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Simple Summary: The field of cell culture technology involves the cultivation of cells in a con-
trolled environment, mimicking the natural conditions found in living organisms. This process is
performed on a large scale, utilizing a specially designed culture medium. The goal is to create
either undifferentiated individual cells or multicellular aggregates with minimal differentiation. The
present paper offers a comprehensive overview of the advancements and applications of primary
cell culture techniques in fish. It places a particular focus on revealing the physiological roles played
by fish cells during their in vitro cultivation. Maintaining the functional characteristics of fish cells
is of paramount importance, as it is essential for gaining a deeper understanding of the underlying
mechanisms governing various physiological processes. To facilitate the use of fish cells in research
and practical applications, it is crucial to standardize the separation techniques for these cells and
optimize the conditions for their culture. This not only contributes to our knowledge of fish health,
disease development, and drug discovery but also drives progress in the aquaculture industry.

Abstract: Fish primary cell culture has emerged as a valuable tool for investigating the physiological
roles and responses of various cell types found in fish species. This review aims to provide an
overview of the advancements and applications of fish primary cell culture techniques, focusing on
the profiling of physiological roles exhibited by fish cells in vitro. Fish primary cell culture involves
the isolation and cultivation of cells directly derived from fish tissues, maintaining their functional
characteristics and enabling researchers to study their behavior and responses under controlled
conditions. Over the years, significant progress has been made in optimizing the culture conditions,
establishing standardized protocols, and improving the characterization techniques for fish primary
cell cultures. The review highlights the diverse cell types that have been successfully cultured
from different fish species, including gonad cells, pituitary cells, muscle cells, hepatocytes, kidney
and immune cells, adipocyte cells and myeloid cells, brain cells, primary fin cells, gill cells, and
other cells. Each cell type exhibits distinct physiological functions, contributing to vital processes
such as metabolism, tissue regeneration, immune response, and toxin metabolism. Furthermore,
this paper explores the pivotal role of fish primary cell culture in elucidating the mechanisms
underlying various physiological processes. Researchers have utilized fish primary cell cultures
to study the effects of environmental factors, toxins, pathogens, and pharmaceutical compounds
on cellular functions, providing valuable insights into fish health, disease pathogenesis, and drug
development. The paper also discusses the application of fish primary cell cultures in aquaculture
research, particularly in investigating fish growth, nutrition, reproduction, and stress responses. By
mimicking the in vivo conditions in vitro, primary cell culture has proven instrumental in identifying
key factors influencing fish health and performance, thereby contributing to the development of
sustainable aquaculture practices.
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1. Introduction

The field of cell culture technology has its roots in the early 20th century and, since
then, has boasted a rich history that spans over a century. Research into primary cell
culture techniques for fish began in the middle of the last century. Notably, the first
permanent cell line of fish origin was pioneered by Wolf and Quimby in 1962, using
gonadal cells from rainbow trout (Oncorhynchus mykiss) [1]. Throughout the mid-20th
century, there was a significant increase in the availability of tissues suitable for primary
cell culture. This development paved the way for successful applications of various fish
tissues, including liver, spleen, gonads, fin strips, skin, and fish cells in the fields of immune
system research, vaccine research, and biomedical research. For example, primary culture of
zebrafish embryonic stem cells provided a means to examine retinal pigment differentiation
and function prior to optic organogenesis [2]. Fish cell cultures have multiple scientific
objectives, such as study of virus diagnosis skills, the study of the thermoregulation
mechanism, endocrinological investigation, and viral disease diagnosis [3,4]. They can also
be used as a suitable model for evaluating the oxidation reaction, chemistry toxicology tests,
and mechanism research [5]. In environmental science, fish cells are in use for detecting the
impacts of environmental pollutants and toxicology of aquatic ecosystems [4,6].

Primary cell culture has many scientific superiorities and can be kept for weeks,
so it can be used for vitro detecting systems [7]. Primary cells have high viability and
some essential cellular functions can be maintained in vitro such as cell proliferation and
differentiation [8]. For example, detached testis cells were gathered in one day and isolated
into colonies, which adhered to Petri medium or carried out suspended growth [9]. Under
selected experimental conditions, researchers can culture the cells of interest in vitro and
study them at a cellular level. They can survive and retain specific characteristics of the
cell type for at least a few days in many cases [9]. Alternatively, primary cells can retain
more original functions and abilities compared with cell lines with limited ability [10].
Primary cells and cell lines both have advantages and disadvantages. The growth rate
of primary cells is notably slow, and conventionally, the initial generation of primary
cell culture and its subsequent passages up to the 10th generation collectively form the
primary culture. Beyond approximately 10 generations, primary cultured cells present
a formidable challenge for propagation. Cellular growth tends to stagnate, and most
cells undergo senescence and apoptosis. Nevertheless, a small fraction of cells somehow
endure this crisis, persisting in propagation. Some of these cells may even undergo genetic
alterations and acquire malignant characteristics, allowing for indefinite passageability,
which is referred to as a cell line. Primary cells, isolated directly from animal tissues through
enzymatic or mechanical methods, are often considered more biologically relevant than
cell lines. This is because their biological responses may closely mimic in vivo conditions,
bringing researchers closer to the “truth” [11]. Early cultures of primary cells can offer a
more accurate model of in vivo tissues [12]. However, the production of short-term primary
cultures faces challenges related to the reproducibility of initiation and the homogeneity
of cultures, limiting their applications [13]. The advantages of easy culture, diversity,
and substantial yield have positioned cell lines as the preferred choice for cellular-level
research. Nevertheless, it is important to note that continuous culturing of cell lines
can lead to mutations over time, potentially altering both their genotype and phenotype,
which in turn may impact experimental outcomes. Primary cells do not encounter these
problems. For instance, cells obtained from EK293 transfected with adenovirus exhibited
characteristics closer to immature neurons [14]. The MDA-435 cell line, long utilized as a
representative model for breast cancer, has recently raised questions about its true identity,
with accumulating evidence suggesting its potential classification as a melanoma cell [15].
In summary, for experiments that cannot be conducted within living organisms, primary
cells can maintain a high level of biological characteristics and thus offer a partial solution
to this issue (Table 1). Vitro cell culture is a fascinating experiment method as the cells can
maintain their interaction, polarity, and topology [7]. The main benefit is that the primary
fish cells would be reassembled into a single-layer structure, which can represent the most
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primitive state of the living fish instead of complex tissues. Moreover, in vitro cell culture
has a very low cost as cell care does not require large farming facilities and large amounts
of water compared to live fish [5].

The principles and techniques of fish cell culture draw heavily from mammalian cell
culture practices. However, when compared to mammalian cell culture, fish cell culture
presents some distinct characteristics. Notably, fish cell culture boasts several advantages
including its ability to adapt to a wide range of temperatures, higher tolerance to hypoxia,
and the ease of maintaining cell cultures for extended durations [16]. In particular, in
physiology, fish cell culture can provide a perfect instrument for studying the response
of cells to different culture temperatures because fish primary cell culture can simulate
living conditions in vivo [17]. In immunology, cell cultures are indispensable in allowing
viral transmission and they make a significant contribution to the development of vaccines
to prevent multiple fish diseases [18]. In ecotoxicology, the utility of fish cell culture
also has unrivaled benefits, such as quick revolution, convenience, ease of identification,
effectiveness, and high specificity compared with vivo organism testing [3]. Technically
and scientifically, vitro cell culture techniques can screen many specimens for a reasonable
cost, especially for environment toxicant assays [4]. Furthermore, primary fish cell cultures
can reduce the number of animals killed, because it is moral to kill fewer fish [3]. Extrinsic
cytotoxicity testing has the advantage of being able to quickly detect the potential virulent
concentration of specific substances, for instance, chemical or nanomaterial. This is an
excellent toxicity grading and grouping tool that can be used as a pre-screening intelligent
detection strategy to help regulators make decisions and reduce in vivo testing [19]. It is
also an available instrument to measure the poisoning of various marine pollutants [4].
Recently, fish have emerged as a suitable model and a promising alternative to the classical
mammalian systems to study vertebrate development.

The growing economic significance of aquaculture has driven increased research into
the healthy development and pathological occurrences of fish, with particular attention
being paid to the prevention and control of freshwater and seawater diseases, as well as
environmental issues. The advancement of cell culture technology has played a pivotal role
in enabling research in genomics, the study of virus–host interaction studies, bacterial
identification, heavy metal toxicity analysis, and stem cell function research. To our
knowledge, no review has summarized the information on primary cell cultures from
different fish tissues. Thus, we report on the progress of primary cell cultures derived from
the gonad, pituitary, muscle, liver, kidney, adipocyte, myeloid, brain, fin, and gill and the
historical background, practical applications, and cultivation techniques employed in fish
cell culture in this review (Figure 1). It is expected to provide some valuable references for
the development of fish primary cell culture and the establishment of cell lines.
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2. Primary Cells of Each Tissue
2.1. Fish Gonad Cells

The major cell types of fish sexual gland cells are gonad cells and surrounding somatic
cells. The main function of the surrounding somatic cells is to produce developmental
gonad cells and to synthesize relevant steroids to adjust the development and maturation
of oocytes and spermatocytes [13]. The interaction between gonad cells and surrounding
somatic cells may play a role during the development of functional sex and developmental
gonad cells of fish [20]. In teleosts, ovarian stem cells are derived from the epithelium
of the ovary, and hormones ejected by the pituitary can influence the follicles’ growth,
development, and maturity [21]. In the male testis, local ligands, deriving from multifarious
testicular germ cells, especially for growth factors, can regulate and modify the function
of testicular support cells and mesenchymal cells through spermatogenesis. In the female
ovary, ovary membrane cells are important for regulating and producing androgens and
aromatase from vitro granulosa cells [10].

According to morphological observation, follicular cells and testicular cells are com-
posed of different types of cells from gonadal tissues. Primary gonadal cells (testicular cells)
from large yellow crocea (Larimichthys crocea) were cultured for study [22]. This system was
used to be closer to the body than cell lines, because different paracrine factors in various
cells can be presented in the endocrine system [10]. An in vitro test system using primary
testis cells of the medaka (Oryzias latipes) was established that provides quantitative data
on cell proliferation and cell viability [9]. Primary cell cultures (ovarian follicular and
testicular cells) of the marine medaka (Oryzias melastigma) were used to screen the environ-
mentally relevant levels of endocrine-disrupting chemicals [10]. Primary sperm cultures
can be regarded as an adaptive detection system to analyze endocrine disruptors and other
substances suspected of interfering with fish sperm formation [7]. Flow cytometry of sperm
cells can be easily quantified to explore the various cell indexes, including cellular size and
cellular ploidy. Therefore, the technique is widely used in the research of spermatogenesis
covering the kinetics of cellular proliferation on the basis of the continuous decline of fluo-
rescence density in each cleavage cell [9]. Primary cell culture in the ovary of medaka was
used to show that nanosilver can have effects on hormone production and cell apoptosis in
teleosts. The in vitro model was used to evaluate endocrine disruption and toxicity [23].

2.2. Fish Pituitary Cells

Pituitary cells are mainly related to reproduction, growth, and stress response [10]. The
pituitary displays different families of structurally and functionally related adenohypophy-
seal hormones: single-chain polypeptide and glycoprotein hormones (growth hormone
(GH); prolactin (PRL); somatolactin (SL); gonadotropins (GTH); and thyroid-stimulating
hormone (TSH)) and proopiomelanocortin-derived hormones (adrenocorticotropic (ACTH)
and melanophore-stimulating hormone (MSH)) [24]. Atlantic cod’s primary pituitary cell
culture was used to study the underlying immediate impacts of cortisol. It provided ev-
idence that cortisol stimulates cellular activity and affects reproductive expression [25].
Cortisol stimulates the release of growth hormone through the nitric oxide pathways and
the degradation pathways of guanine nucleotides (GMP routes) independent pathways [26].
The GMP routes do not participate in the suppression of growth hormone release in a
grouper pituitary cell culture platform. Irisin directly inhibits the gene expression and
secretion of growth hormone when using primary tilapia pituitary cells. And atropin
could stimulate the expression of genes related to growth hormone via direct action at the
pituitary level [27,28].

Cod’s primary pituitary cells were used in electro-physiological experiments and
culturing conditions were optimized: cells that were incubated in M199 medium with os-
molality of 320 mOsm were close to the natural plasma osmolality of cod; 26.2 mM HCO3

−1

was used in M199 medium and the CO2 concentration of the incubating environment was
set as 0.5% which led to the physiological pH of 7.85. Serum was necessary for pituitary
cell culture and bovine serum albumin should be supplemented. This serum substitute
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should contain components that keep the structure and plasma membrane intact because
they can influence the cell physiology [29]. The optimized culture conditions for medaka
(Oryzias latipes) pituitary primary cells were established and investigated [12].

2.3. Fish Muscle Cells

Fish muscles are of particular importance from a practical aquaculture view because
the weight of fish muscles determines the yield of aquaculture. So, understanding muscle
cells is essential for aquaculture to increase fish production [30]. Trout myocyte culture
was explored in 1995, optimized in 1998, and regarded as an available tool to analyze the
rule of insulin-like growth factor (IGF) in muscle cells of trout in 2002 [31]. Primary muscle
cell culture was incorporated at an osmolarity of 360 mOsm and a temperature of 15–21 ◦C
for trout and sea bream [31]. F10 medium was better for muscle cell culture to control
in vitro myoblast proliferation and differentiation [32]. The muscle tissue cells from grass
goldfish were primary cultured at various time points after seeding [33]. Primary trout
muscle cell culture was performed to explore the transcriptional regulation mechanisms of
autophagy-related genes after food starvation [30]. Primary muscle cell culture of gilthead
sea bream was developed to characterize insulin growth factor-1 binding during myocyte
differentiation, which is involved in the role of insulin in metabolism and growth of muscle
cells of black bream [31]. Primary brown trout muscle cells can replicate the differentiation
process in skeletal muscle and have been used to study the direct metabolism of hormones
and cytokines in the muscle of trout [34]. The extracted muscle cells were characterized to
validate the role of myogenesis in trout [32].

2.4. Fish Hepatocytes

Primary fish liver cells have been shown to be multifunctional and the primary cell
culture of liver is widely used for donor organs. In primary culture, fish liver cells can
maintain the natural characteristics of liver, and primary liver cells are used for biotrans-
formation, detoxification, and fat generation [35]. Liver cells are commonly used in the
study of ecotoxicology. Hepatocytes have been shown to be of use for toxicological screen-
ing of cytotoxicity, endocrine disruption, and bioaccumulation through a variety of tests
including suspension, monolayer, and three-dimensional sphere cultures [36]. Primary
hepatocytes were extracted from orange grouper to evaluate the toxic effects of nonylphenol
on hepatocyte activity and the antioxidant system in the liver. Nonylphenol was found
to affect the balance of antioxidant defense and lead to the oxidation imbalance of pri-
mary hepatocytes [3]. Primary hepatocytes were isolated successfully from arctic char.
The optimization of culture conditions to determine the analytical conditions provides a
common tool for screening the potential impact of contaminants and complex samples’
exposure to chemicals [35]. Brown trout hepatocytes in an in vitro model were linked
to the physiological and toxicological effects of nuclear receptors in cross-regulation and
cross-interference of the peroxidase pathway [37]. Primary hepatocytes can be used as a
sensitivity test system to measure the cytotoxicity of nanomaterials [38]. Copper nanoparti-
cles were toxic to primary grouper hepatocytes, but the toxicity of CuSO4 was more severe
than that of copper nanoparticles (Cu NPs) [39]. It was reported that benzopyrene had the
potential to induce oxidative stress in primary grouper liver cells and the oxidative effects
of benzopyrene were assessed as a potential toxicology research technique [4]. Fish liver
cell lines were also widely used in vitro models to study the adverse effects of pollutants
in the marine environment [40]. The use of a 3-D in vitro liver organoid culture system
(spheroids) derived from rainbow trout was reported to measure the metabolism of phar-
maceuticals using a substrate depletion assay. Hepatocyte isolation and cell culture from
Lake Van fish have been successfully achieved [41]. Liver spheroids could be used as a
relevant and metabolically competent in vitro model to measure the biotransformation of
pharmaceuticals in fish [42].

Primary fish hepatocytes have been considered as a model for functional studies of
fish. For example, using a primary culture of fish hepatocytes, the effect of insulin on fat
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generation and lipid hydrolysis can help to understand the regulation of lipid metabolism
in vivo at transcription and enzyme levels [43]. Furthermore, palmitic acid treatment in
large yellow croaker hepatocytes was used to mimic the effect of feeds for farmed fish and
it was found that hepatic cellular triacylglycerol accumulation was significantly higher
in palmitic acid treatment [44]. One method was successfully established in trout liver
cells to silence the activity of peroxidase proliferator-activated receptor (gene silencing
efficiency was about 70%) and showed morphological characteristics of the phenotype after
silencing [45].

RNA interference (RNAi) was performed to knock down a STAT family member
(stat5bl) using primary liver cell culture and could regulate the JAK/STAT pathway to
improve fish immunity [46]. Detection of pH regulation ability in primary sturgeon hepato-
cytes can be used to assess the suitability of the cellular mechanism of CO2 tolerance in
sturgeon, and primary sturgeon liver cells can compensate for intracellular acidosis caused
by hypercapnia [47]. A study showed that during isolation and culture of primary hepato-
cytes from yellow catfish (Pelteobagrus fulvidraco), Zn attenuated Cu-induced lipotoxicity by
reducing lipogenesis and stimulating lipolysis [48], and the hepatocytes were incubated
with ZnO NPs (10 µg/mL) to investigate the mechanisms by which ZnO NPs influence the
Zn absorption and lipid metabolism [49].

2.5. Fish Kidney and Immune Cells

Fish kidneys are typically divided into two parts: the head kidney and the posterior
kidney. The primary function of the posterior kidney is to regulate water balance, excrete
divalent ions, and manage metabolic processes [50]. Interestingly, this aspect is seldom
discussed in the literature. On the other hand, the head kidney primarily plays a crucial
role in the production of macrophages in fish. These macrophages, derived from the head
kidney, exhibit the capacity to phagocytize, produce radicals, and polarize into either
innately activated or alternatively activated macrophages [51]. Consequently, they play a
pivotal role in both the innate and acquired immune responses of fish [52]. In an exciting
development, a continuous cell line has been established, characterized, and isolated from
the head kidney of a large yellow croaker. This cell line holds significant potential as a
valuable tool for studying immune-related genes and functions [53]. Furthermore, a study
involving seabass head kidney in vitro research has shed light on the immunomodulatory
effects of various amino acids. This underscores the potential for developing an immune
nutrition strategy [54]. The aquaculture industry has suffered significant economic losses
due to bacterial and viral infections. In order to mitigate these losses, cell cultures offer a
viable alternative to in vivo experimentation. A study was conducted on kidney primary
cell cultures from three Chilean salmonids, namely Salmo salar, Oncorhynchus kisutch, and
Oncorhynchus mykiss. The aim of the study was to characterize the response to bacterial and
viral stimuli by evaluating various markers associated with both innate and adaptive im-
mune responses [55]. In another study, the time course of stimulation with growth hormone
(GH) and growth hormone release factor (GRF) was described in two experimental models:
the first model involved the SHK-1 cell line derived from primary cultures of adherent cells
from Atlantic salmon (Salmo salar) head kidney, which exhibited phagocytic characteris-
tics; and the second model utilized leukocytes isolated from the head kidney of Atlantic
salmon. The results indicated differential regulation between these two models, providing
a better understanding of the independent action of GH on the immune system [56]. In the
head kidney cellular primary cell culture of sea bream and rainbow trout, cortisol had a
prominent influence on the expression of major inflammatory cytokines [57]. Furthermore,
corticotropin caused a distinct regulation of cytokines in the expression of proinflammatory
cytokines in the head kidney cells of rainbow trout and sea bream, which suggested that
stress hormones have different regulatory effects on the immune response of teleosts [58].
A protocol of primary wolf fish kidney monocytic cells was used to develop and evaluate
the toxicity by exposure to different NSAIDs (Nonsteroidal Anti-inflammatory Drugs) [59].
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Phagocytes are the body’s first line of defense against foreign invasion and the bridge
between the body’s innate immune system and the adaptive immune system [60]. In this
case, macrophages are key immune cells in the early stages of infection as they not only
secrete cytokines to regulate the activation and migration of other white blood cells but
also occupy an important role in phagocytosis and antigen recognition [61]. Macrophages
are some of the most significant effector cells in the natural immune system. The ability to
swallow pathogens and coordinate immune responses depends on the presence of different
surface receptors, such as scavenger receptors and Toll-like receptors [6]. Primary head
kidney macrophages were isolated from red carp, the immune regulatory effects were
investigated, and immune systems were simplified and improved [5]. The functional
characterization of interleukin and its role in the induction of primary renal macrophages
in goldfish was confirmed and the conservatism of interleukin-induced selective activation
of macrophages and the importance of polarization of macrophages in the evolution of
epigenetic animals were emphasized [62]. Eel primary macrophages were developed
and described from head kidney in vitro. The phagocytic activity was measured in the
derived cells of head kidney, and the cell culture system offered an important resource for
identifying molecular tools and useful models for studying the interactions between specific
eel pathogens [6]. Moreover, respiratory burst and phagocytic activity were evaluated by
primary culture of renal leukocytes [60]. N6-cyclohexyl played a down-regulating role in
the innate immune function of white blood cells in the head kidney, while adenosine did
not down-regulate, suggesting the existence of purine receptors in fish immune cells [63].

2.6. Fish Adipocyte Cells and Myeloid Cells

Superfluous accumulation of fat tissue in cultured fish is a prominent problem in fish
aquaculture. A continued intensification in aquaculture can lead to the development of
calorie-rich food, which can lead to an increase in subcutaneous and visceral fat. Such
obesity can have a negative effect on fish health. Primary culture of fish fat cells has
been proven to be an effective method to detect the effects of hormones on fat production
and metabolism [64]. The primary adipocytes of red sea bream were cultivated using an
induction medium [65].

By comparing the effects of organotin on adipocyte development and lipid metabolism
in rainbow trout cell culture, the main use of adipocyte culture was as a valuable tool to esti-
mate the ability of different compounds to interfere with adipocyte differentiation and lipid
accumulation [66]. The effects of leptin and ghrelin on the expression of genes related to
lipogenesis, lipolysis, and lipid metabolism in rainbow trout fat cells were investigated [67].
Rainbow trout adipocyte cells were applied for coordinating the expression of related
lipid-droplet genes in proliferation and differentiation, which occupies a critical role in
specific stages of fish fat formation [68].

Adipocyte cells and bone cells were often studied in previous research. The adipocyte
and bone-derived cells of sea bream can be differentiated into adipocyte-like cells after
adding the differentiation medium. Mesenchymal stem cells are from fatty tissue or
vertebrae of sea bream. The expression profiles of genes and transcription factors were
studied to relate them to lipid metabolism during lipogenesis [69]. Myeloid cells, including
macrophages, neutrophils, granulocytes, thrombocytes, and erythrocytes, which are from
a small number of hematopoietic stem cells or hematopoietic progenitor cells (Figure 2)
are collectively related to myelopoiesis [70]. Primary cell cultures have been established
from sea bream. During culture, mineral deposition in extracellular matrix can promote
the addition of osteogenic medium [71]. Previous studies were conducted on the process
of bone formation in fish. Insulin-like growth factor (IGF) and insulin were identified
as regulators of bone marrow cell proliferation, which has a great significance for better
understanding the development of bone growth and bone deformity of fish and improving
the quality of aquaculture products in the future [31].



Biology 2023, 12, 1454 8 of 22

Biology 2023, 12, x FOR PEER REVIEW 8 of 22 
 

 

obesity can have a negative effect on fish health. Primary culture of fish fat cells has been 

proven to be an effective method to detect the effects of hormones on fat production and 

metabolism [65]. The primary adipocytes of red sea bream were cultivated using an in-

duction medium [66]. 

By comparing the effects of organotin on adipocyte development and lipid metabo-

lism in rainbow trout cell culture, the main use of adipocyte culture was as a valuable 

tool to estimate the ability of different compounds to interfere with adipocyte differenti-

ation and lipid accumulation [67]. The effects of leptin and ghrelin on the expression of 

genes related to lipogenesis, lipolysis, and lipid metabolism in rainbow trout fat cells 

were investigated [68]. Rainbow trout adipocyte cells were applied for coordinating the 

expression of related lipid-droplet genes in proliferation and differentiation, which oc-

cupies a critical role in specific stages of fish fat formation [69]. 

Adipocyte cells and bone cells were often studied in previous research. The adipo-

cyte and bone-derived cells of sea bream can be differentiated into adipocyte-like cells 

after adding the differentiation medium. Mesenchymal stem cells are from fatty tissue or 

vertebrae of sea bream. The expression profiles of genes and transcription factors were 

studied to relate them to lipid metabolism during lipogenesis [70]. Myeloid cells, includ-

ing macrophages, neutrophils, granulocytes, thrombocytes, and erythrocytes, which are 

from a small number of hematopoietic stem cells or hematopoietic progenitor cells (Fig-

ure 2) are collectively related to myelopoiesis [71]. Primary cell cultures have been estab-

lished from sea bream. During culture, mineral deposition in extracellular matrix can 

promote the addition of osteogenic medium [72]. Previous studies were conducted on 

the process of bone formation in fish. Insulin-like growth factor (IGF) and insulin were 

identified as regulators of bone marrow cell proliferation, which has a great significance 

for better understanding the development of bone growth and bone deformity of fish 

and improving the quality of aquaculture products in the future [32].  

 

Figure 2. The cells derived from fishbone. Myeloid cells develop into hematopoietic progenitor 

cells following by monocytes. Then, monocytes evolve into granulocytes, neutrophils, macrophag-

es, thrombocytes, and erythrocytes. Macrophages ultimately transform into liver Kupffer cells, os-

teoclasts, histiocytes, and microglia. 

Figure 2. The cells derived from fishbone. Myeloid cells develop into hematopoietic progenitor
cells following by monocytes. Then, monocytes evolve into granulocytes, neutrophils, macrophages,
thrombocytes, and erythrocytes. Macrophages ultimately transform into liver Kupffer cells, osteo-
clasts, histiocytes, and microglia.

2.7. Fish Brain Cells

The cell types of brains can be divided into microglia, neurons, and astroglia. Primary
brain cell culture was performed for giant grouper. Interleukin-1 and tumor necrosis factor
(TNF) were found to cause the death of neurons in brain cells after nervous necrosis virus
infection [72]. The effect of kisspeptin decapeptide on the expression of reproduction-
related genes was evaluated using the primary hypothalamic culture system, and the
results showed that kisspeptin had no effect on gonadotropin-releasing hormone in the
brain cells of tongue sole [44]. Primary neuron cultures of Senegalese sole were established
and analyzed using a detailed protocol, which proved the effects of two capsid mutations
in recombinant strains on virus replication of nerve cells [73]. A continuous cell line from
the brain of perch was susceptible to necrosis and the culture system provided a useful
tool to study epidemiology, viral pathology, and vaccine development [74]. Cell lines of
grouper brain tissue were established and their susceptibility was studied, including to
red-spot grouper neuro-necrosis virus, Singapore grouper iris virus, and lymphocytosis
virus [75].
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2.8. Fish Gill Cells

Gills are the main organs for fish to exchange gas and ions with the external environ-
ment. Branchial cells have a complex epithelial tissue composed of three main types of cells
in direct contact with the environment: pavement cells (also known as respiratory cells),
mitochondria-rich cells (also known as chlorine cells), and mucous cells [76]. Branchial
ion extrusion is thought to occur between columnar or elliptical ionic cells, known as
mitochondria-rich cells (MRCs) and adjacent cells referred to as thin-laminar adherent
cells (ACs). Na+ enters the apical fossa of MRCs through “leaky” paracellular connections
between MRCs and interlaced ACs [77]. The pavement cells mainly cover the chloride
ion cells on the branchial filaments and branchial lamella. The mucous cells are in the
lamella epithelium and their secretion may be a mechanism to adapt to different water
conditions [78]. A study identified the hypotonic responsive genes in gill cells and profiled
the gill microbiota communities after a freshwater transfer experiment via transcriptome
sequencing and 16S rRNA gene sequencing, suggesting the host–bacterium interaction in
the gill facilitates freshwater acclimation [17].

The establishment of the freshwater teleost gill model was based on the reconstruction
of squamous epithelium on the permeable membrane of primary culture [79]. In vitro
culture of gill epithelium has two unique advantages. The first advantage is the use of
freshly isolated gill cells to obtain information on ion transport in filament surfaces and
MRCs to explain the osmotic mechanism. The second advantage is that gill filaments can
be cultured in a culture medium for almost four days [78]. The Percoll method is the best
method for gill cell isolation; PercollTM-gradient-isolated gill chloride (CC) and pavement
cells (PVCs) were settled and the regulation of their expression in primary gill cell culture
was determined [80–82]. The primary culture of gill epithelial cells from rainbow trout
(Oncorhynchus mykiss) has been successfully investigated [83]. The primary culture of fish
gill cells can provide a functional, cell-diversified and model culture platform in vitro. In a
study to prolong the viability of primary gill cell cultures in rainbow trout, a method was
established to prolong the viability of cultures during prolonged exposure to water, with
the utility of this model extending to a variety of longer-term exposure scenarios [82].

Gill cells are mainly studied for osmoregulation. Previous studies have revealed that
the cascade of osmotic signals may be related to the regulation of downstream effects [84].
Mitogen-activated protein kinases and myosin light-chain kinases were explored in the
early phase of hyperosmotic challenge using primary freshwater teleost branchial cell
culture [85]. Short-term hyperosmotic challenges can activate multiple severalsignaling
pathways. For example, histone phosphorylation and downstream effectors played a role in
freshwater gill cells and hypertonicity-challenge-induced MAPK-dependent phosphoryla-
tion pathways [86]. The differential expression of osmotic stress transcriptional factor (Ostf)
was first revealed in isolated CCs and PVCs [80]. A study confirmed that cortisol directly
acts on glycogen-rich cells in the gills of tilapia and regulates glycogen metabolism by
promoting glycogen phosphorylase isoform (GPGG) mRNA expression [87]. To maintain
their good health, the immune response can be generated by fish gills against external
threats as the first line of immune defense [81]. The physiological and immune functions of
tilapia gills are widely understood, but their functional heterogeneity at the single-cell scale
has rarely been reported. One study performed single-cell RNA sequencing (scRNA-seq)
on the gills of tilapia (Oreochromis niloticus) and identified 12 cell populations and analyzed
their functional heterogeneity [88]. The single-cell datasets provide a reference for marker
gene establishment of gills and serve as a platform for future studies investigating the
physiological and immune function of gills.

The absorption rate of ten drugs was determined by a gill cell culture system [89]. The
effect of ferric sulfate (FeSO4·7H2O) on the semi-permeable membrane culture of primary
gill cells of rainbow trout was studied. This model was used to study the toxicity and
drug resistance of gill epithelial cells [90]. In addition, the study has demonstrated that
the cultured gill epithelia of rainbow trout can be optimized to exhibit tolerance towards
seawater, enabling their utilization in toxicological assessments of pollutants suspended
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in seawater, thus simulating conditions found in marine ecosystems [81]. This optimized
gill cell system represents a viable in vitro approach for conducting toxicological studies
on marine ecosystems, thereby facilitating effective pollution control and management.
Significant progress has been made in the assessment of fish toxicity of microalgal species
using highly sensitive and reproducible fish RTgill-W1 gill cell lines [91]. The potential of
the primary gill cell culture system was further demonstrated for environmental monitoring
and biotransformation of organic compounds in branchial cells [92]. Previous studies have
reported how to reconstruct and culture freshwater rainbow trout gill epithelium on a flat
permeable membrane. The system can be used for freshwater gill physiology and toxicity
studies, bioaccumulation studies, and environmental water quality monitoring [93].

2.9. Fish Intestinal Epithelial Cells

The intestine plays a pivotal role in fish physiology, serving as the primary site for
digestion, nutrient absorption, and various crucial functions including osmoregulation,
acid–base balance, and the excretion of specific metabolic byproducts [94]. Within the
intestinal epithelium, monolayer cells possess dual functions, as they both absorb essential
substances and serve as a defense against harmful ones. The luminal cells in the intestine
are closely linked to the epithelial cells by a brush border, forming a relatively impermeable
membrane [95]. These intestinal epithelial cells also act as vital barriers to protect the gut
and can be influenced by dietary nutrition and environmental factors [96]. For example,
in aquaculture, prebiotics are intricate carbohydrate molecules that are not directly di-
gested by fish but are metabolized by the microbial community within the host gut. This
process promotes the growth of “beneficial” bacterial species, subsequently enhancing
fish performance.

It is worth noting that gut cells may directly respond to these dietary components,
contributing to research on fish gut health [97]. Additionally, cultured fish intestinal
epithelial cells can release warning substances against predatory behavior [98]. In cases of
deteriorating water quality and feed quality, many carnivorous fish become susceptible
to bacterial intestinal diseases, posing challenges to the sustainable development of the
aquaculture industry. A novel ex vivo culture method using primary intestinal epithelial
cells from rainbow trout, Oncorhynchus mykiss, has been established and maintained over
the long term. This in vitro system allows for the study of fundamental processes related
to regional differences in dietary uptake and contaminant metabolism. It also provides a
means to reduce the number of fish required for biological studies [99]. Some studies have
employed transcriptome sequencing technology to comprehensively and rapidly obtain all
transcript information during the exposure of intestinal epithelial cells of cyprinid carp to
lipopolysaccharides (the main virulence factor of Gram-negative bacteria). This systematic
analysis of gene expression changes provides a theoretical basis for understanding the
molecular mechanisms underlying the regulation of intestinal epithelial cells in Cyprinus
carpio by lipopolysaccharides [100].

2.10. Other Cells

For neuron cells, using electrophysiological analysis to isolate and culture neurons
from the spinal cord of adult zebrafish, this new primary cell culture system provides
in vitro methodology and new tools for neurophysiological research [101].

The fin cell line is very versatile because it has a high reproductive capacity and the
success rate of cell migration is high [10,102]. At the same time, many fish cells are derived
from fin tissue, such as primary cell cultures derived from the fin of the endangered Yangtze
sturgeon (Acipenser dabryanus) [103]. Fish polyploid cells can be inferred by the karyotype
of their fin cells. Three cell lines were established in fin primary culture of diploid crucian,
triploid hybridization, and allotetraploids. And one marker gene, collagen type I alpha 1
chain (COL1A1), was used to further identify cell karyotype [104]. Primary goldfish culture
cells were derived from the caudal fin and incubated with a temperature range of 20 to
35 °C. The results indicated that goldfish cells were produced with different temperatures
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and tended to show stable physiological states related to temperature after temperature
changes [105]. The establishment of a pomfret fin cell line would offer a beneficial in vitro
tool for mechanism studies about pathogen interaction [106]. The koi fin cell line was
established to develop effective diagnostic methods for detecting and monitoring viral
infections in the case of outbreaks of koi herpes virus disease in India [107].

3. Common Methods for Fish Cell Isolation

The development of fish cell culture is a relatively recent advancement compared to
mammalian cell culture, and its methodologies have been adapted from those used in
mammals. Nevertheless, there are notable differences. Temperature control in cell culture
is a critical factor, closely tied to the temperature preferences of the fish species. Since fish
are poikilotherms, their cell culture temperature range is broader than that of mammals.
Passage frequency, occurring every 7 to 14 days in fish cells, is comparatively lower than
the 4-day passage frequency of mammalian cells [108]. Fish cells also exhibit a slower
metabolic rate, allowing them to be maintained in cell culture for short periods (several
months) due to their sluggish metabolism in a relatively cool environment. For long-term
preservation, storage in liquid nitrogen (−196 ◦C) is necessary. The isolation of primary
fish cells primarily relies on methods developed for mammalian cells, including the tissue
block method, mechanical crushing method, and enzyme digestion method.

3.1. Enzymatic Digestion

The enzyme digestion method involves removing interstitial components, such as
matrix and fibers, which can hinder cell growth. This results in the dispersion of cells into
a suspension, facilitating better nutrient absorption and efficient elimination of metabolic
waste. Using the enzyme digestion method eliminates issues related to selective cell growth
due to mobility, allowing for the rapid acquisition of a significant number of representative
cells within a short timeframe. Protein-digesting enzymes commonly used for in vitro cell
isolation include trypsin, collagenase, lysozyme, pepsin, and neutral protease, with trypsin
and collagenase being frequently employed. In the process of fish cell isolation and culture
using enzymatic digestion, the fish are first sterilized by immersing them in 75% ethanol
after anesthesia. The dissected tissues are then placed into a cell buffer, cut into small
pieces in a Petri dish using a sharp scalpel, and passed through different micropipette tips.
Afterward, the softened tissue is agitated and passed through a disposable mesh (100 µm).
The remaining tissue on the mesh is subjected to collagenase treatment and sieving. The
suspension containing the isolated cells undergoes centrifugation and washing before being
placed into the culture medium [41,109]. For example, trypsin was used to isolate large
yellow croaker (Larimichthys crocea) gonadal cells, establish cell lines, and explore gene
expression [22].

3.2. Tissue Block Adhesion Method

This method is suitable for tissues with low volume or dense growth, such as fin
strips, skin, muscle, and gonads, where mechanical or enzymatic hydrolysis may cause
cellular damage. However, a limitation of the tissue block adhesion method lies in its
selective adhesion to certain tissues and their subsequent outward migration and growth.
Nonetheless, this method remains one of the commonly used, straightforward, and feasible
primary cell culture techniques. It involves the aseptic separation of the target tissue,
followed by the removal of impurities like membranes, lipids, and blood using a buffer
solution. Sterile anatomical tools are used to divide the tissue block into 1 mm3 pieces,
which are then inoculated at the bottom of a cell bottle. Subsequently, culture medium is
added, and the bottle is transferred to an incubator for cultivation. It is crucial to master
the adhesion time to prevent nutritional-deficiency-induced death of tissue cells [110].
Cells cultured using the tissue block adhesion method have the advantage of maintaining
complete cell morphology and strong proliferation ability. For instance, Li et al. isolated
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and cultured grass goldfish (Carassius auratus) muscle primary cells using the tissue block
adhesion method and established a new continuous fish cell line (CAM) [33].

3.3. Mechanical Crushing

The mechanical crushing method is suitable for tissues that have soft electrolytes,
fewer fibrous components, and can withstand mechanical separation. Examples of such
tissues include embryos, spleens, livers, adult fish brains, and soft tumors. This method
involves breaking down and isolating tissue blocks into individual cells through various
physical techniques, such as repeated grinding and filtration or tissue disruption using
nylon mesh and stainless steel mesh. Subsequently, centrifugation is employed to obtain
a single-cell suspension. While this approach allows for the rapid acquisition of a large
number of cells, it is susceptible to causing mechanical damage. The tissue adhesion
method, when used for primary cell culture, results in slow cellular migration and is
applicable to only a limited range of tissues. On the other hand, the enzymatic digestion
method carries a risk of cell damage during processing, prompting many researchers to
prefer mechanical crushing as a viable alternative. This method was successfully utilized
for the isolation of intestinal epithelial cells (IECs) from grass carp, yielding favorable
results [111].

4. Perspectives and Future Developments

The transfection efficiency of gonadal cell lines from sole was up to 40%. Therefore, an
effective method for transfection is imperative. In many vitro studies of primary cultured
fish cells, the cultured living cells have characteristics that were similar to those of intact
cells in vivo. However, important functional characteristics of cells may be lost in cell
dispersion or the following culture, although primary cells can remain active for a long
time [29]. Long-term cultured cells with a high proliferation rate can be easily frozen and
thawed when necessary, which will offer a good basis for use. However, the primary cells
can benefit from maintaining interactions and functional properties between primary cells.
A major task in secondary cell culture is that they have the same properties as primary
cells [18]. In vitro toxicity assessment and screening were widely used in cell lines due to
their simple availability and cost effectiveness. Primary cell cultures have been criticized
for the fact that they may experience significant genotype and phenotypic mutations, and
the karyotype changes have an impact on gene expression and function [23] (Table 1).

Advanced in vitro culture from tissues of different origins includes three-dimensional
organoid microstructures that may mimic conditions in vivo. Direct measurements of
oxygen gradients in a spheroid culture system were used in electron parametric resonance
oximetry, which provides an elegant, widely applicable approach to directly characterize
spheroid (and another organoid) cultures in biomedical and toxicological research [112]. In
another application in retinal organoids, the cell–cell interactions are necessary to inves-
tigate the formation of retinal layers. The dissociated zebrafish retinal progenitors were
cultured in agarose microwells, forming tight retinal organoids within these wells [113].

Cell lines, especially stem cells, have always been the first choice for cell-level research
due to their advantages of easy culture, variety, and considerable yield. It is noteworthy
that some cell lines have been involved in important milestones, such as the pioneering
work on stem cells in the medaka model [114–116].
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Table 1. Examples of primary cell culture listed in this paper.

Reference Species Tissue Main Experimental Use Culture Media Serum Antibiotics Growth Factor, Hormone, and
Others in Media

[11] Marine medaka (Oryzias
melastigma)

Pituitary, testis, and
ovary

Rapid screening of
environmental chemicals L-15 medium Fetal bovine serum

Fungizone,
penicillin, and
streptomycin

Insulin–transferrin–selenium-A,
GlutaMAX

[29] Atlantic cod
(Gadus morhua) Pituitary Optimizing the

conditions of cell culture M199 medium Newborn calf
serum None None

[27] Tilapia
(Oreochromis niloticus) Pituitary Signaling pathway

validation M199 medium Fetal bovine serum None None

[23] Medaka (Oryzias
melastigma) Pituitary

Rapid screening of
environmental silver

nanoparticles
M199 medium Fetal bovine serum Fungizone 1 × GlutaMAX

[25] Atlantic cod (Gadus
morhua) Pituitary Gene function analysis L-15 medium Newborn calf

serum None None

[26] Orange-spotted grouper
(Epinephelus coioides) Pituitary Signaling pathway

validation L-15 medium Bovine serum
albumin

Penicillin,
streptomycin Sodium chloride

[10] Medaka
(Oryzias latipes) Testis Research of hormone

metabolism L-15 medium Fetal calf serum Penicillin,
streptomycin Steroid-free Ultroser SF

[87] Tilapia (Oreochromis
niloticus) Testis Analysis of

spermatogenesis L-15 medium Fetal bovine serum Penicillin,
streptomycin None

[103] Creekchub (Semotilus
atromaculatus) Skin Rapid screening of

environmental chemicals L-15 medium Fetal bovine serum

Penicillin,
Fungizone,

kanamycin, and
tetracycline

None

[31] Gilthead sea bream
(Sparus aurata) Muscle Signaling pathway

validation DMEM Horse serum

Penicillin,
streptomycin,

fungizone,
gentamycin

None

[34] Brown trout (Salmo
trutta) Muscle Signaling pathway

validation DMEM Horse serum

Penicillin,
streptomycin,

amphotericin, and
gentamycin

Poly-L-lysine, laminin

[30] Rainbow trout
(Oncorhynchus mykiss) Muscle Gene function analysis DMEM Fetal bovine serum Penicillin,

streptomycin 100 nM of trout IGF1

[32] Rainbow trout
(Oncorhynchus mykiss) Muscle

Characterization of
proliferation and

differentiation
DMEM Horse serum

Penicillin,
streptomycin,

Fungizone
None
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Table 1. Cont.

Reference Species Tissue Main Experimental Use Culture Media Serum Antibiotics Growth Factor, Hormone, and
Others in Media

[3] Orange-spotted grouper
(Epinephelus coioides) Liver

Evaluation of the
nonylphenol-induced

oxidative stress
L-15 medium Fetal bovine serum Penicillin,

streptomycin None

[41] Rainbow trout
(Oncorhynchus mykiss) Liver Toxicology

research L-15 medium None
Amphotericin,
streptomycin,

penicillin

EE2,
L-glutamine

[40] Arctic char (Salvelinus
alpinus) Liver Screening environmental

contaminants L-15 medium None
Penicillin,

streptomycin,
amphotericin

L-glutamine

[42] Brown trout (Salmo
trutta) Liver Signaling pathway

validation L-15 medium Fetal bovine serum Streptomycin,
penicillin Poly-L-lysine (300 µg/mL)

[4] Orange-spotted grouper
(Epinephelus coioides) Liver Toxicology

research L-15 medium Fetal bovine serum Penicillin,
streptomycin None

[47] Yellow catfish
(Pelteobagrus fulvidraco) Liver Research of hormone

metabolism M199 medium Fetal bovine serum Penicillin,
streptomycin L-glutamine

[49] Brown trout (Salmo
trutta) Liver Gene function analysis L-15 medium Fetal bovine serum Streptomycin,

penicillin None

[51] White sturgeon
(Acipenser transmontanus) Liver Test intracellular pH

compensation
α-minimum

essential medium Fetal bovine serum
Penicillin,

streptomycin,
Fungizone

None

[43] Rainbow trout
(Oncorhynchus mykiss) Liver

Comparative cytotoxicity
study of silver
nanoparticles

L-15 medium Fetal bovine serum Penicillin,
streptomycin

L-glutamine, sodium pyruvate,
NEAA

[44] Orange-spotted grouper
(Epinephelus coioides) Liver Toxicology

research
DMEM/F12

medium Fetal bovine serum Penicillin,
streptomycin None

[101]
Grass carp

(Ctenopharyngodon
idellus)

Intestine Signaling pathway
validation DMEM Fetal bovine serum

Penicillin,
gentamycin,

amphotericin B,
gentamycin sulfate

None

[104] Rainbow trout
(Oncorhynchus mykiss) Intestine Cell culture method Hanks’ balanced

salt solution
Bovine serum

albumin None None

[65] Goldfish (Carassius
auratus L.) Kidney Gene function analysis MGFL-15 medium Heat-inactivated

carp serum
Penicillin,

streptomycin Mechano Growth Factor

[66] Gilthead seabream
(Sparus aurata L.) Kidney Immunological research RPMI 1640 medium Fetal bovine serum Penicillin,

streptomycin Heparin
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Table 1. Cont.

Reference Species Tissue Main Experimental Use Culture Media Serum Antibiotics Growth Factor, Hormone, and
Others in Media

[72] Goldfish (Carassius
auratus L.) Kidney Immunological research NMGFL-15

medium
Calf serum and

carp serum None
Interleukin-3, granulocyte–

macrophage-colony-stimulating
factor

[60]

Rainbow trout
(Oncorhynchus mykiss)

and
gilthead sea bream

(Sparus aurata)

Kidney Immunological research DMEM None None Antagonist receptors and/or
hormones

[6] Wolf fish (Hoplias
malabaricus) Kidney Immunological research L-15 medium Fetal bovine serum Penicillin,

streptomycin None

[5] Red carp (Cyprinus
carpio) Kidney Immunological research Hank’s balanced

salt solution None Penicillin,
streptomycin Heparin

[64] European eel
(Anguilla anguilla) Kidney Immunological research L-15 medium Bovine serum

albumin None Poly-L-lysine

[68] Rainbow trout
(Oncorhynchus mykiss) Adipocyte Toxicology

research L-15 medium Fetal bovine serum Antibiotic/antimycotic
solution Insulin

[69] Rainbow trout
(Oncorhynchus mykiss) Adipocyte Research of hormone

metabolism
Krebs–HEPES

buffer Fetal bovine serum Collagenase type II Insulin

[67] Rainbow trout
(Oncorhynchus mykiss) Adipocyte Gene function analysis Krebs–HEPES

buffer
Bovine serum

albumin

1% antibi-
otic/antimycotic

solution
L-glutamine, insulin

[106] Zebrafish (Danio rerio) Brain Electro-physiological
studies L-15 medium Fetal bovine serum Penicillin,

streptomycin Ofloxacin

[74] Giant groupers
(Epinephelus lanceolatus) Brain Immunological research L-15 medium Fetal bovine serum Penicillin,

streptomycin None

[48] Half-smooth tongue sole
(Cynoglossus semilaevis) Brain Gene function analysis L-15 medium Bovine serum

albumin
Penicillin,

streptomycin Palmitic acid

[75] Sole (Solea senegalensis) Brain Immunological research L-15 medium Fetal bovine serum Gentamicin Glutamine

[73] Sea bream (Sparus aurata) Bone Research of hormone
metabolism DMEM Fetal bovine serum Antibiotic/antimycotic

solution
L-ascorbic acid,

β-glycerophosphate

[71] Gilthead sea bream
(Sparus aurata) Bone Gene function analysis DMEM Fetal bovine serum Antibiotic/antimycotic

solution
NaCl, porcine insulin,

dexamethasone

[78] Common carp (Cyprinus
carpio) Fin Immunological research DMEM Fetal bovine serum Phosphate,

streptomycin FGF
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Table 1. Cont.

Reference Species Tissue Main Experimental Use Culture Media Serum Antibiotics Growth Factor, Hormone, and
Others in Media

[97] Rainbow trout
(Oncorhynchus mykiss) Gill

Environmental
monitoring of urban

streams
L-15 medium Fetal bovine serum

Penicillin,
streptomycin,

gentamicin
None

[81] Rainbow trout
(Oncorhynchus mykiss) Gill Salinity/water

regulation
Hanks’ balanced

salt solution Fetal bovine serum
Penicillin,

Streptomycin, and
amphotericin B

Glutamine

[82] Puffer fish (Tetraodon
nigroviridis) Gill Gene function analysis L-15 medium Fetal bovine serum

Penicillin,
streptomycin,

gentamicin
L-glutamine, cortisol

[90] Japanese eels (Anguilla
japonica) Gill Salinity/water

regulation L-15 medium Fetal bovine serum
Penicillin,

streptomycin, and
Fungizone

None

[95] Rainbow trout
(Oncorhynchus mykiss) Gill Toxicology

research L-15 medium Fetal bovine serum
Penicillin,

streptomycin,
amphotericin B

Glycine
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5. Conclusions

In conclusion, the review emphasizes the significance of fish primary cell culture as a
powerful tool for profiling the physiological roles of fish cells. The utilization of fish primary
cell culture techniques has previously facilitated the identification of emerging viruses
and is now extensively employed in research on environmental toxicology, immunology,
fish physiology, and germplasm conservation. This technique has revolutionized our
understanding of cellular processes in fish species, enabling researchers to investigate
cellular responses, unravel intricate molecular mechanisms, and explore novel avenues for
fish health management, aquaculture optimization, and environmental risk assessment.

Therefore, it is crucial to standardize and diversify fish primary cell separation tech-
nology and cell culture conditions for the optimal application of fish cells. Cell culture
technology has permeated every facet of life science and holds immense potential for
further development.
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