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Simple Summary: Sugars are one of the fundamental building blocks of life, but despite their
essentiality, only a limited number of polysaccharides and glycoconjugates can be made synthetically.
Plants use photosynthesis to produce a vast array of sugar-derived compounds in large quantities,
while other means of production, such as chemical synthesis or microbial fermentation, are narrow
in their range of sugar chemistries and comparatively low in yield. These qualities make plants
an attractive platform for the synthesis of sugars and other glycosylated products. Plants have
already been engineered to make products composed of or containing sugars that otherwise may be
challenging to synthesize in other commonly used systems. Their growing use in glycoengineering
efforts will continue to expand the production of diverse sugar-derived compounds.

Abstract: Plants possess an innate ability to generate vast amounts of sugar and produce a range of
sugar-derived compounds that can be utilized for applications in industry, health, and agriculture.
Nucleotide sugars lie at the unique intersection of primary and specialized metabolism, enabling
the biosynthesis of numerous molecules ranging from small glycosides to complex polysaccharides.
Plants are tolerant to perturbations to their balance of nucleotide sugars, allowing for the overproduc-
tion of endogenous nucleotide sugars to push flux towards a particular product without necessitating
the re-engineering of upstream pathways. Pathways to produce even non-native nucleotide sugars
may be introduced to synthesize entirely novel products. Heterologously expressed glycosyltrans-
ferases capable of unique sugar chemistries can further widen the synthetic repertoire of a plant, and
transporters can increase the amount of nucleotide sugars available to glycosyltransferases. In this
opinion piece, we examine recent successes and potential future uses of engineered nucleotide sugar
biosynthetic, transport, and utilization pathways to improve the production of target compounds.
Additionally, we highlight current efforts to engineer glycosyltransferases. Ultimately, the robust
nature of plant sugar biochemistry renders plants a powerful chassis for the production of target
glycoconjugates and glycans.

Keywords: glycoengineering; metabolic engineering; glycoconjugates; glycosides; carbohydrates;
nucleotide sugars

1. Introduction

Glycosylation is a key step in the formation of numerous biologically and economically
important compounds ranging from complex polysaccharides to diverse small molecules.
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Due to the difficulties involved in in vitro synthesis, major investments have been made
to engineer biosynthetic pathways into industrially relevant species such as E. coli or S.
cerevisiae to produce glycosylated compounds; however, plants are often overlooked as a
production platform. Engineering within plants is still in its nascent stages relative to the
microbial realm, but the potential for bioengineering in this field is tremendous, especially
with regard to glycoengineering.

Plants have a natural propensity for sugar metabolism. As the predominant global
primary producers of our planet, plants derive the vast majority of their biomass from
precursor sugars produced through photosynthesis, requiring robust sugar biosynthesis,
transport, and manipulation. The scale and productivity of plant sugar metabolism are
most readily demonstrated by the fact that plants constitute 80% of all biomass on Earth [1],
most of which is captured in the form of polysaccharides. Plants’ various carbohydrates
and glycoconjugates are biosynthesized by glycosyltransferases (GTs), a large group of
enzymes that has dramatically diversified in land plants. For comparison, the model
plant Arabidopsis thaliana encodes an estimated 564 glycosyltransferases, whereas the model
microbes Escherichia coli and Saccharomyces cerevisiae possess only 37 and 66 GTs, respectively,
demonstrating a vast disparity in the extensiveness of potential endogenous glycosylation
(Figure 1).
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Although plants are notable for their polysaccharides, this opinion piece will largely
focus on plants as production platforms for glycoconjugates, as polysaccharide engineer-
ing for a variety of purposes, including biofuels production, carbon sequestration, and
human health, has been reviewed extensively elsewhere [2–6]. The literature compiled
herein demonstrates that plants are uniquely positioned for the photosynthetically driven
production of a wide diversity of glycoconjugates and glycans as an extension of their
already robust sugar metabolism.

2. Engineering Nucleotide Sugar Biosynthesis

While glycosylated biomolecules have diverse structures and functions, their sugar
moieties are derived from the same core set of nucleotide sugar precursors. Nucleotide
sugars are activated sugars consisting of a nucleoside monophosphate (NMP) or nucleoside
diphosphate (NDP) and a monosaccharide. As the primary sugar donor for the production
of glycosylated biomolecules, nucleotide sugars act as an interface between primary and
specialized metabolism. The biosynthesis of these activated sugars begins from photosyn-
thetically derived triose/hexose phosphates that are then fed into a variety of branched
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pathways that attach a single sugar moiety to a respective nucleotide. Additionally, free
sugars in the plant can be recycled into the nucleotide pool via salvage pathways. There
are also several key nucleotide sugars that can be interconverted into another, serving as
branch points in the synthesis of other nucleotide sugars (Figure 2) (See [7,8] for in-depth
reviews on plant nucleotide sugar metabolism). These branches in the pathway invite
questions about how the concentration of an upstream precursor nucleotide sugar can
influence the levels of downstream nucleotide sugars. Limited studies have investigated
this question; however, some engineering efforts have demonstrated surprising plasticity in
plant nucleotide sugar biosynthesis. The overexpression of two Arabidopsis thaliana genes, a
UDP-glucose 4-epimerase used in the conversion of UDP-glucose to UDP-galactose and a
β-1,4-galactan synthase, increased cell wall galactose monosaccharide composition by 80%
without significantly altering levels of other UDP-glucose-derived monosaccharides [9].
While additional studies are needed, this suggests that plants are able to accommodate
metabolic alterations to native nucleotide sugar levels without major effects on other
important end-product biomolecules.
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Figure 2. Strategies for nucleotide sugar engineering. Nucleotide sugars serve as a critical input for
the production of many important biomolecules. Pathway overexpression, transporter overexpression,
transporter knockdowns, and the inclusion of non-native nucleotide sugar biosynthesis pathways are
approaches that can be used to improve nucleotide sugar availability for product synthesis.

In addition to being able to tolerate substantial changes in sugar biosynthesis, the creation
of new nucleotide sugar sinks can actually improve total sugar production. Although cellulose
is already the greatest carbon sink in plants, comprising 40–50% of plant biomass, plants are
able to tolerate additional sugar allocation to cellulose biosynthesis [10]. The heterologous
overexpression of a cellulose synthase gene from Ciona savignyi (sea squirt) in sugarcane
increased cellulose content by up to 31% and 28% in young and mature internodes, respec-
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tively [11]. Interestingly, the increased use of UDP-glucose for cellulose production did not
decrease sucrose despite sucrose being the precursor to nucleotide sugars. Rather, sucrose and
other free sugar levels in fact increased with the stronger sink, suggesting that plants have
the capacity to respond to perturbations in nucleotide sugar usage by stimulating increased
sucrose production to restore nucleotide sugar levels (Figure 3).
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Figure 3. Autoregulation of plant source–sink relationships. Sucrose serves as the general carbon
precursor to all plant growth and development, and an accumulation of sucrose has an inhibitory
effect on the photosynthetic efficiency of a plant. Creating additional nucleotide sugar sinks that
deplete cellular sucrose levels stimulates photosynthesis and increases plant sucrose production. This
innate compensatory effect allows for the engineering of additional sugar sinks without the depletion
of precursor sugar substrates.

Such a phenomenon has been observed in other species through the overexpression
of sucrose synthase genes that catalyze the reaction of sucrose and UDP to form UDP-
glucose and fructose. Expressing SUS5 from bamboo in poplar led to an increased growth
rate and cellulose content—presumably from increased UDP-glucose levels—along with a
concomitant increase in photosynthetic rate to adapt to the stronger carbon sink [12]. Similar
increases in biomass accumulation and photosynthetic rate following the overexpression
of sucrose synthases were seen in tobacco [13,14], and the relationship between sucrose
utilization and increased photosynthetic efficiency has been studied in sugarcane [15].

These lines of evidence suggest that plants are able to compensate for the metabolic
burden of increased carbon channeling to nucleotide sugars through increases in photo-
synthetic flux. This allows plants to metabolically accommodate sugar engineering efforts
and sugar flux perturbations without the need to re-engineer upstream carbon fixation
pathways, making plants an amenable chassis for sugar bioengineering. Such plasticity to
sugar perturbations could allow for multiple nucleotide sugar biosynthetic pathways to
be overexpressed simultaneously, thereby drawing on the abundance of carbon in plants
to increase available nucleotide sugars for product formation. This approach could be
coupled with strategies to increase the availability of nucleotide sugar precursors, such as
the overexpression of invertases, to optimize carbon flux to a product of interest.
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3. De Novo Nucleotide Sugar Engineering

In addition to the optimization of canonical nucleotide sugar production, plants can be
engineered to make non-native nucleotide sugars (Figure 2). Cytidine-5′-monophospho-N-
acetylneuraminic acid (CMP-Neu5Ac) is an activated sialic acid present in mammals that is
required for the biosynthesis of glycosylated mammalian proteins. It is now believed that
CMP-Neu5ac is not natively created in plants [16], which has hindered the use of plants
as a production platform for mammalian proteins. Castilho et al. [17] utilized transient
expressions in Nicotiana benthamiana to reconstitute the mammalian CMP-Neu5Ac pathway
in planta. Through the expression of six mammalian enzymes that localized to the nucleus,
cytosol, or Golgi, CMP-Neu5Ac was synthesized, transported into the Golgi, and used to
glycosylate a functional human monoclonal antibody [17]. This enables the production of
sialylated small molecules and proteins, thereby expanding the role of plants as a chassis
for the production of commodity biomolecules. These efforts expand the metabolic capacity
of plants through the introduction and use of heterologous nucleotide sugar pathways.

4. Engineering Nucleotide Sugar Transport and Localization

While nucleotide sugar biosynthesis largely occurs in the cytosol, the Golgi and
endoplasmic reticulum (ER) are major sites of glycosylation. In many cases, nucleotide
sugar transporters (NSTs) are required for the transportation of these compounds across
the membranes of the Golgi and ER for the production of glycans and certain nucleotide
sugars, such as UDP-galacturonic acid and UDP-arabinopyranose [18]. The discovery of
many new NSTs in recent years [19–21] has enabled their use in pathway engineering to
alter the availability of nucleotide sugars in different cellular compartments (Figure 2).

NST overexpression and knockdowns could be used to enhance the availability of
nucleotide sugars in the Golgi and in the cytoplasm, respectively, to increase substrate con-
centrations for synthesizing cell wall components or glycoconjugates. The overexpression
of UDP-arabinose transporters, UAfT2, UAftT3, or UAft4, in Arabidopsis thaliana increased
arabinose concentration in cell wall extract by up to 30% [20]. Conversely, NSTs could
be knocked down to increase cytosolic levels of particular nucleotide sugars. However,
NST manipulation could result in phenotypic abnormalities [20] or limit plant fitness [21].
Alternative strategies to optimize production across organelle boundaries could include
relocalizing cytosolic pathways that require nucleotide sugars to the Golgi or ER, circum-
venting the need to knockdown NSTs.

5. Engineering Plant Glycosyltransferases

GTs utilize nucleotide sugar precursors to decorate proteins, glycans, and specialized
metabolites with a monosaccharide. While there are diverse families of glycosyltransferases,
GT super family 1 is of particular interest when examining specialized metabolism. GTs
from super family 1 are termed UDP-dependent glycosyltransferases (UGTs) as they glyco-
sylate small molecules using UDP-sugars. UGTs have been found to facilitate the formation
of O-, N-, S-, and C-glycosides of a large repertoire of sugar acceptor substrates, including
flavonoids, alkaloids, terpenoids, polyphenols, glycosides, as well as synthetic compounds.
Notably, UGTs have been discovered that are active on industrially relevant molecules such
as the indigo precursor indoxyl [22], cannabidiol [23,24], and the non-caloric sweetener
precursor steviol [25]. In fact, a recent screening effort demonstrated an unprecedented
promiscuity of many UGTs, suggesting that a much broader scope of molecules can be
enzymatically glycosylated than previously believed [26]. This promiscuity can enable
advances in the use of UGTs in biotechnology. As glycosides of small molecules often
possess physical and biological properties distinct from their aglycone counterparts, UGTs
provide a powerful tool to alter a metabolite’s localization, transport, storage, and activity.

In addition to discovering additional UGTs, engineering efforts have generated UGTs
with novel functions. Such advances have been assisted by structural information, which
provides a basic understanding of UGT chemoselectivity [27–29], regioselectivity [30–32],
sugar donor selectivity [33], and sugar acceptor selectivity [34,35]. For example, Wetterhorn
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et al. engineered UGT Os79 from rice, which natively glycosylates a disease-causing
mycotoxin, deoxynivalenol, to accommodate a bulkier analog, T-2 toxin, paving the way
to protect crops against a broader scope of fungal infections [36]. He et al. demonstrated
a shift from C- to O-glycosylation activity of TcCGT1 on substrate flavones apigenin and
luteolin [28]. Li et al. were able to achieve a near-perfect regiocontrol of glycosylation
of silybin A via rational engineering of UGT74AC2, which natively produces a mixture
of products [37]. Notably, UGTs involved in C-glycosylation, which commands much
attention due to the creation of stably bound glycoside products, have been more recently
characterized in depth [38–40]. Although less than a hundred related CGT enzymes have
been discovered, the number of molecules that can be enzymatically C-glycosylated and
our understanding of their mechanism are steadily increasing [41]. Such advances in plant
GT engineering demonstrate tremendous diversity and plasticity in UGTs, suggesting an
immense opportunity in the design and assembly of metabolic pathways that utilize the
vast nucleotide sugar pools of plants.

In addition to GTs, glycosyl hydrolases (GHs), which typically catalyze the hydrolysis
of glycosides and glycans, have been shown to possess biosynthetic capabilities, further
expanding ways to engineer sugar metabolism in plants [42,43].

6. Glycoconjugate Biosynthetic Pathway Engineering

Plants natively contain hundreds of GTs, raising the question of if and how metabolic
crosstalk may hinder engineering efforts through off-target reactions and final yield deple-
tion. An attempt to synthesize the artemisinin precursor artemisinic acid in N. benthamiana
resulted in product glycosylation to artemisinic acid-1,2-β-diglucoside, demonstrating the
effects of promiscuous native GTs on foreign metabolites [44]. Similarly, the undesired
effects of native glycosyltransferase activity were seen in N. benthamiana used to produce
octaketide anthraquinones, suggesting that such crosstalk glycosylation events may impact
a diverse range of metabolic products [45]. However, through the additional expression of
a foreign glycosyltransferase, DcUGT2, Andersen-Ranberg et al. [45] were able to channel
flux toward the anthraquinone of interest, demonstrating the capacity of highly expressed
transgenes to compete with native host metabolism. The persistence of some undesired
glycosylation events produced from endogenous GTs implies that further refinements can
be made through targeted knockouts to channel flux to engineered pathways of interest.

Examples of such knockouts are well defined in the field of plant glycoprotein engineering.
A recent study produced recombinant human proteins devoid of α-1,3-fucose and β-1,2-xylose
linkages in N. benthamiana through knockouts of six endogenous GTs [46]. Human-like glycosy-
lation has also been achieved in Physcomitrella patens by knocking out a α-1,4-fucosyltransferase
and a β-1,3-galactosyltransferase while expressing a human β-1,4-galactosyltransferase [47].
Such examples demonstrate that plant sugar metabolism can accommodate engineered pertur-
bations via GT overexpression and knockouts, making plants a versatile chassis for glycosylated
biomolecule productions (reviewed by Margolin et al. [48]).

7. Conclusions

Plant glycoengineering presents many opportunities to redirect photosynthate towards a
broad range of bioproducts. Plants innately possess a tremendous capacity to produce and
manipulate sugars, and thus, they present a promising platform for glycoengineering. The
metabolic capacity to tolerate and balance nucleotide sugar flux perturbations without the
need to re-engineer upstream metabolism, including photosynthesis, is of particular note
and suggests that plant metabolism is amenable and robust in the face of genetic manipula-
tion. Additionally, the plant tolerance of GT knockouts and heterologous expression further
demonstrates that plants are a versatile chassis for glycosylated biomolecule production.

While many advances have been made, few have unified the aforementioned tech-
niques into a stably transformed system. Future work by the glycoengineering community
will require an integration of the engineering strategies mentioned here, including channel-
ing flux through nucleotide sugars, creating knockout lines of competing pathways, and
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integrating tailored GTs stably into the genome to fully realize the potential of plants as
platforms for metabolic glycoengineering.
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