sigma, π-cation, π-anion, π-alkyl, alky, π-sulphur, salt bridge, unfavorable acceptor–acceptor
and donor–donor interactions (Figures 14–16; Supplementary Figures S3–S5). Specifically,
the binding of gallicynoic acid B with ADORA1 after a 120 ns simulation period showed
20 interactions, consisting of 2 hydrogen bonds (PHE168 and HIE346), 2 carbon hydrogen
bonds (GLU167 and THR345), 12 van der Waal (ILE60, ASN67, VAL80, ALA81, VAL84,
THR88, CYS166, GLU169, TRP315, LEU318, HIE319 and ILE342), 3 alkyl (ALA63, ILE64
and LEU84), and 1 π-anion interaction (TYR339) (Figure 14a). The metformin–ADORA1
complex had eight interactions (with six amino acid residues), including one hydrogen
bond interaction (GLU160), two carbon–hydrogen bonds (GLY160 and GLU161), three
van der Waal interactions (LEU 146, TRP153 and PRO162) and two salt bridges with
attractive charge interactions (GLU160 and GLU161) (Figure 14b). At the end of the
120 ns simulation period, resveratrol was unbound to ADORA1, and thus, displayed no
interaction (Figure 14c). The binding of dodecanedioc acid to HCAR2 following the 120 ns
simulation period revealed 20 interactions which consisted of 5 hydrogen bonds (TYR87, 2
SER179, LEU280, and TYR284), 11 van der Waal forces (LEU83, LEU104, ASN110, ARG111,
LEU162, SER181, PHE193, ARG251, PHE277, SER281, and THR283), 2 alkyl groups (LEU107
and ALA108) and 2 π-cation interactions with attractive charges (PHE180 and GLU190)
(Figure 15a). While, at 60 ns and 120 ns, metformin had no interaction with HCAR2 as
the ligand was unbound (Figure 15b), resveratrol bound to HCAR2 had eight interactions
including five van der Waals (TRP50, PHE54, HIE55, LEU308, and GLY340), two π-alkyl
(ALA341 and PRO342) and one π-cation interaction (ARG339) (Figure 15c). Tetradecanedioc
acid and GABBR1 bound presented 13 interactions consisting of 3 hydrogen bonds (ALA126,
ARG133, and GLU204), 5 van der Waals (SER106, THR127, THR158, TYR203, and ILE229),
2 alkyl (VAL154 and PHE155), 1 π-sigma (TRP231) and 2 π-anion with salt bridge interac-
tions (HIE129 and ARG133) (Figure 16a). At the end of the 120 ns simulation, metformin
was unbound and had no interaction with GABBR1 (Figure 16b). However, resveratrol
was bound to GABBR1 through 12 interactions containing 8 van der Waals (TRP18, SER106,
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HIE123, HIE129, GLN150, GLN152, THR158, and TRP231), 2 π-alkyl (ALA126 and VAL154)
and 2 π-π-stacked interactions (PHE155 and TYR203) (Figure 16c).
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TYR203) (Figure 16c). 

 

Biology 2023, 12, x FOR PEER REVIEW 27 of 41 
 

 

 
Figure 14. 2-D interaction plots of ADORA1 with (a) gallicynoic acid B, (b) metformin, and (c) 
resveratrol at 0, 60 and 120 ns. 

 

Figure 14. 2-D interaction plots of ADORA1 with (a) gallicynoic acid B, (b) metformin, and
(c) resveratrol at 0, 60 and 120 ns.



Biology 2023, 12, 1509 27 of 40

Biology 2023, 12, x FOR PEER REVIEW 27 of 41 
 

 

 
Figure 14. 2-D interaction plots of ADORA1 with (a) gallicynoic acid B, (b) metformin, and (c) 
resveratrol at 0, 60 and 120 ns. 

 

Biology 2023, 12, x FOR PEER REVIEW 28 of 41 
 

 

 
Figure 15. 2-D interaction plots of target gene HCAR2 with (a) dodecanedioc acid and standards, (b) 
metformin, and (c) resveratrol at 0, 60, and 120 ns. 

 

Figure 15. 2-D interaction plots of target gene HCAR2 with (a) dodecanedioc acid and standards,
(b) metformin, and (c) resveratrol at 0, 60, and 120 ns.



Biology 2023, 12, 1509 28 of 40

Biology 2023, 12, x FOR PEER REVIEW 28 of 41 
 

 

 
Figure 15. 2-D interaction plots of target gene HCAR2 with (a) dodecanedioc acid and standards, (b) 
metformin, and (c) resveratrol at 0, 60, and 120 ns. 

 

Biology 2023, 12, x FOR PEER REVIEW 29 of 41 
 

 

 
Figure 16. 2-D interaction plots of GABBR1 with (a) tetradecanedioc acid, (b) metformin, and (c) 
resveratrol at 0, 60, and 120 ns. 

3.9. Molecular Orbital Properties 
A detailed analysis of the top-scoring compounds’ structural and chemical reactivity 

properties was generated using DFT (Table 5). Apart from resveratrol (4.06 eV), which 
recorded the lowest energy gap across the three targets, and metformin (5.26 eV), which 
was second to the lowest against GABBR1, ginsenoyne E (4.43 eV), caffeic acid (4.14 eV), 
and quinic acid (5.51 eV) exhibited the lowest energy gap against ADORA1, HCAR2, and 
GABBR1, respectively (Figure 17). Consequently, ginsenoyne E (0.45 eV), caffeic acid (0.48 
eV), and quinic acid (0.36 eV) exhibited the highest chemical softness in a similar manner, 
with the energy gap from xi-2,2,6-trimethyl-1,4-cyclohexanedione also having the lowest 
chemical softness against GABBR1, the same as quinic acid. However, the highest chemi-
cal hardness value was observed in quing hau sau (3.03 eV), sebaic acid (3.70 eV), and 
tetradecanedioc acid (3.70 eV). Furthermore, the highest electronegativity value was ob-
served in ginsenoyne E (4.80 eV), phaseic acid (4.50 eV), and methylisocitric acid (4.21 eV) 
against ADORA1, HCAR2, and GABBR1, respectively, while dodecanedioc acid (1.38 eV) 
exhibited the lowest electrophilicity value against HCAR2 and GABBR1, with cyperine 
(1.47 eV) showing the lowest against ADORA1. 

Table 5. The cDFT parameters of the top-hit compounds against target genes in the cAMP pathway. 

     cDFT Parame-
ters (eV)      

Ligands LUMO HUMO EA IE EA Hardness Softness EN CP GE 
ADORA1           
Cyperine −0.04 −5.75 5.71 0.04 5.75 2.85 0.35 2.89 −2.89 1.47 

Figure 16. 2-D interaction plots of GABBR1 with (a) tetradecanedioc acid, (b) metformin, and
(c) resveratrol at 0, 60, and 120 ns.

3.9. Molecular Orbital Properties

A detailed analysis of the top-scoring compounds’ structural and chemical reactivity
properties was generated using DFT (Table 5). Apart from resveratrol (4.06 eV), which
recorded the lowest energy gap across the three targets, and metformin (5.26 eV), which
was second to the lowest against GABBR1, ginsenoyne E (4.43 eV), caffeic acid (4.14 eV),
and quinic acid (5.51 eV) exhibited the lowest energy gap against ADORA1, HCAR2, and
GABBR1, respectively (Figure 17). Consequently, ginsenoyne E (0.45 eV), caffeic acid
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(0.48 eV), and quinic acid (0.36 eV) exhibited the highest chemical softness in a similar
manner, with the energy gap from xi-2,2,6-trimethyl-1,4-cyclohexanedione also having the
lowest chemical softness against GABBR1, the same as quinic acid. However, the highest
chemical hardness value was observed in quing hau sau (3.03 eV), sebaic acid (3.70 eV),
and tetradecanedioc acid (3.70 eV). Furthermore, the highest electronegativity value was
observed in ginsenoyne E (4.80 eV), phaseic acid (4.50 eV), and methylisocitric acid
(4.21 eV) against ADORA1, HCAR2, and GABBR1, respectively, while dodecanedioc acid
(1.38 eV) exhibited the lowest electrophilicity value against HCAR2 and GABBR1, with
cyperine (1.47 eV) showing the lowest against ADORA1.
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Table 5. The cDFT parameters of the top-hit compounds against target genes in the cAMP pathway.

cDFT
Parameters
(eV)

Ligands LUMO HUMO EA IE EA Hardness Softness EN CP GE

ADORA1
Cyperine −0.04 −5.75 5.71 0.04 5.75 2.85 0.35 2.89 −2.89 1.47
Domesticoside −1.41 −6.29 4.88 1.41 6.29 2.44 0.41 3.85 −3.85 3.04
Gallicynoic acid B −0.80 −6.63 5.83 0.80 6.63 2.91 0.34 3.72 −3.72 2.37
Ginsenoyne E −2.58 −7.01 4.43 2.58 7.01 2.22 0.45 4.80 −4.80 5.19
Quing hau sau −1.07 −7.13 6.06 1.07 7.13 3.03 0.33 4.10 −4.10 2.77
Metformin −0.91 −6.17 5.26 0.91 6.17 2.63 0.38 3.54 −3.54 2.38
Reservatrol −1.38 −5.44 4.06 1.38 5.44 2.03 0.49 3.41 −3.41 2.86
HCAR2
Caffeic acid −1.91 −6.05 4.14 1.91 6.05 2.07 0.48 3.98 −3.98 3.82
Dodecanedioc acid 0.45 −6.77 7.22 −0.45 6.77 3.61 0.28 3.16 −3.16 1.38
4-Hydroxycinnamic
acid −1.90 −6.17 4.27 1.90 6.17 2.14 0.47 4.03 −4.03 3.81

Phaseic acid −2.30 −6.70 4.41 2.30 6.70 2.20 0.45 4.50 −4.50 4.59
Sebaic acid −0.24 −7.65 7.41 0.24 7.65 3.70 0.27 3.94 −3.94 2.10
Metformin −0.91 −6.17 5.26 0.91 6.17 2.63 0.38 3.54 −3.54 2.38
Reservatrol −1.38 −5.44 4.06 1.38 5.44 2.03 0.49 3.41 −3.41 2.86
GABBR1
Dodecanedioc acid 0.45 −6.77 7.22 −0.45 6.77 3.61 0.28 3.16 −3.16 1.38
Methylisocitric acid −0.89 −7.54 6.65 0.89 7.54 3.33 0.30 4.21 −4.21 2.67
Quinic acid −1.27 −6.78 5.51 1.27 6.78 2.76 0.36 4.03 −4.03 2.94
Tetradecanedioc acid −0.22 −7.63 7.41 0.22 7.63 3.70 0.27 3.92 −3.92 2.08
Xi-2,2,6-Trimethyl-1,4-
Cyclohexanedione −1.25 −6.85 5.60 1.25 6.85 2.80 0.36 4.05 −4.05 2.93

Metformin −0.91 −6.17 5.26 0.91 6.17 2.63 0.38 3.54 −3.54 2.38
Reservatrol −1.38 −5.44 4.06 1.38 5.44 2.03 0.49 3.41 −3.41 2.86

cDFT: conceptual density functional theory; LUMO: lowest unoccupied molecular orbital; HOMO: highest
occupied molecular orbital; EG: energy gap; IE: ionization energy; EA: electron effinity; EN: electronegativity; CP:
chemical potentials; GE: global electropilicity.

4. Discussion

Historically, medicinal plants, for many centuries, have continued to be employed in
traditional medicine systems for the provision of knowledge and relieve and/or cure numer-
ous diseases and illnesses [4], most especially T2DM [7,10]. Corn silk, for example, despite
being an abundant waste material, is a potential remedy for T2DM [8,10] and established
in many studies, including antioxidant and anti-inflammatory activities [11,16–18,48].

While the therapeutic significance of medicinal plants (such as CS) is due to be en-
dowed with key phytochemicals, if the development of novel drugs [49] is to be warranted,
it is crucial, therefore, to begin the screening of plants of potential therapeutic significance
to determine their metabolite profiles [41]. However, it must be noted that the type of
solvents utilized in the extraction of medicinal plants and/or natural products is critical in
determining the type of the composition and concentration of phytoconstituents [50]. The
choice of polar solvents in the study, though majorly used in indigenous medicine for the
extraction and preparation of formulations, is based on established literature reports of a
possible high extraction yield [50,51]. However, there are reports of moderate apolar (ethyl
acetate) and non-polar solvents (acetone and hexane) in addition to the polar solvents used
on CS [50–54].

The high abundance of (7′R)-(+)-Lyoniresinol 9′-glucoside, cnicin, methyisocitric acid,
chrysoeriol 4′,7-diglucoronide, and 3-isopropylmalatte in the aqueous extract and D-leucic
acid, dodecanedioc acid, quercetin-3-(2′′,3′′,4′′-triacetylgalactoside), sebacic acid, and p-
coumaroyl malic acid in the ethanolic extract and vice versa could be attributed to the
degree of polarity of the extracting medium [55] and may explain or buttress the variation
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(46.8%) in the types and amounts of phytoconstituents (generally) as identified based
on UPLC-MS analysis. While the use of this technique is adequate and reliable, as but-
tressed in the work of Fougre et al. [56], adopting a related tool, the high abundance of
phytoconstituents, namely, azealic acid, isowertin 2′′-rhamnoside, D-2-hydrozyglutaric
acid, citraconic acid, 3-p-courmaroylquinic acid, cis-aconitic acid, UNPD129404, caffeic
acid ethyl ester, and myricitrin, particularly in the raw CS sample, may be suggested to
contribute to the pharmacological attributes (glucose lowering) of CS, since the concen-
tration of bioactive ingredients within a medicinal sample is well-established to influence
the pharmacological effectiveness. In fact, compounds or their derivatives such as azealic
acid, 3-p-coumaroylquinic acid, caffeic acid, and myricitrin identified in CS have also been
detected in several other plants exhibiting an antihyperglycaemic effect [57–60].

The network pharmacology approach provides avenues for new drug candidates or
secondary metabolites, genetic target profiles, and connected signaling pathways linked
to diseases, including infectious and non-infectious ones [30,61], achieved by a number
of analyses [25,27,28,30,31]. While the five targets not connected in the PPI network may
indicate their lack of involvement in the connectivity of the network, suggesting that
they may not necessarily or unlikely be involved in any metabolic pathway or offer any
molecular function, the cAMP as a key second messenger in signaling pathways has been
reported, particularly in drug development [62], particularly against T2DM [25]. cAMP
maintains glucose homeostasis in many ways, including insulin and glucagon secretion,
glucose uptake, glycogen synthesis and breakdown, gluconeogenesis, the maintenance of
β-cell differentiation, and the neural control of glucose homeostasis [63]. The establishment
of cAMP as the best signaling pathway in this study buttresses it as an important signaling
pathway to consider if deciphering the MoA of the CS in alleviating the negative effect of
hyperglycaemia is to be completely elucidated [64].

The gene ontology analysis of the 274 intersecting targets between the CS phytocon-
stituents and T2DM targets revealed the regulation of the drug response, exosomes, and
ion binding as the most significant biological process, cellular component, and molecular
function. The regulation of the drug response modulates the frequency, rate, or extent
of the drug response and refers to the regulation of drug resistance and determines the
response and side effects a drug has on the body [65–68]. Exosomes are delivery vehicles
for different signaling molecules (lipids, proteins, and nucleic acids) and serve as important
mediators of intracellular communication [66]. Extracellular exosomes play a role in the
regulation of inflammation, the stimulation of glycogen accumulation, and the regulation
of GLUT4 metabolism, all of which are implicated in T2DM [69,70]. Ions are involved in
the folding of proteins and nucleic acids, enzyme catalysis, and numerous cellular signal-
ing processes, and thus, ion binding has a significant role in the normal functioning of
processes in the human body [65,71]. A change in the binding of ions in the human body
can affect many processes involved in glucose metabolism, including insulin signaling,
secretion, and β-cell functioning [71]. Several studies have previously explored the role
that the regulation of drug response, exosomes, and ion binding plays in the pathogenesis
of T2DM [66,69,70,72,73].

Compound–target pathway network analysis is important for the discovery of thera-
peutic targets as well as lead compounds [74]. The association of many of the CS compounds
to cAMP targets such as ADORA1, HCAR2, and GABBR1 highlighted them among the
genes in the cAMP pathway. Adenosine A1 receptor (ADORA1), a G protein-coupled
receptor, inhibits the enzyme adenylate cyclase and plays a role in the regulation of cell
metabolism and gene transcription, and therefore, has been identified as an important
drug target for the treatment of various diseases and illnesses [75,76], including T2DM via
glucose homeostasis and glucagon secretion regulation [77]. The identification of ADORA1
as a key target for T2DM and related complications (e.g., nephropathy) therapy buttresses
previous studies (on morusin, kuwanon C, and morusyunnansin) from Morus alba (leaves)
and Salvia miltiorhiza through NP and molecular docking analyses [77,78]. Hydroxycar-
boxylic acid receptor 2 (HCAR2) is a G-protein-coupled receptor responsible for mediating



Biology 2023, 12, 1509 32 of 40

the antilipolytic actions of niacin and the lowering of blood lipid levels [79]. The expression
of HCAR2 in cells affects the regulation of inflammatory factors, inhibition of lipolysis, and
glucose homeostasis [79,80]. G-protein-coupled receptors (GPCRs), including GABBR1 are
transmembrane signaling molecules involved in a wide variety of physiological processes
such as the modulation of insulin secretion and the regulation of islet function, making
them potential targets for antidiabetic compounds [81]. Previous reports of their involve-
ment as a therapeutic target for treating various diseases such as T1DM, cancer, etc., have
been well-established [81–85]. Typically, studies have demonstrated that, in human beta
cells, signaling through GABBR participates in an autocrine feedback inhibition loop that
regulates beta cell-specific gene expression and insulin secretion [84]. Although GABBR1
was among the five non-target genes of the PPI network, the compound–target pathway
network analysis revealed its importance as a therapeutic target, having the third highest
number of CS phytoconstituents related to it [25,29].

Molecular docking, a structure-based drug design approach, is a preliminary screening
tool for the identification of a suitable ligand (say, secondary metabolites) based on its bind-
ing free energy (docking score) at the active site of the target gene that could be developed
as a probable candidate [86]. The most negative docking score of Quing hau sau, phaseic
acid, and tetradecanoic acid, arising from their binding at the active sites of ADORA1,
HCAR2, and GABBR1, respectively, suggests their binding affinities and superiority (partic-
ularly the former two) compared to the reference standards. This is because the higher the
negative binding free energy, the better the fitness of that bioactive compound [86,87], and
thus suggests an attraction between the CS secondary metabolites and the target genes [30].
While no related report of the possible stability of phytocompounds with the studied targets
(particularly) ADORA1 and/or superiority over reference standards against the target of
concern, the overall findings of the molecular docking analysis provide an insight into the
further investigation of CS bioactive metabolites as possible lead antidiabetic compounds.

Since molecular docking only predicts a metabolite’s fitness at a protein active site [35],
which limits its consideration as a measure of stability, binding free energy value calcu-
lations and MD simulation were employed to evaluate the compound-to-protein target
systems and binding conformation data [45]. The highest negative ∆Gbind reported for
gallicynoic acid B, dodecanedioc acid, and tetradecanedioc acid is indicative of significant
binding affinity to ADORA1, HCAR2, and GABBR1, respectively, and could represent
greater interactions with the targets compared to other investigated metabolites and stan-
dards. The observed lower binding free energy of some top-ranked metabolites against
ADORA1, HCAR2, and GABBR1 compared to metformin and resveratrol indicates their
better potential to inhibit the respective targets relative to the standards used.

The binding of ligands (say CS phytoconstituents) may constitute structural or confor-
mational changes in the respective targets, which could ultimately alter their biological ac-
tivities [45,61]. The post-dynamics simulation evaluates the likely conformational changes
of the protein as a result of the binding of the ligand, which are mostly determined by
parameters such as RMSD (stability), RMSF (flexibility), RoG (compactness), SASA (degree
of hydrophobic interactions), and intermolecular H bonding [88–90]. The revealed post-
MDS analysis of the bound and unbound complex systems for the CS metabolites against
ADORA1, HCAR2, and GABBR1 targets in terms of the average RMSD (value) expresses
the degree of convergence, stability, or deviations produced by a protein in a simulation
system [91]. The lowest average RMSD values observed in ginsenoyne E–ADORA1, dode-
canedioc acid–HCAR2 and tetradecanedioc acid–GABBR1 complexes are suggestive of the
ability of the phytocompounds to enhance the stability of the target. Although the increased
mean RMSD values observed in this study for most of the compounds including the refer-
ence standards, particularly against ADORA1 and HCAR2, were above the satisfactory or
acceptable 3.0 Å [89,92]. However, the average RMSD values of several phytoconstituents
lower than or comparable to the respective standards may indicate that the abovemen-
tioned CS phytoconstituents may have better potential in promoting the structural stability
of the genes [93,94], though an RMSD value above may suggest an unstable complex and
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the inability of the compounds to inhibit the target protein (and, in this case, ADORA1
and HCAR2) [88]. Meanwhile, the mean RMSD values of CS phytoconstituent–GABBR1
were less than 3.0 Å, suggestive of the good structural stability and compatibility of the
metabolites with the gene [30,43,90,95].

The average RMSF (value) indicates the effect the bound compound has on active
site residue behavior, with lower or higher alpha (α)-carbon (C) shifts indicating less or
more flexible movements, respectively [94,96,97]. A lower RMSF value indicates that
the created intra- and intermolecular bonds are more stable [97]. The reduced RMSF
of quing hau sau against ADORA1 compared to other phytocompounds with increased
RMSF relative to resveratrol indicates lesser flexible movements, and thus, the greater
stability of the complex [29]. Except for 4-hydroxycinnamic acid, the lesser average RMSF
values observed in all the investigated phytocompounds against HCAR2 compared to the
standard HCAR2 complexes indicated less flexible movements. This observation suggests
the lesser flexibility of HCAR2 amino acid residues, following the binding of the top-
ranked metabolites, revealing their stronger attraction and ability to promote HCAR2
amino acid residue stability [97–99]. Similarly, the reduced RMSF of methylisocitric acid
and tetradecanedioc acid bound to GABBR1 compared to metformin suggests less flexibility
and stability (of the complexes) [35,44,93,95].

The RoG (value) evaluates the overall structural compactness of molecule–target
complex systems, which may affect the biological properties due to induced changes from
the ligand binding to a target [46,94,100,101]. The lowest or comparable average RoG values
of the CS compounds (particularly, gallicynoic acid B, caffeic acid, and methylisocitric acid)
against ADORA1 and HCAR2 relative to the standards, respectively, is indicative of a greater
stability [30]. Typically, the lower RMSD of a ligand (such as CS compounds excluding
cyperine) compared to resveratrol against ADORA1 is suggestive of a superior stability
compared to the latter.

During a simulation, the number of hydrogen bonds in a protein may be calculated,
thus, providing insight into how ligand binding affects the protein’s stability [90,94,102,103].
The observed reduction (for this study) in the number of H bonds in the CS compounds
(most importantly, domesticoside) and reference standards against ADORA1 following
complex formation may be due to an intramolecular breakage of these bonds [94]. This
observation is coherent with S’thebe et al.’s [97] report, in which ligand binding to the
investigated protein resulted in the reduction in the intramolecular hydrogen bonding.
However, the increased number of hydrogen bonds of the bound systems of the CS com-
pounds (especially caffeic acid, tetradecanedioc acid, and resveratrol) against HCAR2 and
GABBR1 (respectively), as observed in this study, may suggest that the ligands occupy
part of the proteins’ intramolecular space. This finding is in tandem with Aribisala and
Sabiu’s [45] report, in which ligand binding resulted in an increased number of hydrogen
bonds [45].

Protein folding and variations in the surface area are analyzed using the solvent-
accessible surface area (SASA), with higher values indicating more surface area and lower
values suggesting less protein volume as the simulation progresses [30,44,104]. The lower
average SASA values of gallicynoic acid B and ginsenoyne E following binding to ADORA1
relative to the unbound system indicates the compactness and stability of the complexes,
as it shows that more residues in the unbound state are exposed to the solvent [104,105].
The lowest SASA values as observed with the reference standards depicted the inferiority
of the CS compounds in terms of their compactness and stability. While the superior
compactness and stability of the CS compounds (especially caffeic and phaseic acids) were
also confirmed against HCAR2, interestingly, the reference standards were inferior to these
phytocompounds in terms of stability and compactness, owing to the high SASA values
displaced. The reports of phytocompounds exhibiting better stability above the studied
standard are well-established [30,61,98]. The comparable SASA values of quinic acid
and resveratrol against GABBR1, which were the lowest relative to the unbound system
and other bound systems, reflects the compactness and stability of the protein–ligand
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complex [98]. While it is established that ligand–protein interactions may have a major
effect on the SASA value [92], the SASA results may be seen to correspond with the findings
from other studies, where the binding of the ligands enhanced the thermodynamic stability
of the drug targets [29,30]. Above all, the findings (SASA) may be observed to be consistent
with the revelations from other thermodynamic parameters (RMSD, ROG, and RMSF).

Various ligand–protein interactions were observed over the 120 ns MD simulation.
The hydrogen bonds formed between a ligand and the protein target receptor determine
the protein–ligand complex’s stability [45,94,99]. Additionally, hydrogen bonds are indica-
tive of a drug’s specificity, metabolism, and adsorption [89]. Notwithstanding the afore-
mentioned, other significant interactions like van der Waals and π-alkyl also contribute to
the stability of the investigated complexes [29]. Although van der Waals interactions are
weak in comparison to hydrogen bonds, when combined, the strength of the interaction in-
creases significantly [104]. Interestingly, these major bonds form the backbone, contributing
to the stability witnessed between CS compounds such as gallicynoic acid B, dodecanedioc
acid, and tetradecanedioc acid and their respective target genes (ADORA1, HCAR2, and
GABBR1) as compared to the reference standards. In fact, the lack of interaction between
resveratrol and ADORA1 and with GABBR1 alludes to the structural instability of the
complexes, which contributed to the observed low binding free energy of the respective
complexes. Since it is a known fact the stability of a drug and/or ligand–protein complex
contributes positively to the eventual pharmacological effect of the drug [105], the contribu-
tion of these bonds or interactions to the stability of gallicynoic acid B–, dodecanedioc acid–,
and tetradecanedioc acid–target complexes highlights the possible superior therapeutic
advantage of these CS compounds over the already available standard drug.

The lead compounds were characterized using quantitative chemical parameters to
probe into their potential molecular properties of therapeutic importance. Frontier molec-
ular orbitals, namely, the LUMO and HOMO, are critical for identifying the chemical
reaction of a system [106]. The energy gap between a molecule’s HOMO and LUMO influ-
ences its chemical reactivity, kinetic stability, optical polarizability, and chemical hardness–
softness [99,107]. In particular, the reactivity of a molecule exhibits a direct correlation
with its energy gap, indicating that a molecule with smaller dimensions possesses a higher
propensity to react with other molecular entities, such as proteins and enzymes [107]. The
lower energy gap observed in ginsenoyne E, caffeic acid, and quinic acid against ADORA1,
HCAR2, and GABBR1, respectively, suggests their high reactivities relative to other CS
metabolites’ reactivity (Table 4). Furthermore, molecules characterized by a larger energy
gap tend to display enhanced hardness, reducing their reactivity [99,108]. The chemical
hardness serves as a robust metric for evaluating the chemical stability of a molecule
and plays a crucial role in investigations pertaining to drug design elucidations [36,99].
Soft molecules are characterized by an elevated level of polarizability compared to hard
molecules, primarily because of their reduced energy demand for excitation [108]. Expect-
edly, the high reactivity of ginsenoyne E, caffeic acid, and quinic acid against ADORA1,
HCAR2, and GABBR1, respectively, could equally be linked to their high chemical softness
value. On the contrary, the highest chemical hardness value exhibited by quing hau sau,
dodecanedioc acid, and tetradecanedioc acid against ADORA1, HCAR2, and GABBR1,
respectively, suggest their resistance to charge transfer and are the least reactive, as evi-
denced by their relatively high energy gap (Table S3). In addition, the observed reduced
value of the chemical potential across all the compounds implies that the molecules exhibit
diminished polarization. As a result, this molecule displays heightened resilience against
electronic deformation when exposed to minor perturbations during a chemical reaction. A
negative chemical potential value further supports the molecule’s stability by inhibiting
spontaneous decomposition [107,109]. Another cDFT descriptor is electronegativity, a fun-
damental metric that quantifies electron distribution within a given molecular entity [105].
The top-scoring compounds’ readiness to accept electrons is revealed in their high elec-
tronegativity values against the investigated targets [109]. Moreover, the electrophilicity
index quantifies a molecule’s propensity to accept electrons from the surrounding environ-
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ment, thus indicating its inherent capability to act as an electrophile [108]. A molecule may
be categorized as a low electrophile if its electrophilicity value falls below 0.8 eV, while
a moderate electrophile is characterized by an electrophilicity value ranging from 0.8 to
1.5 eV, and a molecule is deemed a heavy electrophile when its electrophilicity value ex-
ceeds 1.5 eV [36,109]. Interestingly, the electrophilicity index of the top-scoring compounds
suggests a significant electrophile presence around the molecules except in cyperine, and
dodecanedioc acid with a moderate electrophile presence.

5. Conclusions

The metabolomic profiling identified 128 secondary metabolites in various samples
of CS (raw and three extracts) with qualitative and quantitative variance in the type and
amounts of secondary metabolites. This is attributed to the polarity of the solvents, namely,
water, hydro-ethanol, and ethanol, used for the extractions. The network pharmacology
analysis identified 274 common overlapping target genes related to the CS phytocon-
stituents and T2DM. The top-scoring metabolites identified in the various extracts of CS are
majorly involved in the modulation of the cAMP signaling pathway, which is implicated
in glucose metabolism and homeostasis. The therapeutic target genes ADORA1, HCAR2,
and GABBR1 in the cAMP pathway were related to most of the CS phytoconstituents, with
ADORA1 being related to more than the others. This suggests the CS phytoconstituents
modulate the activity of ADORA1, HCAR2, and GABBR1 in the cAMP pathway. The molec-
ular docking analysis identified several CS phytoconstituents as inhibitors of the target
genes (ADORA1, HCAR2, and GABBR1) from the cAMP pathway. Based on the structural
stability and affinity of several CS phytoconstituent–target gene complexes: gallicynoic
acid B–ADORA1, dodecanedioc acid–HCAR2 and tetradecanedioc acid—GABBR1, these
abovementioned phytoconstituents have been identified as the key components of CS that
behave as agonists of the cAMP signaling pathway. It is deduced that through the modula-
tion of the therapeutic target genes ADORA1, HCAR2, and GABBR1, present in the cAMP
signaling pathway, phytoconstituents present in CS could contribute to the maintenance
of glucose homeostasis, the proper functioning of pancreas and pancreatic beta-cells, as
well as the prevention of T2DM-associated secondary complications. Therefore, this study
contributes to the use of CS as a therapeutic agent for the management of T2DM. Further
in vitro and in vivo studies are recommended to validate the findings, and, interestingly,
efforts are ongoing in this direction.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology12121509/s1, Figure S1: Chromatograms produced (in
duplicate) showing mass to charge and retention times of compounds, (a) raw premature CS extract,
(b) raw mature CS extract, (c) aqueous premature CS extract, (d) aqueous mature CS extract, (e) hy-
droethanolic premature extract CS, (f) hydroethanolic mature CS extract, (g) ethanolic premature
CS extract and (h) ethanolic mature CS extract; Figure S2: (a) Principal component analysis scores
plot showing variance in CS secondary metabolites between the four extracts; (b) partial least square
discriminant analysis (PLS-DA) loadings plot showing the differences in the amount of secondary
metabolites present in the four samples of CS; Figure S3: Two-dimensional interaction plots of tar-
get gene ADORA1 with bioactive constituents present in CS: (a) domesticoside, (b) quing hau sau,
(c) cyperine, and (d) ginsenoyne E, over a 120 ns simulation; Figure S4: Two-dimensional interac-
tion plots of target gene HCAR2 with bioactive constituents present in CS: (a) 4-hydroxycinnamic
acid, (b) sebacic acid, (c) phaseic acid, and (d) caffeic acid over a 120 ns simulation; Figure S5:
Two-dimensional interaction plots of target gene GABBR1 with bioactive constituents present in
CS: (a) methylisocitric acid, (b) dodecanedioc acid, (c) xi-2,2,6,trimethyl-1,4-cyclohexanedione, and
(d) quinic acid, over a 120 ns simulation. Table S1: Bioactive secondary metabolites identified in
various extracts of CS through UPLC-MS analysis; Table S2: Result of CS bioactive compounds fol-
lowing Lipinski’s rule of 5 experimentation; Table S3: Frontier molecular orbitals for the top-scoring
compounds against ADORA1, HCAR2, GABBR1.
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