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Simple Summary: This literature review examines recent breakthroughs in diagnosing and treating
Acanthamoeba keratitis (AK), a rare yet severe corneal infection, often associated with contact lens use.
Until recently, the diagnosis and management of AK had remained stagnant for decades, while the
virulence and severity of AK has increased. AK can have a severe course resulting in significant vision
loss, and its severity is often associated with delayed diagnosis and/or recalcitrant disease. Recent
advances in diagnostic accuracy and targeted management strategies hold promise in changing the
trajectory of AK prognosis. This review focuses on the literature published in the last 5 years, and
assesses current evidence and gaps in knowledge. Key findings include newer and more targeted PCR
techniques for diagnosis, some of which are ready for clinical implementation, while antibody-based
and machine-learning diagnosis is still in its infancy but holds promise for the future. New treatment
strategies including oral medication and single-drug topical therapy may improve drug access,
efficacy, and offer options in recalcitrant disease. As AK severity increases, the novel diagnostic and
treatment strategies described in this review may improve outcomes for patients.

Abstract: Acanthamoeba Keratitis (AK) is a severe corneal infection caused by the Acanthamoeba
species of protozoa, potentially leading to permanent vision loss. AK requires prompt diagnosis and
treatment to mitigate vision impairment. Diagnosing AK is challenging due to overlapping symptoms
with other corneal infections, and treatment is made complicated by the organism’s dual forms and
increasing virulence, and delayed diagnosis. In this review, new approaches in AK diagnostics and
treatment within the last 5 years are discussed. The English-language literature on PubMed was
reviewed using the search terms “Acanthamoeba keratitis” and “diagnosis” or “treatment” and focused
on studies published between 2018 and 2023. Two hundred sixty-five publications were initially
identified, of which eighty-seven met inclusion and exclusion criteria. This review highlights the
findings of these studies. Notably, advances in PCR-based diagnostics may be clinically implemented
in the near future, while antibody-based and machine-learning approaches hold promise for the
future. Single-drug topical therapy (0.08% PHMB) may improve drug access and efficacy, while oral
medication (i.e., miltefosine) may offer a treatment option for patients with recalcitrant disease.

Keywords: Acanthamoeba keratitis; diagnosis; treatment; management; machine-learning; PCR;
antibody; confocal microscopy; culture

1. Introduction

Acanthamoeba keratitis (AK) is a serious eye infection caused by the Acanthamoeba
species of protozoa [1]. Infectious keratitis can result in corneal scarring or perforation,
and if left untreated can result in permanent vision loss [2,3]. Symptoms of AK include a
foreign body sensation of the eye, pain, redness, blurred vision, photophobia, and excessive
tearing [4,5].
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Acanthamoeba spp. are commonly found in the environment, particularly in water
sources such as tap water, swimming pools, hot tubs, and soil [6,7]. There are at least
24 known species of Acanthamoeba, with keratitis being the ocular manifestation of Acan-
thamoeba infection [8]. While they are usually harmless, they can cause infections if they
come into contact with the eye, typically through the use of contaminated water and contact
lenses [1,9,10]. While cases can occur in non-contact lens wearers, contact lens wear appears
to be a major risk factor for AK, particularly soft contact or orthokeratology lenses [11–13].

Increased AK awareness and diagnosis has resulted in the disease being increasingly
recognized on a global scale [14–18]. However, there does not appear to be a globally
systematic method of AK diagnosis and treatment, resulting in widespread variations
in management worldwide [19]. Furthermore, because of its global prevalence, notable
variations in risk factors and microbial epidemiology exist across different regions [11,20].
As a result, differences in the pathogenesis of the disease can lead to regional differences in
treatment efficacy. Additionally, certain antimicrobial agents and diagnostic modalities are
not universally accessible [19].

Diagnosing AK can be challenging, as its symptoms can mimic those of other eye
infections, particularly in its early stages [21,22]. Furthermore, diagnostic methods may
vary depending on the expertise of the healthcare team, the available resources, the urgency
of diagnosis, and the specific clinical scenario. Lacking a rapid, highly sensitive and
accurate test for AK, diagnosis of the disease can be difficult [23].

Furthermore, the treatment of AK is also difficult. Acanthamoeba exists in two main
forms during its life cycle: the trophozoite, and the cyst [24]. As a trophozoite, the organism
is in its active stage and can directly invade the cornea and cause infection. The cyst form,
while not actively infectious, is crucial for the transmission and persistence of Acanthamoeba
in the environment [25]. Moreover, the cystic form is more difficult to target and eradicate
due to a protective cell wall, metabolic inactivity, and lower sensitivity to antimicrobials.
If conditions become more favorable, cysts can transform back into the trophozoite form
and initiate infection [26]. Given the morphologic variations of Acanthamoeba, prolonged
treatment courses, as well as the difficulties in targeting the cystic form of the organism,
the management of AK can prove difficult [27].

The need for new AK treatments and diagnostics arises from having limited current
options, the potential for severe damage, the evolving risk factors, and resistance challenges.
Innovative approaches are crucial to effectively manage the infection, prevent lasting con-
sequences, and provide alternatives to existing treatments. Additionally, tailored strategies
are required to address diverse strains and resistance patterns. Improved interventions
can alleviate the overuse of current therapies and enhance patient outcomes. The goal of
this review is to examine new approaches in the diagnostics and treatment of AK and to
disseminate current advances in the management of AK to improve clinical outcomes for
patients with the disease.

2. Methods

We performed a review of all of the appropriate literature by executing a search of all
the English-language literature on PubMed, searching for publications that matched the
search terms “Acanthamoeba keratitis” and “diagnosis” or “treatment”. Since the current
review seeks to evaluate new advances in AK diagnosis and treatment, restrictions were
placed on the studies’ dates and only studies from 2018 to 2023 were included in the review.
The search yielded book excerpts, clinical trials, randomized controlled trails, case reports,
case series, systematic reviews, literature reviews, and correspondences. Inclusion criteria
included publications within the timeframe above which presented new patient data or
highlighted relevant information regarding AK diagnosis or treatment. Studies need not
have been conducted in humans to be included in the review. Exclusion criteria included
publications which solely reviewed cases or data outside of the study timeframe. The
search criteria returned a total of 265 publications. Eighty-seven of the 265 publications met
the inclusion and exclusion criteria and were included in this review. Other articles which
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were not directly found through the search criteria have been included in this review for
additional discussion and insight into AK diagnosis and treatment.

3. Diagnosis

Diagnosing AK involves a combination of a clinical evaluation, a thorough review of
patient history, and specialized laboratory and ancillary tests due to its challenging and
often nonspecific symptoms. There exist several commonly used techniques for diagnosing
AK; however, they vary in accuracy, sensitivity, and speed. There does not appear to be one
single best tool for AK diagnosis. Rather, a combination of diagnostic assessments should
be performed to verify the presence of AK [28].

3.1. Clinical Examination

There are a number of clinical manifestations associated with AK. In early stages of
the disease, signs include a grey-dirty epithelium, pseudodendritiformic epitheliopathy,
multifocal stromal infiltrates, and, later, perineuritis, a ring infiltrate (Figure 1) [27,29]. Pro-
gressive diseases can include scleritis, iris atrophy, anterior synechiae, secondary glaucoma,
mature cataract, and chorioretinitis [29]. Keratoneuritis or radial nerve enlargement may
also occur [30,31]. Corneal endotheliitis has been reported as an uncommon manifestation
of AK [32].
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Clinical manifestations of AK may resemble other types of infectious keratitis (i.e.,
fungal, bacterial, or herpes simplex), making diagnosis purely on the basis of clinical
examination difficult [22,32]. To confirm the diagnosis, other diagnostic tests such as PCR,
culture, or in vivo confocal microscopy (IVCM) are employed. Additionally, coinfection
with other microorganisms can occur, making treatment more difficult [33,34].

3.2. Polymerase Chain Reaction

Polymerase chain reaction (PCR) is a molecular technique used to rapidly amplify
DNA samples. In the context of AK, it is used as a means of diagnosis by detecting the
genetic material (DNA) of Acanthamoeba in ocular surface samples [35]. PCR is highly
sensitive and specific, enabling the detection of even low concentrations of Acanthamoeba
DNA. Its rapid result aids in early diagnosis and timely treatment initiation to prevent the
infection from progressing.

There have been several PCR assays used to target Acanthamoeba. More specifically,
they all target different regions of the nuclear small subunit 18S rRNA gene [36–40]. Of the
papers reviewed in this study, nine mentioned the method and primers that were used for
PCR amplification. The primers established by Schroeder et al. were the most commonly
used, which amplify the 18s rRNA gene by making use of the JDP1 and JDP2 primers:
(5′-GGCCCAGATCGTTTACCGTGAA-3′) and (5′-TCTCACAAGCTGCTAGGGAGTCA-
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3′) [14,36,40–42]. Khosravinia et al. compared the JDP primers established by Schroeder
et al. with the Nelson primers established by Mathers et al. as well as culture and smear,
and found that the JDP primers yielded the most accurate and sensitive method of AK
diagnosis [43]. Others have sought to develop new PCR assays with which to diagnose
AK [38,44,45]. For instance, Lamien-Meda et al. developed a real-time PCR assay to identify
only the T4 genotype, the most commonly identified genotype of Acanthamoeba, to provide
greater specificity and speed in diagnosis [46]. There does not appear to be any one single
PCR assay which performs better than the rest. However, a combination of PCR assays can
be run in a parallel in an effort to improve diagnostic sensitivity [47].

One study sought to examine the efficacy of next-generation sequencing (NGS) for
high-throughput DNA sequencing [48]. Relative to real-time PCR, the specificity and
sensitivity of the NGS assay were 100% and 88%, respectively [49]. While it performs only
slightly worse than PCR and costs more, its ability to detect genetic variants of species
as well as detect coinfections may point to its use as a potential diagnostic method in
the future.

PCR is a valuable technique for diagnosing AK, but it does have limitations. Its sen-
sitivity and specificity, although generally high, can be influenced by factors like sample
quality and the genetic similarity of Acanthamoeba to other microorganisms [48]. The vari-
ability in Acanthamoeba DNA concentration in clinical samples can lead to false negatives,
and obtaining adequate corneal samples for testing can be challenging [35]. Additionally,
laboratory expertise is required, and the method might not differentiate between active
infection and non-viable organisms. The cost, time, and the potential inability of some PCR
assays to detect emerging strains further contribute to limitations. Therefore, PCR is often
complemented with other diagnostic methods to enhance accuracy in AK diagnosis.

3.3. Culture and Staining

Stains and cultures have long been considered the “gold standard” for the diagnosis
of AK and other types of microbial keratitis [27,28,48]. By isolating and growing live
Acanthamoeba, culture can provide unequivocal evidence of active infection. Additionally,
culture enables the identification of specific Acanthamoeba species or strains, contributing
to a better understanding of the disease’s characteristics and potential virulence [8]. For
instance, Acanthamoeba castellanii and Acanthamoeba polyphaga are two of the most com-
mon species which cause AK [50]. This information is important in guiding appropriate
treatment strategies as various AK species may react differently to certain medications
or treatment methods [51]. Moreover, cultured Acanthamoeba can undergo antimicrobial
susceptibility testing, aiding in the selection of effective therapeutic agents. It can also be
accomplished faster than some PCR tests [52].

Bacteria are a primary energy source for Acanthamoeba trophozoites, so cultures are
often grown on non-nutrient agar plates covered with E. coli [28,50]. Blood agars including
sheep, horse, or chocolate are also used, and Sabourad agar is utilized when there is clinical
suspicion for fungal keratitis. Because the initial clinical picture for AK is often non-specific,
all of these cultures are often taken. Calcofluour white (CFW) and potassium hydroxide
staining are commonly used for smears when there is suspicion of Acanthamoeba, though
others have also been utilized, including hematoxylin and eosin (H and E), periodic acid-
Schiff (PAS), and Gomori methanamine silver (GMS) [48]. A combination of staining media
may yield more true positive results.

Two studies in this review made use of CFW staining. A study of 43 patients found
that a positive CFW test can be used as a definitive confirmation of AK, given virtually
no false positives were observed. However, in the case of a negative CFW test, there is
not enough information to rule out the possibility of AK. The second study made use
of CFW in combination with an agar culture for the confirmation of AK in a patient
with HIV [53]. KOH mount is often used in place of CFW in resource-poor settings or
where a fluorescence microscope is unavailable. The main disadvantage of KOH is its
transparent nature which can make the visibility and identification of organisms, including
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Acanthamoeba, difficult. Dyes can be added to the preparation to aid in visualization. Smears
are used in combination with cultures; smears are significantly less sensitive than cultures
but have a rapid turnaround time and can direct early treatment in the setting of a positive
result [54].

Culture has its limitations, including its time-consuming nature, potential for false
negatives due to low sensitivity, and the need for specialized expertise and equipment [48].
A broad range of sensitivity for cultures between 33 and 67% has been reported [55]. Final
culture results can also take upwards of 1 week in a disease where any delay in treatment
can result in worse visual outcomes. The method of sample collection can also affect sensi-
tivity, with a recent study demonstrating the highest probability of positive culture from a
modified bent 21 g needle, followed by collection with a scalpel or conventional needle,
and then, lastly, a cotton swab [56]. In cases of negative cultures and continued suspicion
of AK, or for deeper disease (i.e., intrastromal), a corneal biopsy can be performed for
microbiologic and histopathologic evaluation, and has been shown to yield positive results
in the setting of negative epithelial cultures [57]. Despite its limitations, culture remains
an essential component of the diagnostic toolkit for AK, and in practice, a combination of
diagnostic methods is often employed to ensure accurate diagnosis, with methods such as
PCR, immunofluorescence assays, and IVCM increasingly used for their more rapid results
and higher sensitivities, as described in this review.

3.4. IVCM

In vivo confocal microscopy (IVCM) is a non-invasive imaging technique used to di-
agnose and monitor AK. By capturing high-resolution images of the cornea’s layers, IVCM
enables the direct visualization of structures, aids in detecting Acanthamoeba trophozoites
and cysts, and assesses infection severity. IVCM’s real-time imaging helps differentiate AK
from similar conditions, track treatment progress, and provide longitudinal data. While
its availability varies, IVCM, along with other diagnostic methods, enhances accuracy in
diagnosing AK and guiding treatment decisions.

The two main types of IVCM include laser devices such as Heidelberg Retina Tomo-
graph III (HRT) and white light devices such as Confoscan (Nidek, Japan) [58]. While there
are differences in the way these devices work, they both have been used for monitoring
and diagnosing AK in patients [58–60]. The speed of confocal microscopy is particularly
advantageous and can allow for early treatment and improved clinical outcomes [61].

AK can present itself in both the cystic and trophozoite forms. In its cystic form,
Acanthamoeba appears as a highly reflective nucleus surrounded by a cell wall and dark
rings (Figure 2) [59]. They can also take irregular shapes such as triangles, asterisks, or
hollow rings. The cysts may also form chains of three–six units. Following antimicrobial
drug treatment, the cell walls of the cysts begin to dissolve, and a black hole presents itself
around some of the dissolved cysts.
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One study which compared the outcomes of cases of AK with and without the use of
IVCM found that there was a significant delay if only culture was used, and that IVCM
can prove useful in accelerating AK diagnosis [62]. Using IVCM as an adjunct tool for AK
diagnosis in addition to culture led to significantly better patient outcomes compared to
cultures alone. Another study found that in comparison to PCR and culture, IVCM was the
most accurate tool for AK diagnosis [28].

Another study presented three cases in which IVCM led to improved patient outcomes
and more informed clinical decision making [63]. Specifically, amongst these three cases,
IVCM served as a secondary diagnostic when initial PCR results were inconclusive, aided
in adjusting initial treatment until the complete resolution of AK, confirmed residual fungal
infections, and helped clinicians understand early immune changes in the sub-basal corneal
nerve plexus.

Although IVCM has proven useful as an adjunct tool in the diagnosis of AK, there
exists subjectivity in the grading of confocal microscopy images [64]. Thus, the efficacy
of IVCM can vary greatly depending on the operator as well the grader. Furthermore,
the corneal region and area which IVCM captures is limited, and this may result in scans
being taken in regions unaffected by AK. In cases of stromal inflammation, false neg-
atives may arise due to the masking of Acanthamoeba cysts by inflammatory cells and
edema. Conversely, false positives can occur if macrophages are incorrectly identified as
Acanthamoeba cysts.

IVCM can be an invaluable tool for diagnosing and monitoring the progression of AK,
but its use should be considered in light of the available resources, expertise, and clinical
requirements, and should be employed in combination with other diagnostics such as PCR
and culture [28].

3.5. Antibody

Antibody-based tests for AK diagnosis are an emerging approach that can provide
valuable information about the presence of the pathogen and the immune response of the
patient. Antibody-based tests are often used to detect specific structures of Acanthamoeba
spp. that are indicative of AK or recognize antibodies produced by the immune system in
response to an Acanthamoeba infection.

Several studies have reported on target structures in Acanthamoeba spp. These poten-
tial targets for antibodies may aid in diagnosis in the future: inosine-uridine preferring
nucleoside hydrolase (IPNH), chorismite mutase (CM), carboxylesterase, adenylyl cyclase-
associated protein (ACAP), and periplasmic binding protein (PBP) [65–69]. Additional
studies have demonstrated the utility of CM and ACAP/PBP antibodies in AK diagnosis in
mouse and rabbit animal models, respectively [69,70]. Antibody-based tests hold potential
in the diagnosis of AK but still require further investigation and development prior to their
widespread use.

3.6. Machine-Learning-Based

Two studies included in the search criteria sought to develop new machine/deep
learning-based approaches for AK diagnosis. The first study by Zhang et al. created a
deep learning model, KeratitisNet, for diagnosing and classifying infectious keratitis on
slit-lamp images [71]. A dataset of 4830 slit-lamp images was used to train the model,
and an additional 200 were reserved for external validation. The final model achieved
an accuracy of 77.08%. The accuracy of KeratitisNet for diagnosing AK was 83.81%, and
the Area Under the Receiver Operating Characteristic curve (AUROC) was 0.96. The
model was compared to the observations of three corneal specialty ophthalmologists and
demonstrated a significantly higher performance in diagnostic ability. Two additional
studies, which were not included in the search criteria of the review but remain relevant,
sought to accomplish similar endeavors. Xu et al. sought to use deep sequential feature
learning for the image classification of infectious keratitis, but did not explicitly classify
Acanthamoeba as its own group, instead aggregating it with other corneal diseases [72].
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And, Koyoma et al. created an algorithm using a dataset of 4306 slit-lamp images with an
accuracy/AUROC for Acanthamoeba of 97.9%/0.995 [73]. However, only a total of 19 cases
of AK were included, possibly limiting the robustness of the model for AK diagnosis.

The second study that met the search criteria of this review sought to create a deep-
learning framework for the diagnosis of fungal keratitis (FK) and AK using IVCM [74].
This study introduced the IVCM-Keratitis dataset, a dataset of 4001 IVCM images taken
from the Central Eye Bank of Iran. The dataset was split with a 3000:1001 train/test split.
The final model had a sensitivity of 91.4% and 97% for AK and FK, respectively, and a
specificity of 98.3% and 96.4% for AK and FK, respectively. Given the specialized training
required to evaluate IVCM images, as well as the tedious nature of assessing many IVCM
images, such a model could serve as an adjunct tool to improve the speed and accuracy of
diagnosis [75,76].

4. Treatment

There does not appear to be a single drug which can definitively remove both the
cystic and trophozoite forms of Acanthamoeba [8,55]. While the trophozoite form is much
more easily eliminated, the cystic form is often difficult to target and eliminate [77–79].
Early recognition and prompt diagnosis can be critical in AK treatment, preventing deeper
layers of the cornea from being affected [12,80–82]. Treatment for AK typically consists of
antimicrobial agents, including biguanides, diamidines, antiseptics, antiparasitics, antibi-
otics, and antifungal agents. In resistant disease, procedures such as amniotic membrane
transplantation, photodynamic therapy, or keratoplasty may be employed [27]. Below,
we outline the main treatments for AK and highlight potential treatments that may prove
beneficial in combatting AK in the future.

4.1. Antimicrobial Agents

A combination of biguanides polyhexamethylene biguanide (PHMB) and chlorhex-
idine are the most common first-line treatment of AK [21,33,83,84]. Often they are used
in combination but may also be used separately. Chlorhexidine and PHMB are extremely
potent against Acanthamoeba; however, refractory cases do occur. These agents are also non-
specific and have cytotoxicity against corneal epithelial cells and keratocytes at clinically
relevant doses. The most commonly used concentration of both PHMB and chlorhexi-
dine is 0.02%. Clinically relevant doses may range from 0.02 to 0.06% for PHMB and
0.02 to 0.2% for chlorhexidine, with the use of higher concentrations being reported in
refractory cases [4]. Until recently, the relative efficacy of various concentrations and com-
bination therapy was unknown. In 2023, Dart et al. published a randomized controlled
trial which demonstrated PHMB 0.08% monotherapy to be effective in treating AK, with a
cure rate of >86%, and with a similar efficacy as combination therapy with PHMB 0.02%
and propamidine 0.1% [85]. While this cure rate is significantly higher than that reported
in other studies, the authors acknowledge that the promising results may be attributable to
trial treatment delivery protocol.

Other guanidino-containing compounds may exert similar anti-acanthamoebal effects
to PHMB, such as polyhexamethylene guanidine (PHMG), polyaminopropyl biguanide
(PAPB), and guazatine, though these have not been tested clinically [86]. Other antimicro-
bial agents including diamidines such as propamidine isethionate and hexamidine have
also been used [87,88]. Given a limited access to propamidine isethionate, pentamidine
isethionate shows promise as an alternative given that it has demonstrated inhibitory effects
on Acanthamoeba trophozoites and cysts in vitro [89].

Following unsuccessful treatment with first-line agents, oral miltefosine, an anti-
parasitic agent, has been employed as an adjunctive therapy with promising results [90–92].
The development of a miltefosine-eluting contact lens device may allow for sustained
miltefosine release to treat AK [93]. Of note, oral miltefosine has been associated with
severe inflammatory reactions and may require the concomitant, judicious use of topical
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and oral corticosteroids [92,94,95]. Further investigation is needed to better evaluate
its efficacy.

Antifungal agents have also demonstrated cysticidal effects against Acanthamoeba.
Amphotericin and natamycin have historically been used as adjunct therapy in AK, but
more recently, azoles have been employed. Azoles are a class of antifungal agents that
target sterol 14a demethylase (CYP51). Since Acanthamoeba CYP51 has 31–35% of the
sequence identity of fungal CYP51, azoles may have potent amoebicidal and cysticidal
properties [96]. These include imidazoles (clotrimazole, miconazole, and ketoconazole)
and triazoles (itraconazole, fluconazole, and voriconazole). While there is no consensus
on the most effective azole therapy for AK, the delivery of a combination of oral and
topical preparations has been reported. Posaconazole and voriconazole appear to have the
greatest corneal penetration in both topical and oral forms [96]. While topical preparations
need to be specially compounded, oral forms are readily commercially available. Another
azole demonstrating promise in the treatment of AK was found in one in vitro study,
which found that isavuconazole was able to kill trophozoites within 24 h and prevented
the transformation of inactive Acanthamoeba cysts into their active trophozoite forms [88].
While one case report has demonstrated its clinical effectiveness, there are no additional
data evaluating its corneal penetration or clinical efficacy [97].

4.2. Corticosteroids

The use of corticosteroids in the treatment of AK is a subject of controversy [98].
While steroids can reduce inflammation and alleviate symptoms, they also carry risks,
including potentially exacerbating the infection, masking symptoms, increasing the risk
of penetrating keratoplasty, worsening visual outcome, and promoting the survival of the
parasite [22,98–101]. Steroids can also lead to complications such as increased intraocular
pressure and cataract formation [102]. The decision to use steroids in AK should be made
with caution and be tailored to the specific clinical situation.

In one study of 194 patients, corticosteroid use prior to anti-amoebic therapy was
found to be a risk factor for developing severe inflammatory complications. Another
study of 224 patients displayed a positive correlation between corticosteroid use and
treatment failure [103]. When steroid use occurs as a result of a misdiagnosis of AK, disease
severity can be severely exacerbated [101,104]. While topical and oral steroids do have
a role in reducing the disease burden of AK by reducing the associated inflammation,
they must be used with caution and in the setting of definitive diagnosis and optimized
anti-amoebal therapy.

4.3. Therapy Resistant Cases

Following unsuccessful outcomes with anti-amoebic therapy, other techniques have
been employed to manage AK. These include keratoplasty, amniotic membrane transplan-
tation, and cross-linking.

4.3.1. Keratoplasty

In the case of AK, keratoplasty is considered when the infection has caused significant
corneal damage and disease burden that cannot be effectively managed with medical
treatments alone (Figure 3). It is reserved for advanced cases where other treatment options
have been unsuccessful [18,105–108]. One study found that penetrating keratoplasty (PKP)
within 5.3 months following the first symptoms of therapy-resistant AK can result in
improved BVCA compared to delayed surgery [106].
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On the other hand, a study comparing the clinical outcomes between therapeutic
penetrating keratoplasty (TPK), therapeutic deep anterior lamellar keratoplasty (TDALK),
and optical penetrating keratoplasty (OPK) on a total of 359 AK eyes found that OPK had
the best clinical outcome. Of note, OPK was performed in an uninflamed eye for visual
rehabilitation, once the infection had been managed by medical therapy [109]. This has
been corroborated by other recent studies as well.108 In early stages of the disease, TDALK
may be attempted, while later or more progressive stages require a PKP. Elliptical deep
anterior lamellar keratoplasty has also been performed to focally reduce disease burden in
early stages [110].

It is important to note the unique post-operative challenges that can occur after
keratoplasty for AK [111]. One study of 59 eyes found that risk factors for recurrence include
corticosteroid use prior to anti-amoebic therapy as well as the presence of hypopyon [111].
Common postoperative complications include graft failure, cataract, and uncontrolled
glaucoma [107].

Another study involved the implementation of a new method which included per-
forming a large diameter tectonic lamellar keratoplasty (TLK) followed by a central optical
penetrating keratoplasty within the lamellar graft to treat cases of corneal opacity with
vascularization and peripheral thinning since traditional keratoplasty may not be as advan-
tageous for these patients [112].

4.3.2. Amniotic Membrane Transplantation

Amniotic membrane transplantation (AMT) is an adjunctive treatment approach for
AK, during which a piece of amniotic membrane is placed on the infected cornea to aid in
healing, alleviate discomfort, and reduce inflammation [113,114]. The amniotic membrane’s
bioactive components support tissue regeneration and help protect the cornea from further
damage and scarring [115]. In one review examining the use of AMT for infectious keratitis,
AMT was found to provide benefits in AK management in several case series [116].

4.3.3. Photodynamic Therapy/Cross-Linking

Photo-activated chromophore for keratitis corneal cross-linking (PACK-CXL) has
shown benefits as an adjuvant therapy for the treatment of AK [117–119]. PACK-CXL
with both riboflavin and rose bengal has been found to exert significant anti-amoebic
activity [117]. High fluence PACK-CXL treatment may also target disease burden in
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AK, leading to pain relief, re-epithelization, and elimination of Acanthamoeba [118]. In
another study, PACK-CXL halted corneal melting in the setting of AK [120]. While further
investigation is needed, PACK-CXL may be a useful adjunctive therapy in recalcitrant AK.

4.4. Machine-Learning

While many diagnostic and prognostic and microbiologic modalities utilizing machine-
learning are under investigation, including by our group, there is only one published report
in this regard. Conventional cysticidal assays to determine the effectiveness of various
anti-microbial treatments against Acanthamoeba species involve treating cysts and then
observing the culture manually to detect signs of excystation. However, this approach is
slow, requires significant labor, and has limited capacity for high-volume testing. As such,
Shing et al. developed a machine-learning-based cysticidal assay to recognize Acanthamoeba
trophozoites and cysts in microscopy images in an effort to improve the speed at which
new therapeutics can be discovered [121]. Our group is currently identifying ways in
which machine-learning can be employed to automate the diagnosis of AK from confocal
microscopy images with encouraging preliminary results. Several other groups are examin-
ing similar constructs. The successful implementation of machine-learning modalities has
the potential to significantly reduce the time until diagnosis and treatment, improve the
accuracy of diagnosis, and ultimately, improve patient outcomes.

5. Discussion

AK can have devastating ocular consequences and is often difficult to treat. Because
diagnosis can be difficult in its early stages, and diagnostic modalities that do exist can take
significant time to return a result, AK may go left untreated or suboptimally treated until
diagnosis. Early diagnosis is a key measure in improving visual outcomes. Additionally,
any one current treatment strategy cannot fully address the burden of AK. The emergence
of novel diagnostic techniques and treatment modalities has the potential to significantly
impact AK diagnosis and management. In this review, we explored recent advancements,
focusing on publications in the last 5 years.

The introduction of molecular diagnostic methods, such as the polymerase chain
reaction (PCR), has enhanced AK diagnosis with improved sensitivity and specificity. PCR-
based techniques allow for the rapid identification of Acanthamoeba DNA, enabling the
timely initiation of appropriate treatment regimens. In recent years, newer PCR techniques
and primer combinations have allowed for easier and more sensitive diagnosis of AK.
Moreover, the integration of advanced imaging technologies, such as IVCM, has facilitated
the precise visualization of corneal structures and Acanthamoeba cysts, aiding clinicians in
disease diagnosis and staging and in monitoring treatment response. Employing machine-
learning algorithms for the automation of diagnosis through IVCM holds great potential
for improving AK diagnosis.

Recent advances in therapeutic options for AK also have the potential to improve
outcomes in AK with more widespread and evidence-based use. Standard topical therapy
for AK has remained stagnant for decades until very recently where the employment of
newer agents with anti-amoebal properties has shown promise. Oral miltefosine and topical
and oral azole anti-fungals have demonstrated clinical potential against both trophozoite
and cyst stages, though further study is needed. Additionally, the development of topical
formulations and controlled-release drug delivery systems that can adequately penetrate
the cornea holds the prospect of enhancing treatment outcomes through greater drug
bioavailability, sustained therapeutic levels, and reduced dosing frequency.

Lastly, the advent of PACK-CXL as an adjuvant therapy for AK represents a potential
therapeutic strategy with an improvement in treatment protocols.

Long-term studies assessing the efficacy and safety of emerging treatments are neces-
sary to establish evidence-based therapeutic guidelines. Moreover, the economic feasibility
and accessibility of these newer diagnostic methods and treatments must be considered to
ensure their widespread applicability.
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6. Conclusions

The recent progress in diagnosing and treating AK holds great promise in improving
patient outcomes and reducing the burden of this sight-threatening infection. Collaborative
efforts between researchers, clinicians, and pharmaceutical industries are vital to further
refine these innovations and address the unmet needs in this field. Future research should
focus on optimizing diagnostic and treatment modalities, exploring and implementing new
diagnosing modalities, such as through machine-learning, and expanding access to ad-
vanced diagnostic and therapeutic tools to comprehensively combat Acanthamoeba keratitis.
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Bengal-Mediated PACK-CXL on Acanthamoeba Trophozoites and Cysts in Vitro. Curr. Eye Res. 2018, 43, 1322–1325. [CrossRef]
[PubMed]

118. Nateghi Pettersson, M.; Lagali, N.; Mortensen, J.; Jofré, V.; Fagerholm, P. High fluence PACK-CXL as adjuvant treatment for
advanced Acanthamoeba keratitis. Am. J. Ophthalmol. Case Rep. 2019, 15, 100499. [CrossRef] [PubMed]

119. Watson, S.H.; Shekhawat, N.S.; Daoud, Y.J. Treatment of recalcitrant Acanthamoeba Keratitis with Photoactivated Chromophore
for Infectious Keratitis Corneal Collagen Cross-Linking (PACK-CXL). Am. J. Ophthalmol. Case Rep. 2022, 25, 101330. [CrossRef]

120. Cristian, C.; Marco, C.D.V.; Arturo, K.; Claudio, P.; Miguel, S.; Rolf, R.; Remigio, L.; Leonidas, T. Accelerated collagen cross-linking
in the management of advanced Acanthamoeba keratitis. Arq. Bras. Oftalmol. 2019, 82, 103–106. [CrossRef]

121. Shing, B.; Balen, M.; Fenical, W.; Debnath, A. Development of a Machine Learning-Based Cysticidal Assay and Identification of an
Amebicidal and Cysticidal Marine Microbial Metabolite against Acanthamoeba. Microbiol. Spectr. 2022, 10, e0007722. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://clinmedjournals.org/articles/cmrcr/clinical-medical-reviews-and-case-reports-cmrcr-5-224.php?jid=cmrcr
https://clinmedjournals.org/articles/cmrcr/clinical-medical-reviews-and-case-reports-cmrcr-5-224.php?jid=cmrcr
https://doi.org/10.1038/s41598-019-49128-7
https://doi.org/10.2147/OPTH.S297202
https://doi.org/10.1177/1120672120973606
https://doi.org/10.1016/j.ajoc.2022.101372
https://doi.org/10.1097/ICL.0000000000000824
https://doi.org/10.1371/journal.pone.0222092
https://doi.org/10.1097/ICO.0000000000001968
https://doi.org/10.2147/IDR.S204025
https://doi.org/10.1007/s12325-019-01031-3
https://doi.org/10.1007/s10792-019-01137-1
https://doi.org/10.1016/j.jfma.2019.09.016
https://doi.org/10.1097/ICO.0000000000002880
https://doi.org/10.1007/s00417-022-05883-4
https://doi.org/10.1007/s00417-021-05205-0
https://doi.org/10.1016/j.survophthal.2003.10.004
https://doi.org/10.1007/s10561-017-9618-5
https://doi.org/10.1097/ICO.0000000000001866
https://www.ncbi.nlm.nih.gov/pubmed/30702468
https://doi.org/10.1038/s41598-021-92366-x
https://www.ncbi.nlm.nih.gov/pubmed/34155280
https://doi.org/10.1080/02713683.2018.1501074
https://www.ncbi.nlm.nih.gov/pubmed/30021467
https://doi.org/10.1016/j.ajoc.2019.100499
https://www.ncbi.nlm.nih.gov/pubmed/31312750
https://doi.org/10.1016/j.ajoc.2022.101330
https://doi.org/10.5935/0004-2749.20190018
https://doi.org/10.1128/spectrum.00077-22

	Introduction 
	Methods 
	Diagnosis 
	Clinical Examination 
	Polymerase Chain Reaction 
	Culture and Staining 
	IVCM 
	Antibody 
	Machine-Learning-Based 

	Treatment 
	Antimicrobial Agents 
	Corticosteroids 
	Therapy Resistant Cases 
	Keratoplasty 
	Amniotic Membrane Transplantation 
	Photodynamic Therapy/Cross-Linking 

	Machine-Learning 

	Discussion 
	Conclusions 
	References

