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Simple Summary: This study aims to explore the effects of short-term exposure to nitrogen dioxide
on blood lipids and fasting plasma glucose, as well as the interaction effects with genetic factors. This
topic is important as it can reveal changes in gene expressions across different environmental levels,
providing insights for subsequent analyses of loci-specific interaction effects and facilitating the
interpretation of published studies on specific gene interactions. The results provide new evidence
on the associations between nitrogen dioxide and blood lipids or fasting plasma glucose, which
are crucial risk factors for cardiovascular disease and diabetes. In addition, we found a potential
interaction between genotype and nitrogen dioxide in lipids and fasting plasma glucose, suggesting
that future studies could prioritize nitrogen dioxide exposure if they can identify specific genetic
variants behind the genotype–environment interactions that affect lipids and fasting plasma glucose.

Abstract: (1) Background: Previous studies suggest that exposure to nitrogen dioxide (NO2) has a
negative impact on health. But few studies have explored the association between NO2 and blood
lipids or fasting plasma glucose (FPG), as well as gene–air pollution interactions. This study aims to
fill this knowledge gap based on a pedigree cohort in southern China. (2) Methods: Employing a
pedigree-based design, 1563 individuals from 452 families participated in this study. Serum levels of
triglycerides (TG), total cholesterol (TC), low-density lipoprotein cholesterol (LDLC), high-density
lipoprotein cholesterol (HDLC), and FPG were measured. We investigated the associations between
short-term NO2 exposure and lipid profiles or FPG using linear mixed regression models. The
genotype–environment interaction (GenoXE) for each trait was estimated using variance component
models. (3) Results: NO2 was inversely associated with HDLC but directly associated with TG
and FPG. The results showed that each 1 µg/m3 increase in NO2 on day lag0 corresponded to a
1.926% (95%CI: 1.428–2.421%) decrease in HDLC and a 1.400% (95%CI: 0.341–2.470%) increase in FPG.
Moreover, we observed a significant genotype–NO2 interaction with HDLC and FPG. (4) Conclusion:
This study highlighted the association between NO2 exposure and blood lipid profiles or FPG.
Additionally, our investigation suggested the presence of genotype–NO2 interactions in HDLC and
FPG, indicating potential loci-specific interaction effects. These findings have the potential to inform
and enhance the interpretation of studies that are focused on specific gene–environment interactions.
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1. Introduction

Air pollution poses a significant and pervasive threat to global public health, con-
tributing to 7.6% of all fatalities in 2015 [1]. Notably, a substantial proportion of the air
pollution-related deaths in China are attributable to cardiovascular diseases (CVD) [2].
Given that CVDs stand as the leading cause of mortality globally, accounting for 32% of all
deaths worldwide [3], we need to enhance our understanding of the intricate relationship
between air pollution and the common risk factors associated with CVD, which is the key
to advancing strategies for prevention and treatment.

Previous research has found that lipid and blood glucose levels could explain the
relationship between air pollution and CVD [4–10]. For instance, Cai et al. found that
a one-quartile interval increase in PM10 was associated with a 1.9% increase in TG [4].
Another study based on the NHANES cohort also found that elevated PM10 concentrations
were associated with raised TG and TC levels [5]. A longitudinal study from China
found that PM10 was associated with elevated blood glucose concentrations [6]. All of
this evidence suggests a possible link between air pollution and cardiometabolic disease
risk [4]. On the other hand, NO2, a potent atmospheric pollutant strongly associated
with CVD, is a brown/orange irritant radical gas present in the environment. Common
environmental sources of NO2 include mobile emissions, fuel combustion, industrial
processes, and fires [11,12]. One plausible explanation for the association between NO2
and CVD is that NO2 induces abnormalities in lipid [7,8] and glucose [6] metabolism.
Extensive evidence from animal studies support this claim, demonstrating a connection
between air pollution and disrupted lipid profiles and elevated blood glucose levels [13,14].
Nevertheless, the body of population-based evidence on this topic remains both insufficient
and inconsistent [8]. Furthermore, while much of the research on air pollution and its
impact on lipid and glucose metabolism primarily focuses on airborne particulate matter,
relatively fewer studies delve into the effects of gaseous pollutants like NO2.

Genetic factors also play a crucial role in lipid and glucose metabolism. Previous
studies have estimated the heritability of lipid profiles [15–17] and fasting plasma glucose
(FPG) levels [18,19]. Neglecting genetic influences or the genetic diversity across different
populations might be one of the potential reasons for the inconsistent findings when inves-
tigating the connection between air pollution and dyslipidemia or hyperglycemia [20,21]. It
is vital to discern whether susceptibility to adverse environmental exposures is genetically
determined, a concept known as gene–environment interactions [22], and to elucidate the
specific nature of these interactions. Such insights can aid in stratifying populations for
targeted interventions. Both population-based and family-based studies have revealed
interactions between inhaled particles and specific genetic variants concerning blood lipid
levels, blood pressure, and blood glucose [20,21,23–25]. However, there is a scarcity of
research exploring the impact of gene–NO2 interactions on blood lipids and FPG.

On the other hand, before delving into gene–environment interactions, we need
quantitative genetics to determine whether traits are influenced by genotype–environment
interactions (GenoXE). This preliminary step, often overlooked in practice, is essential
as it helps establish the groundwork for subsequent investigations centered on specific
environmental exposures and genetic loci. Unfortunately, this is rarely pursued due to
the lack of adequately characterized cohorts with genealogical data [26]. GenoXE pertains
to the interaction of overall additive genetic effects with environmental factors, meaning
that the overall genetic influence on individual phenotypes varies across different levels
of environmental exposures [27]. Importantly, this approach can be executed without the
need for genotyping data but with a pedigree-based design.
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Accordingly, the present study was undertaken to investigate the associations between
NO2 exposure and lipid profiles as well as FPG levels. Furthermore, our analysis was
conducted using extended pedigrees, allowing us to identify genotype–NO2 interactions.
This approach lays the foundation for subsequent investigations focused on analyzing inter-
action effects at specific genetic loci and aids in the interpretation of previously published
studies that delve into locus-specific interactions.

2. Materials and Methods
2.1. Study Population

We gathered data during the baseline survey of the Fujian Tulou Pedigree-based Co-
hort Study (FTPC), which was conducted between August 2015 and December 2017. The
Fujian Tulous represent traditional Chinese rural dwelling styles in southeastern coastal
China. Residents in this area organize themselves independently based on their family
lineages, with a single surname predominating the population living in Tulous of various
architectural forms. These Tulou pedigrees are typically expansive and characterized by
intricate kinship ties, which facilitates the recruitment of more than three generations of
family members—a practice rarely observed in other regions of China. Detailed informa-
tion on the FTPC was reported in previous study [28]. Ultimately, our study included
452 families, comprising a total of 1563 study subjects. The study was approved by the Med-
ical Research Ethics Committee of the Peking University Health Science Center. Informed
consent was obtained before their participation in the study. The study was conducted in
accordance with the Declaration of Helsinki.

2.2. Air Pollutant Data

We acquired air pollutant data, including the 24 h average concentrations of NO2,
particulate matter (PM2.5 and PM10), carbon monoxide (CO), and ozone (O3), in Zhangzhou
City, Fujian Province, spanning from 1 August 2015 to 31 December 2017. These data were
sourced from the National Air Pollution Monitoring System. The national standard monitor-
ing station is equipped with 24 h automatic monitoring instruments for NO2 concentrations.
Daily average concentrations were computed for our analysis. It is noteworthy that the
monitoring data have been demonstrated to be a reliable representation of population
exposure to air pollution in China [29,30]. A map illustrating the site of the Fujian Tulou
Pedigree-based Cohort study and the locations of air pollutant monitors can be found in
the Supplementary Materials online, Figure S1.

2.3. Measurements

All participants underwent in-person interviews, physical examinations, and biochem-
ical measurement by trained and certified investigators. A structured questionnaire was
applied to collect basic demographic characteristics (age, sex, education), lifestyle informa-
tion (smoking, alcohol drinking, physical activity, vegetable and fruit intake, whole-grain
intake, and meat intake), and medication history (antihypertensive drugs, antidiabetic
drugs, antihyperlipidemic drugs). Anthropometric variables, including height (cm) and
weight (kg), were measured by trained technicians according to standard procedures. Body
mass index (BMI) was then calculated as weight (kg) divided by squared height (m2).
Overnight fasting venous blood (at least 8 h) was collected from participants for measuring
their blood lipid levels, including TC, TG, LDLC, and HDLC, as well as their FPG levels.
Blood specimens were processed and stored in Eppendorf tubes at the examination center,
and sera were stored at −80 ◦C.

2.4. Statistical Analysis

We investigated the short-term relationships between air pollutants and lipid profiles
or fasting plasma glucose (FPG) using four linear mixed models, each with distinct sets of
adjusted covariates.
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In Model 1, we controlled for age, sex, body mass index (BMI), and education level.
Additionally, due to the pedigree-based design, we introduced family ID as a random
effect in the model to account for correlations among individuals within families. Model
2 extended the adjustments to include factors such as smoking, alcohol consumption,
physical activity, and dietary habits, encompassing the intake of fresh fruits and vegetables,
whole grains, and meat, and tea consumption. In Model 3, we expanded our adjustments
to encompass medication history, building upon the covariates considered in Model 2.
In Model 4, we further incorporated the concentrations of particulate matter (PM2.5 and
PM10), carbon monoxide (CO), and ozone (O3) based on the adjustments made in Model 3,
creating the whole model. Recognizing the potential delayed associations, we considered
different lag structures, ranging from lag0 to lag2, in our analysis. To estimate cumulative
associations, we used moving averages across the lag periods, extending from mv01
(moving average concentrations of lag0 and lag1) to mv02 (moving average concentrations
of lag0 to lag2). The results were presented as percentage changes in blood lipid levels or
FPG and the associated 95% confidence intervals (CIs) for each 1 µg/m3 increase in NO2
concentration.

The genotype–environment interaction for each trait was estimated using maximum
likelihood-based variance component models implemented in SOLAR (version 9.0.0). The
variance of each phenotype (δ2) was partitioned into two components: additive genetic
factors and environmental factors. Heritability (h2) was defined as the ratio of the residual
variance of the trait resulting from additive genetic factors ( δg

2) compared to the total resid-
ual phenotypic variance (δ2). The genotype–environment interaction estimates the relative
contributions of genes to trait variance across different environments [27]. The additive
genetic component, as a function of environmental exposure level, has been previously de-
fined and expressed as δg

2 = exp
(
αg + γg(ei − e)

)
, where ei is the environmental exposure

level to which individual i is exposed, while e is the average environmental exposure level,
and αg and γg are both parameters to be estimated. If there is a genotype–environment
interaction, then γg is not equal to zero, implying that the heritability of the trait changes
at different levels of an environmental exposure. All statistical tests were two-sided, and
p < 0.05 was considered statistically significant. R 4.1.2 was used for data analysis and
results output.

3. Results
3.1. Basic Characteristics

Table 1 provides an overview of the essential characteristics of the study participants.
Between August 2015 and December 2017, a total of 1563 individuals, with an average age
of 57.23 years, were included in our study. Of the participants, 43.57% were male. The
mean concentrations of key parameters, including TG, TC, HDLC, LDLC, and FPG, were
1.75 mmol/L, 5.02 mmol/L, 1.31 mmol/L, 3.01 mmol/L, and 5.64 mmol/L, respectively.

Table 1. Characteristics of study participants.

Characteristic Total Male Female

N (%) 1563 (100.00) 681 (43.57) 882 (56.43)
Age, mean (SD), y 57.23 (13.24) 58.38 (12.97) 56.35 (13.39)
BMI (kg/m2) 23.35 (3.36) 23.40 (3.48) 23.30 (3.26)
Smoking (%) Never 1161 (74.3) 304 (44.6) 857 (97.2)

Current 305 (19.5) 283 (41.6) 22 (2.5)
Previous 97 (6.2) 94 (13.8) 3 (0.3)

Alcohol drinking (%) Never 1360 (87.0) 513 (75.3) 847 (96.0)
Current 166 (10.6) 137 (20.1) 29 (3.3)
Previous 37 (2.4) 31 (4.6) 6 (0.7)
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Table 1. Cont.

Characteristic Total Male Female

Physical activity, mean (SD),
MET-h/week 63.34 (91.66) 67.00 (99.95) 60.51 (84.67)

Vegetable intake, mean (SD), g/d 228.00 (143.08) 235.04 (156.41) 222.56 (131.70)
Fruit intake, mean (SD), g/d 46.26 (67.59) 41.74 (62.92) 49.75 (70.83)
Meat intake, mean (SD), g/d 101.95 (71.72) 112.95 (82.02) 93.45 (61.33)
Whole-grain intake, mean (SD), g/d 11.12 (20.19) 10.43 (20.60) 11.66 (19.87)
TG, mean (SD), mmol/L 1.75 (1.61) 1.93 (1.82) 1.61 (1.41)
TC mean (SD), mmol/L 5.02 (1.89) 4.81 (1.10) 5.18 (2.30)
HDLC, mean (SD), mmol/L 1.31 (0.60) 1.20 (0.66) 1.40 (0.53)
LDLC, mean (SD), mmol/L 3.01 (0.81) 2.96 (0.82) 3.05 (0.80)
FPG, mean (SD), mmol/L 5.64 (1.41) 5.81 (1.65) 5.50 (1.17)

BMI, body mass index; FPG, fasting plasma glucose; HDLC, high-density lipoprotein cholesterol; LDLC, low-
density lipoprotein cholesterol; SD, standard deviation; TC, total cholesterol; TG, triglycerides.

Table 2 shows the distribution of daily NO2 concentrations. The NO2 data are matched
to the date of the blood sample collection. Throughout the study period, the means of NO2
concentration were 27.48 µg/m3 (SD: 12.05 µg/m3), 27.45 µg/m3 (SD: 11.49 µg/m3), and
28.17 µg/m3 (SD: 11.18 µg/m3) for the day of blood draw (lag0), the previous day (lag1),
and two days before the investigation (lag2), respectively. We also calculated the moving
average concentrations for lag0 and lag1 (mv01) and the moving average concentrations
from lag0 to lag2 (mv02), which were 27.47 µg/m3 (SD: 11.22 µg/m3) and 27.70 µg/m3

(SD: 10.64 µg/m3), respectively.

Table 2. Summary statistics for NO2 concentrations (µg/m3).

Lag Structures Mean ± SD Minimum Percentile Maximum IQR

25th 50th 75th

Lag0 27.48 ± 12.05 8.00 18.00 26.00 33.00 68.00 15.00
Lag1 27.45 ± 11.49 6.00 19.00 26.00 33.00 68.00 14.00
Lag2 28.17 ± 11.18 9.00 20.00 26.00 35.00 68.00 15.00
Mv01 27.47 ± 11.22 7.00 19.00 27.50 31.00 65.00 12.00
Mv02 27.70 ± 10.64 7.67 19.33 29.33 31.50 65.00 12.17

IQR, interquartile range; Lag0, concentrations on the day of investigation; Lag1, concentrations on day previous
to investigation; Lag2, concentrations two days before investigation; Mv01, moving average concentrations of
Lag0 and Lag1; Mv02, moving average concentrations of Lag0 to Lag2; SD, standard deviation.

3.2. Association of NO2 with Blood Lipids and FPG

The impacts of NO2 concentration on lipid and FPG levels are detailed in Table 3 and
Figure 1. A noteworthy reduction in HDLC was evident with rising NO2 levels in each lag
structure (p < 0.05). We also identified a positive link between NO2 concentration and TG
across most lag structures. Furthermore, an increase of 1 µg/m3 in NO2 was statistically
linked to a 1.400% (0.341%, 2.470%) rise in FPG on day lag0. No significant associations
were observed for TC and LDLC, although the point estimates indicated potential effects of
increased NO2. Additionally, we noted variability in the lag effect of NO2 on lipids and
glucose among different phenotypes. For TG, the lag effect of NO2 was more pronounced,
showing significantly larger increments on days lag 2 and lag 1 compared to day lag
0. In contrast, with HDLC and GLU, the association with NO2 was most robust on day
lag 0. To verify the robustness of these findings and explore potential interactions, we
conducted stratified analyses based on sex, age, and BMI, which consistently upheld the
results (Supplementary Materials online, Tables S1–S3).
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tihypertensive/antidiabetic/antihyperlipidemic drugs, and concentration of PM2.5, PM10, CO, and 
O3. HDLC, high-density lipoprotein cholesterol; Lag0, concentrations on the day of investigation; 
Lag1, concentrations on the day previous to investigation; Lag2, concentrations two days before 
investigation; LDLC, low-density lipoprotein cholesterol; Mv01, moving average concentrations of 
Lag0 and Lag1; Mv02, moving average concentrations of Lag0 to Lag2; TC, total cholesterol; TG, 
triglycerides. 

  

Figure 1. Percentage changes with 95% confidence intervals (95% CIs) in blood lipids and FPG
associated with per 1 µg/m3 increase in NO2 of different lag structures. Multivariable model was
adjusted for age, sex, BMI, education level, family ID as a random effect term, physical activity,
smoking, drinking, vegetable and fruit intake, whole-grain intake, meat intake, tea intake, the use
of antihypertensive/antidiabetic/antihyperlipidemic drugs, and concentration of PM2.5, PM10, CO,
and O3. HDLC, high-density lipoprotein cholesterol; Lag0, concentrations on the day of investigation;
Lag1, concentrations on the day previous to investigation; Lag2, concentrations two days before
investigation; LDLC, low-density lipoprotein cholesterol; Mv01, moving average concentrations
of Lag0 and Lag1; Mv02, moving average concentrations of Lag0 to Lag2; TC, total cholesterol;
TG, triglycerides.
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Table 3. Percentage changes with 95% confidence intervals (95% CIs) in TG, TC, LDLC, HDLC, and
FPG associated with per 1 µg/m3 increase in NO2 for different lag structures.

Trait Lag
Structure Model 1 Model 2 Model 3 Model 4

TG Lag0 1.085 (0.634, 1.537) 1.630 (1.149, 2.114) 1.093 (0.657, 1.530) 0.166 (−0.780, 1.121)
Lag1 1.175 (0.716, 1.636) 1.660 (1.175, 2.146) 0.711 (−0.122, 1.551) 1.340 (0.857, 1.826)
Lag2 1.187 (0.727, 1.649) 0.671 (−0.086, 1.433) 1.394 (0.910, 1.881) 1.505 (1.011, 2.001)
Mv01 0.098 (−0.574, 0.774) 0.963 (0.535, 1.393) 1.568 (1.071, 2.068) 1.528 (1.032, 2.027)
Mv02 1.424 (0.954, 1.897) 1.076 (0.642, 1.511) 1.591 (1.092, 2.093) 0.646 (−0.698, 2.008)

TC Lag0 0.011 (−0.154, 0.177) 0.107 (−0.067, 0.283) 0.101 (−0.075, 0.277) 0.140 (−0.259, 0.541)
Lag1 0.011 (−0.156, 0.178) 0.101 (−0.073, 0.276) 0.123 (−0.223, 0.470) 0.086 (−0.101, 0.274)
Lag2 0.006 (−0.160, 0.173) 0.160 (−0.142, 0.462) 0.065 (−0.113, 0.244) 0.084 (−0.105, 0.272)
Mv01 0.214 (−0.071, 0.500) 0.100 (−0.075, 0.274) 0.064 (−0.115, 0.244) 0.081 (−0.107, 0.270)
Mv02 0.110 (−0.064, 0.284) 0.095 (−0.081, 0.271) 0.058 (−0.121, 0.237) 0.284 (−0.286, 0.858)

LDLC Lag0 0.108 (−0.004, 0.220) 0.002 (−0.116, 0.119) 0.022 (−0.098, 0.141) 0.116 (−0.157, 0.390)
Lag1 0.097 (−0.015, 0.210) 0.006 (−0.112, 0.124) 0.196 (−0.040, 0.432) 0.048 (−0.079, 0.175)
Lag2 0.093 (−0.020, 0.205) 0.159 (−0.046, 0.365) 0.058 (−0.062, 0.179) 0.049 (−0.078, 0.176)
Mv01 0.221 (0.025, 0.417) 0.014 (−0.105, 0.134) 0.054 (−0.067, 0.175) 0.044 (−0.083, 0.172)
Mv02 0.005 (−0.113,0.123) 0.025 (−0.094, 0.145) 0.049 (−0.072, 0.171) 0.020 (−0.373, 0.414)

HDLC Lag0 −0.680 (−0.898, −0.461) −0.363 (−0.579, −0.146) −0.369 (−0.585, −0.153) −1.926 (−2.421, −1.428)
Lag1 −0.674 (−0.894, −0.453) −0.371 (−0.587, −0.155) −0.479 (−0.881, −0.076) −0.558 (−0.796, −0.320)
Lag2 −0.683 (−0.904, −0.463) −0.872 (−1.261, −0.481) −0.577 (−0.806, −0.347) −0.560 (−0.799, −0.320)
Mv01 −1.896 (−2.275, −1.516) −0.340 (−0.553, −0.126) −0.573 (−0.803, −0.342) −0.573 (−0.812, −0.332)
Mv02 −0.364 (−0.579, −0.148) −0.354 (−0.569, −0.139) −0.582 (−0.813, −0.352) −1.540 (−2.232, −0.843)

GLU Lag0 0.331 (−0.104, 0.768) 0.117 (−0.334, 0.570) 0.158 (−0.303, 0.621) 1.400 (0.341, 2.470)
Lag1 0.274 (−0.165, 0.715) 0.126 (−0.326, 0.580) 0.798 (−0.114, 1.718) 0.049 (−0.437, 0.538)
Lag2 0.265 (−0.174, 0.706) 0.080 (−0.693, 0.859) 0.143 (−0.321, 0.609) 0.010 (−0.480, 0.503)
Mv01 1.163 (0.403, 1.929) 0.147 (−0.309, 0.604) 0.093 (−0.374, 0.562) 0.001 (−0.490, 0.494)
Mv02 0.085 (−0.362, 0.535) 0.153 (−0.307, 0.615) 0.083 (−0.385, 0.553) 0.861 (−0.641, 2.386)

HDLC, high-density lipoprotein cholesterol; Lag0, concentrations on the day of investigation; Lag1, concentrations
on the day previous to investigation; Lag2, concentrations two days before investigation; LDLC, low-density
lipoprotein cholesterol; Mv01, moving average concentrations of Lag0 and Lag1; Mv02, moving average concen-
trations of Lag0 to Lag2; TC, total cholesterol; TG, triglycerides. Model 1 adjusted for age, sex, BMI, education
level, and family ID; Model 2 additionally adjusted for physical activity, smoking, drinking, vegetable and fruit
intake, whole-grain intake, meat intake, and tea consumption on the basis of model 1; Model 3 additionally
adjusted for use of antihypertensive/antidiabetic/antihyperlipidemic drugs on the basis of model 2; Model 4
additionally adjusted for concentration of PM2.5, PM10, CO, and O3. Significant results are indicated in bold
(p < 0.05).

3.3. Genotype–NO2 Interaction Effects on Blood Lipid Levels and FPG

The results of genotype–NO2 interactions are depicted in Figure 2. Even after account-
ing for various covariates, we identified a noteworthy genotype–NO2 interaction in both
HDLC and FPG across all lag structures (p < 0.05). In the case of HDLC (Supplementary
Materials online, Figure S2) and FPG (Supplementary Materials online, Figure S3), the
additive genetic effects displayed a diminishing trend as the NO2 concentration increased,
indicating a concurrent reduction in heritability.
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Figure 2. Interactions effects of genotype with NO2 on blood lipid levels and fasting plasma glucose in
different lag structures. Significant results are indicated with dark red patches and p values (p < 0.05).
HDLC, high-density lipoprotein cholesterol; Lag0, concentrations on the day of investigation; Lag1,
concentrations on the day previous to investigation; Lag2, concentrations two days before investiga-
tion; LDLC, low-density lipoprotein cholesterol; Mv01, moving average concentrations of Lag0 and
Lag1; Mv02, moving average concentrations of Lag0 to Lag2; TC, total cholesterol; TG, triglycerides.

4. Discussion

The present study provides new insights into the connections between NO2 and blood
lipids or FPG, the critical risk factors for cardiometabolic diseases. In our investigation,
elevated NO2 levels were related to higher TG and FPG, while also being associated
with reduced HDLC. Furthermore, we discovered a potential interaction between genetic
variations as a whole and NO2 concerning HDLC and FPG.

In partial alignment with prior research, our study unveiled a relationship between
heightened NO2 concentrations and a reduction in HDLC. A survey conducted in urban
areas of China reported that every 10 µg/m3 increase in NO2 corresponded to a 1.6%
decrease in HDLC [31]. Similarly, findings from a study in South Korea produced analogous
results [32]. Additionally, we established that NO2 levels are associated with decreased
HDLC levels in Chinese adults aged 30–79 [33]. Moreover, our study suggested a positive
association between NO2 and TG, which aligns with the findings of Yang et al., who
observed a 6.0% increase in TG for every 10 µg/m3 rise in NO2 [31]. Furthermore, our
study identified a positive trend in the associations of NO2 with LDLC and TC, although
not statistically significant. These findings have generated controversy in prior studies.
Evidence from a Chinese multi-ethnic cohort study demonstrated that heightened NO2
levels significantly elevated TC and LDLC [33]. Conversely, results from another study
indicated that increased NO2 was linked to higher TC but not LDLC [34]. Simultaneously,
we also identified a noteworthy positive relationship between NO2 and FPG, particularly
evident in lag0 and mv02, hinting at a possible delayed effect. These observations align
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with previous research that has illuminated the glycemic impacts of air pollution [6,35–37].
Furthermore, several cohort studies have substantiated the association between NO2
exposure and an increased risk of diabetes [37,38].

The inconsistencies observed in these findings can be attributed to differences in
study populations, air pollution levels, the duration of exposure, the accuracy of exposure,
and outcome measurements. Additionally, inherent residual confounding variables in
observational studies may have contributed to these variations, including confounders
related to diet, physical activity, occupation, and indoor environment. Specifically, our
study site is situated in a rural area, where the dietary patterns of the study population are
mainly herbivorous, with lower meat consumption compared to urban populations [39,40].
People in rural areas typically burn straw, wood, or coal for cooking, as opposed to using
cleaner energy sources, potentially leading to elevated NO2 levels in residential areas.
Furthermore, residents in rural areas tend to have higher levels of physical activity, which
can impact blood lipid profiles, but may also result in increased inhalation of air pollutants,
leading to higher exposure levels. This complex interplay of various exposure sources and
diverse lifestyles within the rural population complicates the association between NO2 and
blood lipids. Therefore, our findings underscore the need for further exploration in the
future to gain a more comprehensive understanding of these intricate relationships.

Genotype–environment interactions were also a notable focus of the current study.
We observed a statistically significant interaction between genetic effects and NO2. The
overall additive genetic effect gradually diminished as NO2 concentrations increased,
signifying a concurrent reduction in the influence of genetic factors. This phenomenon
may be attributed to the cumulative and escalating impact of environmental exposure
as NO2 concentrations rise, a trend that has been substantiated in previous research [41].
Our findings underscored the importance of future studies that concentrate on identifying
specific genetic variants that play a role in gene–environment interactions, particularly
regarding the exposure to NO2 and its effects on blood lipids or FPG.

The underlying biological mechanism through which air pollution influences blood
lipids and FPG remains a subject of ongoing investigation. A prevailing hypothesis suggests
that air pollutants induce changes in blood lipids and FPG by inciting oxidative stress
and triggering systemic inflammation [38,42,43]. These alterations in oxidative stress are
particularly pronounced in the case of HDLC [44]. The inflammatory hypothesis regarding
the impact of air pollution on FPG primarily targets adipose tissue [6,38]. Inflammation
within adipose tissue can lead to an increased pro-inflammatory-to-anti-inflammatory
macrophage ratio, potentially disrupting insulin signaling and contributing to insulin
resistance [45]. Another potential pathway through which changes in FPG may occur is
that air pollution directly affects insulin resistance [46]. Likewise, there might be pathways
linked to DNA methylation that enable air pollution to influence blood lipid levels. Prior
studies have established connections between air pollutants and DNA methylation levels
in specific genes associated with lipid metabolism and inflammatory responses [47–49].
These findings partially elucidate the results of the genotype–NO2 interaction. Nonetheless,
the precise mechanism necessitates further exploration.

To the best of our knowledge, the current study is the first examining genotype–NO2
interactions for cardiometabolic traits to be reported, which provided clues to identify
underlying genetic variants in blood lipids and FPG. In addition, the use of a pedigree-
based design was also a strength. Owing to the Tulous’ unique architectural forms, special
culture, and remote geographical location, native residents are isolated from other ethnic
populations, resulting in their homogenous genetic backgrounds. Therefore, the population
stratification will be better controlled in this pedigree-based cohort. This study also has
some limitations. First, although we used air pollution data from a few days prior to explore
the short-term effects, it was still a cross-sectional study with weak causal inference ability.
Second, we used fixed-site air pollution monitoring data rather than individual exposures,
as detailed home address information was not available, which might have led to some
degree of measurement error. Third, although we adjusted for a number of confounders,
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residual confounding from unknown and unmeasured sources might be present. Finally,
the study was based on a population from the Tulou pedigrees in southern China, which
might have affected the generalizability of the results to other populations, yet the internal
validity of the study remains significant. In the future, the ongoing prospective follow-up
and expansion of the Fujian Tulou Pedigree-based Cohort Study will enable us to examine
the long-term effect of nitrogen dioxide on blood lipids and glucose levels. Building on the
current findings, we aspire to conduct comprehensive genetic investigations to unravel the
interactions between specific genes and the nitrogen dioxide exposure. This endeavor aims
to provide valuable insights for more precise strategies for the prevention and management
of cardiovascular diseases in the years to come.

5. Conclusions

In conclusion, this study revealed significant associations between NO2 exposure
and alterations in blood lipid profiles and glucose levels, with NO2 being associated with
elevated TG and FPG, as well as reduced HDLC. Furthermore, the results highlighted the
importance of considering genotype–environment interaction effects involving genetic
factors and NO2 exposure on blood lipid and FPG levels. The presence of genotype–NO2
interactions provided the basis for subsequent studies focusing on analyzing the interaction
effects of specific genetic loci with NO2 and helped to explain the results of previously
published studies.
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