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Simple Summary: Despite the well-documented pathophysiology of Alzheimer’s Disease (AD),
treatment options are limited in diversity and efficacy. Thus, the development of new treatments
requires an extensive understanding of molecular pathways altered by drugs in development. In this
review, we survey the literature regarding common herbal phytochemicals, kaempferol and quercetin,
with a specific focus on their multiple mechanisms that alleviate the pathological underpinnings of
AD. Here, we utilize the well-documented mechanisms of quercetin to propose a novel multimodal
mechanism of kaempferol, and we discuss common herbal sources and the limitations of these
potential treatments.

Abstract: Alzheimer’s Disease (AD) is a progressive neurodegenerative disorder impairing cognition
and memory in the elderly. This disorder has a complex etiology, including senile plaque and
neurofibrillary tangle formation, neuroinflammation, oxidative stress, and damaged neuroplasticity.
Current treatment options are limited, so alternative treatments such as herbal medicine could
suppress symptoms while slowing cognitive decline. We followed PRISMA guidelines to identify
potential herbal treatments, their associated medicinal phytochemicals, and the potential mechanisms
of these treatments. Common herbs, including Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis,
Cyperus rotundus, and Buplerum falcatum, produced promising pre-clinical results. These herbs are
rich in kaempferol and quercetin, flavonoids with a polyphenolic structure that facilitate multiple
mechanisms of action. These mechanisms include the inhibition of Aβ plaque formation, a reduction
in tau hyperphosphorylation, the suppression of oxidative stress, and the modulation of BDNF and
PI3K/AKT pathways. Using pre-clinical findings from quercetin research and the comparatively
limited data on kaempferol, we proposed that kaempferol ameliorates the neuroinflammatory state,
maintains proper cellular function, and restores pro-neuroplastic signaling. In this review, we discuss
the anti-AD mechanisms of quercetin and kaempferol and their limitations, and we suggest a potential
alternative treatment for AD. Our findings lead us to conclude that a polyherbal kaempferol- and
quercetin-rich cocktail could treat AD-related brain damage.

Keywords: Alzheimer’s disease (AD); kaempferol; quercetin; flavonoids; traditional Chinese medicine;
dementia

1. Introduction

Alzheimer’s disease (AD) is a debilitating neurodegenerative disorder characterized
by cognitive decline and memory impairment. AD could affect 152 million individuals by
2050 [1]. The progression of AD is influenced by multiple factors, including the accumu-
lation of beta-amyloid plaques (Aβ) and the formation of neurofibrillary tangles (NFTs).
The aggregation of Aβ plaques exacerbates the disease by impairing neuronal function and
triggering neuroinflammation [2–5]. Oxidative stress and the presence of neurofibrillary
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tangles (NFTs) also contribute to the aggregation of Aβ into senile plaques [6–14]. NFTs con-
sist of hyperphosphorylated tau proteins that disrupt neuronal transport systems [15–21].
Neuroinflammation, in turn, exacerbates damage to neuronal integrity [22]. Symptoms
of AD include memory loss, impaired learning, emotional changes, cognitive and speech
deficits, shortened attention span, and impaired management of daily tasks [23–25].

Currently, the treatments available for AD are expensive and have minimal efficacy.
Acetylcholinesterase inhibitors (AChEIs), including donepezil, and N-methyl-D-aspartate
(NMDA) receptor antagonists, including memantine, are commonly prescribed for AD [26].
AChEIs inhibit the enzymatic degradation of ACh by inhibiting cholinesterase activity [27],
while NMDA receptor antagonists limit calcium influx to prevent glutamate-induced
cytotoxic cell death [28]. However, these drugs simply suppress symptoms and fail to halt
disease progression [26], and only half of the population positively responds to these current
treatments [29,30]. Herbal medicine boasts a well-documented history of safe and effective
incorporation into traditional Asian diets [31,32]. Preclinical studies have demonstrated
that these herbs can enhance cognitive and memory functions [33,34]. These herbs serve as
dependable sources of phytochemicals, such as kaempferol and quercetin, that have limited
side effects and could combat Alzheimer’s disease [35–37]. Specifically, these flavonoids
have anti-inflammatory, neuroprotective, and anti-degenerative effects [33,38–46].

The objective of this review is to elucidate the anti-AD mechanisms of kaempferol
and quercetin. Here, we present a multimodal mechanism of action for kaempferol and
quercetin in the treatment of Alzheimer’s disease (AD). First, both flavonoids exert antioxi-
dant effects, which stabilize cellular function and reduce neuroinflammation. Importantly,
they also modulate PI3K/AKT signaling to limit Aβ and tau accumulation in toxic ag-
gregates and enhance neuroplasticity by restoring BDNF signaling. These mechanisms
ultimately improve memory and cognitive performance in AD patients. To our knowledge,
this review represents the first comprehensive exploration of the literature that collec-
tively shows kaempferol’s potential to counteract both tau and Aβ via modulation of
the PI3K/AKT/GSK-3β pathway. Additionally, we propose that a polyherbal cocktail,
incorporating sources rich in quercetin and kaempferol, could serve as an effective adjunc-
tive or alternative treatment for AD. Finally, we explore the limitations of quercetin and
kaempferol and discuss potential strategies for overcoming these challenges.

2. Materials and Methods

We collected data following the PRISMA guidelines for systematic review articles. The
articles were sourced from PubMed, ScienceDirect, and Google Scholar, and data collection
was conducted up until November 2023. We compiled a relevant list of articles to identify
phytochemicals that have been studied for the treatment of Alzheimer’s disease (AD) and
their potential to induce therapeutic brain changes related to AD. Our search strategy
initially yielded a total of 13,691 papers (13,688 from databases and an additional 3 from
other sources). Of these, 2463 studies were screened based on their titles and abstracts,
resulting in 378 articles that met the inclusion criteria (Figure 1). We included studies and
reviews that explored the anti-AD mechanisms of phytochemicals and those that provided
insights into the features of AD. The language was limited to English. Inclusion criteria
required that articles discuss topics such as “Alzheimer’s disease”, “herbs”, “kaempferol”,
“quercetin”, “inflammation”, “neuroprotection”, “tau”, and “Aβ”. The selected articles en-
compassed reviews, original research articles, and published clinical trials. Data extraction
was carried out independently by a team of three investigators, considering factors such as
the year of publication, article types, and the topic of herbs in relation to AD.
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deficits facilitate ROS production, driving oxidative stress via lipid peroxidation [57]. Con-
sequently, mitochondrial energy production is impaired and pro-apoptotic signaling fol-
lows [57]. Glutamate-induced excitotoxicity could also facilitate oxidative stress [64–67]. 
Disrupted ROS clearance establishes the neuroinflammatory microglial and astrocytic hy-
peractivity [38,68–72] and favors neuronal signaling pathways that impair Aβ clearance 
[48,73,74]. Finally, proper mitochondrial function is required for Aβ clearance and can, in 
turn, maintain appropriate tau activity states [75]. 
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lation and impairing neuronal communication [22,47,48,75,77–79]. Moreover, Aβ accumu-
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due to impaired clearance [84], overzealous astrocytic and microglial responses com-
pound the neuroinflammatory environment by releasing pro-inflammatory factors, pro-
moting neuronal apoptosis [6,49,85–89]. These findings were supported in postmortem 
tissue [6,54–56]. Finally, Aβ signaling significantly impairs LTP [90], facilitating neuro-
degeneration via low synaptic activity. 

AD is one of the most common tauopathies [91]. Aβ plaque accumulation drives tau 
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3. Hallmarks of Alzheimer’s Disease

Several features of AD, including Aβ plaque accumulation [47,48], tau hyperphospho-
rylation and neuroinflammation [49], and oxidative stress [50–53], have been identified
as targets for drug development. Moreover, these deficits have been observed in studies
with human patients [6,54–63]. This section will briefly explore the pathophysiology of AD,
with a focus on the proposed molecular origins and outcomes of their aberrant activities.

While the origins are still debated, the literature greatly supports the roles of oxida-
tive stress and neuroinflammation as critical drivers of neurodegeneration. Antioxidant
deficits facilitate ROS production, driving oxidative stress via lipid peroxidation [57].
Consequently, mitochondrial energy production is impaired and pro-apoptotic signaling
follows [57]. Glutamate-induced excitotoxicity could also facilitate oxidative stress [64–67].
Disrupted ROS clearance establishes the neuroinflammatory microglial and astrocytic
hyperactivity [38,68–72] and favors neuronal signaling pathways that impair Aβ clear-
ance [48,73,74]. Finally, proper mitochondrial function is required for Aβ clearance and
can, in turn, maintain appropriate tau activity states [75].

Although normal Aβ levels can maintain regular neuronal function [76], failed Aβ

clearance from the brain can expedite neurodegeneration by facilitating plaque accumula-
tion and impairing neuronal communication [22,47,48,75,77–79]. Moreover, Aβ accumula-
tion further promotes oxidative stress [80–83]. As Aβ plaques accumulate in the brain due
to impaired clearance [84], overzealous astrocytic and microglial responses compound the
neuroinflammatory environment by releasing pro-inflammatory factors, promoting neu-
ronal apoptosis [6,49,85–89]. These findings were supported in postmortem tissue [6,54–56].
Finally, Aβ signaling significantly impairs LTP [90], facilitating neurodegeneration via low
synaptic activity.

AD is one of the most common tauopathies [91]. Aβ plaque accumulation drives tau
hyperphosphorylation [47,58,92–100], possibly by excess GSK-3β signaling [101]. Like-
wise, tau hyperphosphorylation also compounds Aβ toxicity [102,103], which has been
supported by PET imaging in humans with memory impairment and cognitive decline [60].
These studies demonstrate that Aβ toxicity is necessary for tau hyperphosphorylation [59,60].
Specifically, accumulating Aβ binds to NMDAR, generating excess calcium levels to acti-
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vate calpain-mediated microtubule-associated protein cleavage [65,104,105]. These events
impair mitochondrial function, invoking pro-apoptotic signaling [65,106]. Tau hyperphos-
phorylation dismantles axonal microtubules to degenerate the axon [15,107–110], impairing
synaptic plasticity [102,103,111,112]. Hyperphosphorylated tau spreads throughout the
hippocampus in AD models [113], and uptake may be mediated by clathrin-induced en-
docytosis [114]. Risk factors such as sleep apnea may potentiate the spread of tau in
this manner [115]. Ultimately, these events result in neuronal death and compromise
neuroplasticity, thereby driving neuroinflammation and impairing cognitive function.

4. Anti-AD Mechanisms of Quercetin and Kaempferol

Given the limited therapeutics available to AD patients, it is essential to explore alter-
native treatments, such as plant-derived phytochemicals. Flavonoids, including kaempferol
and quercetin, belong to the class of polyphenols commonly found in various herbs. No-
tably, kaempferol and quercetin possess lipophilic properties [50], which facilitate their easy
entry into cells. These phytochemicals are abundant, with an average daily consumption of
approximately 23 mg of flavonoids in a typical diet [116,117]. Kaempferol and quercetin
produce several beneficial properties, including anti-inflammatory, antioxidant, anti-Aβ,
anti-tau, and pro-neuroplastic effects [37–39,57,74,118–128]. Moreover, they have demon-
strated cognitive and memory-enhancing effects in animal studies [37]. Consequently, this
section aims to delve into the commonly studied effects of these phytochemicals.

4.1. Quercetin

Quercetin, the most prevalent flavonoid, is found in several traditional medicinal
herbs and is commonly found in fruits and vegetables, including berries, onions, and
leeks [118,129–139]. Quercetin intake constitutes approximately 60–75% of total
flavonols [140,141], and 25 mg of quercetin is found in the average diet [38]. Quercetin is
commonly investigated for its potential anti-neurodegenerative efficacy and is considered
safe [51,142]. Quercetin is a 15-carbon flavonoid with two benzene rings connected via a
3-carbon shape (Figure 2) [38,130,143].

Quercetin produces anti-inflammatory effects via multiple signaling pathways, includ-
ing Nrf2, paraoxonase-2 (PON2), JNK, PKC, and NF-kB [51,118,128,144–147]. Quercetin
dose-dependently protected HT22 hippocampal neurons from glutamate-induced apopto-
sis by limiting ROS production, impairing the calpain-mediated cleavage of cytoskeletal
proteins, and preserving mitochondrial membrane potential [65]. Quercetin also inhibits
NO release by inhibiting iNOS activity [33,38,148], which could reduce excess glutamate
signaling and minimize the risk of glutamate-induced cytotoxicity in hippocampal neu-
rons in a similar fashion to kaempferol and its derivatives [149]. Moreover, quercetin
inhibits COX-2 and TLR4 activity to reduce inflammatory responses [6,39,148]. Interest-
ingly, quercetin may have epigenetic mechanisms by inhibiting lysine acetyltransferase
(KAT) activity [150,151] and increasing lysine deacetylase (KDAC) activity [152], suggest-
ing that the flavonoid can bidirectionally regulate autophagy [153], neuroinflammation,
and apoptosis [154]. Quercetin also inhibits acetylcholinesterase (AChE) [155], which can
enhance alertness and cognitive function in AD patients.

The anti-Aβ effects of quercetin are well studied in AD and related models and have
yielded promising therapeutic properties. The hydrophobic groups of quercetin can inhibit
the formation of Aβ fibrils [120–123,156]. Chronic quercetin treatment also slowed Aβ

aggregation by potentiating AMPK signaling and inhibiting mitochondrial ROS produc-
tion, leading to improved memory and object recognition in APPswe/PS1dE9 [80,157].
Quercetin treatment also inhibits the BACE1-mediated cleavage of APP into Aβ by in-
hibiting NF-kB [74]. Consequently, mitochondrial membrane permeability is restored,
and cellular survival is favored over oxidative stress [158]. This anti-neurodegenerative
effect could be due to the free radical-quenching structure of the catechol group, reducing
neuroinflammation, lipid peroxidation, mitochondrial stress, and DNA damage [38,51].
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Elevated SOD, GPx, and Na+-K+ ATPase activity could also be due to quercetin’s anti-Aβ

effects [44,78].
In many studies, quercetin and its derivatives reduced tau hyperphosphorylation [23,

58,132,159]. In rodent HT22 hippocampal neurons, chronic quercetin treatment inhibited
tau phosphorylation at four sites by reducing p-Cdk5 levels, limiting calpain activity, and
dramatically reducing Ca2+ influx [58]. In 3xTgAD mice, chronic quercetin inhibited Aβ

pathology, reduced NFT levels, and prevented astrocytic and microglial hyperactivity in the
amygdala and hippocampus [132,160], showing that the anti-Aβ and anti-tau mechanisms
of quercetin depend on its anti-inflammatory effects. Consequently, these mice demon-
strated improved learning and memory and decreased anxiety [132], while combined
exercise and quercetin treatment robustly improved spatial memory in AD rodents [161].
Studies also found that quercetin enhanced cell viability and morphology by reducing
MDA and ROS levels and increasing antioxidant SOD and GSH activity [159,162], limiting
NF-κB signaling, restoring mitochondrial membrane potential to baseline, inhibiting tau
hyperphosphorylation, and regulating Akt/PI3K/GSK-3β signaling pathway [159,163].
Taken together, these data show that quercetin has a multimodal mechanism of action in
treating AD. Of note, the anti-tau and consequent pro-neuroplastic effect of quercetin is
further explored in Section 5, but the primary anti-inflammatory, anti-Aβ, ant-tau, and
pro-neuroplastic effects of this flavonoid are all dependent on each other.
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4.2. Kaempferol

Kaempferol is a common 15-carbon polyphenol (Figure 3) that shares significant struc-
tural similarity with quercetin. It is one of the most common flavonoids and is found in a
variety of common foods, including fruits and vegetables [129,130,165–170]. Multiple preclin-
ical and clinical studies have supported the anti-AD activity of kaempferol [57,149,171–174].
Kaempferol has pro-neuroplastic, anti-Aβ, anti-tau, anti-inflammatory, and antioxidant
properties [29,44,57,171,175–179]. Notably, kaempferol also inhibits AChE like quercetin [180],
but this mechanism is beyond the scope of this review.

Like quercetin, kaempferol and its metabolites reduce inflammation and have potent
antioxidant properties [181–184]. Kaempferol also directly modulates neuroinflammation by
impairing microglial TLR4 and NF-kB signaling and inhibiting the release of NO, iNOS, PGE2,
IL-1β, TNF-α, and IFN-γ [167,185]. Kaempferol also reversed BBB damage [36,186,187].
Kaempferol can also modulate neuroinflammation by regulating epigenetic factors such
as SIRT1, a subtype of KDAC [188–190]. Kaempferol also prevents cytotoxic damage to
PC12 neurons by upregulating SIRT [191]. Other immune factors modulated by kaempferol
include COX-2, lipoxygenases, prostacyclin, and leukotrienes [148,187,192–194]. Finally,
kaempferol may reduce neuroinflammation via Nrf-2 signaling [185].

Like quercetin, kaempferol and its derivatives reverse Aβ-induced damage [29,120,
122,124,125,149,195]. Kaempferol-3-O-rhamnoside (K-3-Rh), a kaempferol derivative, lim-
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ited total Aβ burden and toxicity by disrupting β-sheet formation and impairing Aβ

plaque formation in human SH-SY5Y cells [195,196]. However, kaempferol antagonized
fibrilization with lower potency compared to quercetin and morin [120,122]. In rodent
neuroblastoma cells, kaempferol 3-O-(6′′-acetyl)-β-glucopyranoside (KAG) robustly in-
hibited Aβ-mediated cytotoxic cell death and ROS generation [149]. KAG reversed Aβ-
mediated oxidative stress and increased cell survival by regulating caspase-3, Bax, and
Bcl-2 signaling [44,64,149,197–200]. Kaempferol dose-dependently and sex-dependently
limited Aβ-induced mitochondrial toxicity in neurons, improving rodent memory in the
Y-maze test [57,134,201]. Of note, studies regarding kaempferol’s direct influence on
tau are limited; thus, more research is necessary. However, due to its similar pheno-
lic structure to quercetin [165,166], we hypothesize that kaempferol could also reduce
tau hyperphosphorylation.
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5. Kaempferol, Quercetin, and Neuroplasticity

The aberrant brain changes described in Section 3 can impair memory and cognitive
function by creating deficits in neuroplasticity. Thus, future AD treatments should also
be designed to directly target signaling pathways that can counteract the etiologies of
AD. Specifically, we identified the PI3K/AKT signaling pathway as a critical candidate to
counteract neurodegeneration. Several studies have suggested that flavonoids can alleviate
learning and memory deficits by targeting this signaling pathway [29,203–205]. However,
other pathways, including the MAPK-ERK1/2 cascade [206], have also been proposed and
outlined in a recent review [207]. In this section, we will first explore the impact of Aβ-
and tau-mediated neuroinflammation on synaptic plasticity-related neuronal signaling.
We will support the necessity of the PI3K/AKT/GSK-3β pathway in AD treatments and
investigate the potential roles of kaempferol and quercetin in improving memory and
cognition through this pathway.

5.1. Neuroplasticity Deficits in AD

An ideal AD treatment should enhance the expression of plasticity-related genes such
as BDNF, a neurotrophic factor that regulates neuronal plasticity and survival [208–214].
BDNF signaling begins with its binding to the receptor, Trkβ, activating signaling via a
variety of pathways like PI3K/AKT [211,215]. Then, AKT or protein kinase B (PKB) [216]
can activate the CREB-mediated transcription of BDNF [217,218]. Since Trkβ receptors
mediate the pro-neuroplastic effects of BDNF [219], AD drugs must produce a direct or
indirect effect on the receptor.

BDNF deficits increase the risk of AD development [220], and BDNF dysfunction
due to impaired PI3K and AKT signaling can expedite neurodegeneration [7,41,221–223].
The PI3K/AKT signaling pathway has multiple functions, including regulating synap-
tic plasticity, glucose processing, cell cycle progression, cell proliferation, survival, and
apoptosis [167,175,224–226]. Moreover, this pathway may protect neurons from Aβ toxic-
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ity [224], oxidative stress [227], and neuroinflammation [217]. GSK-3β is downstream of
PI3K/AKT, and Aβ can specifically lead to its hyperactivity [7]. However, BDNF and CREB
are also vulnerable to Aβ signaling [228] as CREB is regulated by the PI3K/AKT/GSK-3β
pathway [211,212,215,229–231].

Thus, the Aβ-mediated signaling cascade that degenerates the neuron is as follows
(Figure 4A): Aβ binding to NMDAR inhibits PI3K/AKT signaling by activating GSK-3β-
mediated tau hyperphosphorylation and CREB downregulation [93,97,210,211,223,229,
230,232–237]. Consequently, the impaired CREB-mediated transcription of BDNF genes
decreases plasticity and facilitates plaque accumulation, as demonstrated in postmortem
tissues from humans and human neuronal cells [209,210,229,232]. The absence of protective
BDNF and PI3K/AKT activity facilitates the caspase-mediated pro-apoptotic signaling cas-
cade [6,224], degenerating the neuronal circuitry, while tau dissociation from microtubules
breaks down the neuronal cytoskeleton [7,233,238–242].

However, future AD treatments could reverse this toxic signaling via the following
mechanism: A drug must either directly activate Trkβ or should do so indirectly by enhanc-
ing BDNF transcription [210]. The drug can either directly activate PI3K and/or AKT, which
would ultimately inhibit GSK-3β via the phosphorylation of its Ser9 residue [224]. In turn,
AKT can also inhibit caspase-9 and Bcl-3 to inhibit pro-apoptotic signaling [243–246]. One
study showed that the GSK-3β inhibitor, AR-A014418 (ARA), inhibited BACE1-mediated
APP cleavage into Aβ proteins in rodents [48], supporting the necessity of a GSK-3β-
inhibiting drug for the treatment of AD. Finally, GSK-3β inhibition also reversed oxidative
stress [93,247]. In short, the PI3K/AKT pathway can not only reverse neuroinflammation
but can also counteract Aβ-mediated tau hyperphosphorylation by inhibiting GSK-3β.

5.2. Quercetin and Kaempferol Resolve AD-Related Plasticity Deficits

The multimodal mechanisms of kaempferol and quercetin collectively slow neurode-
generation by combating the impairments that are illustrated in Figure 4A and are described
in Table 1. Specifically, the restoration of proper PI3K/AKT signaling will greatly improve
synaptic plasticity deficits in AD [7]. While quercetin’s interaction with each component of
this signaling pathway has already been documented [7], kaempferol’s mechanisms are
still unclear. However, since kaempferol’s structure is similar to that of quercetin [165],
we propose that kaempferol has a nearly identical mechanism with respect to the signal-
ing pathway in this subsection. Finally, we will propose the potential outcomes of these
molecular interactions.

Table 1. Kaempferol and Quercetin and molecular interactions with select molecules relevant to
neuroplasticity in AD. These affinity or potency values are deduced from molecular docking studies
(affinity) and competition assays (IC50; potency) or were indirect interactions evidenced in the
literature. Docking scores (DS) of 5 or higher indicate the high affinity of a compound for the protein
of interest [248,249]. Or, affinity from docking studies may be expressed as binding energies (BE) in
-kcal/mol. The more negative the value, the higher the binding affinity. If studies have not supported
direct binding to a certain target, the affinity column is noted as “Indirect”.

Molecular Target Phytochemical Mechanism Affinity (DS, BE, or IC50) References

GSK-3β

Kaempferol Inhibit
4.6 (DS, mice);

−7.9 kcal/mol (human brain docking)
−9.2 kcal/mol (zebrafish)

[243,250,251]

Quercetin Inhibit
5.64 (DS);

−8.8 kcal/mol (human brain docking)
−9.0 kcal/mol (zebrafish)

[243,250,251]

Aβ
Kaempferol Inhibit Indirect [171]

Quercetin Inhibit Indirect [252]

BACE1
Kaempferol Inhibit IC50 = 14.7 µM [253,254]

Quercetin Inhibit IC50 = 5.4 µM [253,254]
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Table 1. Cont.

Molecular Target Phytochemical Mechanism Affinity (DS, BE, or IC50) References

Tau
Kaempferol Inhibit hyperactivation Indirect [47]

Quercetin Inhibit hyperactivation Indirect [255]

PI3K
Kaempferol Activate 5.19 (DS, neurons) [256]

Quercetin Activate 7.04 (MD, neurons) [256]

AKT1

Kaempferol Activate 5.13 (MD, neurons);
−9.3 kcal/mol [256,257]

Quercetin Activate
5.03 (MD, neurons),
−9.4 kcal/mol;
−7.96 kcal/mol

[213,256,257]

BDNF
Kaempferol Upregulate Indirect [258]

Quercetin Upregulate Indirect [252]

CREB
Kaempferol Activate Indirect [211]

Quercetin Activate Indirect [252]

NMDAR
Kaempferol Reverse Aβ binding −10.84 kcal/mol [259]

Quercetin Reverse Aβ binding Indirect [255,260]

HDAC
Kaempferol Activate Not Found [188,189]

Quercetin Activate IC50 = 105.1 µM [261]

AChE
Kaempferol Inhibit −10.26 kcal/mol;

between −8.6 and −9.22 kcal/mol [259,262,263]

Quercetin Inhibit −7.9 kcal/mol;
IC50 = 4.59 ± 0.27 µM [155,263]

Molecular docking studies suggested that quercetin can bind PI3K, AKT, and
GSK3β [213,250,255–257,260,264,265]. Specifically, quercetin can bind to PI3K [256], con-
sequently activating AKT signaling [265], or quercetin can directly bind to AKT [257]. In
preclinical studies, quercetin reduced GSK-3β activity, which decreased tau hyperphospho-
rylation and reduced pro-apoptotic signaling [7,38,159]. Quercetin treatment in rodents also
increased BDNF, Trkβ, PI3K, and AKT expression [243,266]. Consequently, quercetin en-
hanced neurite outgrowth in hippocampal neurons [36] and ameliorated the stress-induced
downregulation of CREB and BDNF [40], suggesting that quercetin could potently replen-
ish neuroplasticity in the AD brain. Moreover, quercetin inhibited Aβ by restoring Trkβ
signaling and CREB-mediated BDNF transcription, increasing the viability of SH-SY5Y
cells [252]. Finally, quercetin’s dual pro-neuroplastic and anti-inflammatory effects may
also be related to the quercetin-mediated downregulation of BACE1 expression via the
inhibition of NF-kB [253,254,264,267]. Taken together, these data suggest that quercetin
antagonizes Aβ-induced GSK-3β signaling relative to tau by activating the PI3K/AKT
pathway and directly inhibiting GSK-3β [7,225,241,255,256,260]. Consequently, proper
BDNF levels can be restored to replenish neuronal plasticity in the AD brain. Similar chem-
icals, such as epigallocatechin-3-gallate (EGCG), attenuated tau hyperphosphorylation in
a similar mechanism [23,268–270]. Thus, quercetin clearly has dual neuroprotective and
pro-neuroplastic mechanisms in cells [33,65,252], and the clinical outcomes of quercetin’s
pro-neuroplastic mechanisms were supported by its memory and cognition-boosting effects
in rodent models of AD and Parkinson’s disease [23,38,44,271–276]. Select molecular targets
of quercetin are described in Table 1.

Kaempferol may have similar pro-neuroplastic mechanisms to quercetin, and some
of its molecular targets are outlined in Table 1. First, kaempferol improved hippocampal
plasticity following traumatic brain injury in young rodents [277] and improved memory in
rodents [29,57] and Drosophila [173]. Moreover, kaempferol dose-dependently maintained
cell viability following Aβ treatment in multiple studies [29,149,195,248]. This could be due to
kaempferol’s inhibition of BACE1-mediated Aβ synthesis [253,254] or the activation of the
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PI3K/AKT signaling pathway, enhancing CREB-mediated BDNF transcription [175,211,258].
Although one molecular docking study suggested that kaempferol may have minimal affinity
for GSK-3β [250], kaempferol likely inhibits GSK-3β indirectly by first binding and activating
PI3K [256] or AKT [175,185,257]. Via this mechanism, kaempferol prevents tau hyperphospho-
rylation, protecting neuronal morphology and function [47,278–281]. Then, AKT can activate
CREB-mediated BDNF transcription [217]. Supporting this pro-neuroplastic mechanism,
kaempferol and its metabolite, kaempferide, produced similar effects that resulted in Trkβ
signaling [171,210] and enhanced BDNF expression in Aβ-treated mice [243]. Taken together,
these data suggest that kaempferol enhances neuroplasticity to reverse Aβ damage by activat-
ing the PI3K/AKT cascade, which potentiates CREB-mediated BDNF transcription. However,
kaempferol produces the opposite effect on this signaling pathway in microglial cells [167]
and cancer cells [282]. Thus, kaempferol’s effects on the PI3K/AKT signaling cascade are
dynamic and depend on cell lineage.

Despite the lack of literature demonstrating a direct modulation of tau by kaempferol,
there is plenty of evidence to support the possibility that kaempferol inhibits tau hyper-
phosphorylation via the PI3K/AKT pathway and by antagonizing Aβ-mediated GSK-3β
signaling [29,149,195]. This mechanism prevents neuronal degeneration and a loss of
synaptic plasticity. Thus, the pro-neuroplastic effect of kaempferol requires the inhibition
of GSK-3β and CREB phosphorylation. Remarkably, a recent molecular docking study
suggested that kaempferol could bind to NMDAR [259]. However, in vivo studies are still
required to confirm this effect.

These data suggest a clear anti-AD mechanism of quercetin and kaempferol, as out-
lined in Figure 4B. First, quercetin and kaempferol could enter the cell cytoplasm due
to their lipophilic polyphenolic structure. Quercetin and kaempferol scavenge ROS and
activate PI3K/AKT signaling to inhibit GSK-3β. Specifically, they can bind directly to
PI3K or AKT to activate protective signaling, inhibiting GSK-3β and preventing tau hy-
perphosphorylation. This signaling cascade reduces the formation of NFTs in the AD
brain. GSK-3β inhibition can also antagonize Aβ-NMDAR interactions. Thus, downstream
pro-apoptotic signaling mediators are also inhibited by quercetin and kaempferol treatment.
Due to reduced NFT and amyloid plaque formation, microglial hyperactivity decreases in
the absence of the burden of clearance. Thus, progressive neuroinflammatory signaling
is slowed, allowing surrounding neuronal synapses to survive. After chronic quercetin
treatment, progressive elevations in BDNF release rebuild damaged synapses by favoring
neurotrophic signaling over cytotoxic Aβ signaling, improving memory and cognition.
Of note, molecular docking studies have not supported the possibility that kaempferol
and quercetin can directly bind to tau protein, supporting their indirect inhibitory mech-
anism via GSK-3β inhibition. Taken together, kaempferol and quercetin share multiple
mechanisms that slow AD progression by first limiting ROS activity, NFT aggregation, and
Aβ-mediated toxic signaling, slowing neurodegeneration.
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perphosphorylation via GSK3β. (B) Kaempferol and quercetin (K/Q) invoke the PI3K/AKT pathway
to antagonize Aβ and reduce tau hyperphosphorylation in neurons. As a result, neuroplasticity is
increased in the AD brain [283].
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6. Quercetin and Kaempferol in Common Herbs

Although data on the co-treatment of quercetin and kaempferol are still somewhat
limited, the abundance of both compounds in several common herbs requires the investiga-
tion of the synergistic effects of both flavonoids, in addition to their interactions with other
herbal phytochemicals. Flavonoid-rich herbs are commonly employed in traditional Chi-
nese medicine (TCM), in which an emphasis is placed on the utility of natural treatments.
Moreover, these herbs are generally safe for consumption [224]. Kaempferol is the sec-
ond most common flavonoid in traditional medicinal herbs, following quercetin [225,284].
Other reviews have assessed the efficacy and safety of natural medicine in the treatment of
neurodegenerative diseases [7,224], highlighting the potential medicinal properties of herbs
in treating AD. Flavonoids are commonly found in herbs such as Schima wallichii Korth,
Maesa membranacea, Ginkgo biloba, and many more [175,225,278]. These phytochemicals
could work synergistically with each other and with other herbal components to invoke
anti-AD effects. Thus, we explore common herbal sources of kaempferol and quercetin,
describe the anti-AD mechanisms of herbs, and propose a design for a future AD treatment
based on the current evidence of these effects.

Ginkgo biloba is a quercetin- and kaempferol-rich herb proposed to treat AD [285].
G. biloba improves memory and cognition by inhibiting ROS, facilitating hippocampal
neuron proliferation, halting Aβ plaque accumulation, and reducing tau hyperphosphory-
lation [47,286–288]. Moreover, this effect is associated with reduced GSK-3β activity and
the increased expression of PSD-95 and synapsin-1 [47]. As seen with kaempferol and
quercetin alone, G. biloba potentiates PI3K/AKT relative to CREB signaling to promote
neuroplasticity [287,289–293]. Hippophae rhamnoides extracts are also rich in quercetin
and kaempferol, and they enhanced neuronal differentiation and neurite outgrowth via
PI3K/AKT and ERK signaling [294,295]. However, clinical trials have revealed the incon-
sistent efficacy of G. biloba on cognition and other AD-related parameters [296]. Camellia
sinensis is another kaempferol- and quercetin-rich herb commonly grown to produce
black and green tea [297,298]. C. sinensis extracts improved spatial memory and reduced
hippocampal Aβ fibrillization in AD rodents and had greater antioxidant effects com-
pared to other herbs [298,299]. Kaempferol and its derivatives are found in the leaves of
Maesa membranacea, Schima wallichii Korth, Carthamus tinctorius, Panax ginseng, and several
other herbs [175,188,225,278]. S. wallichii was neuroprotective due to the promotion of
hippocampal and cortical AKT signaling [175], and M. membranacea could protect H202-
treated SH-SY5Y cells [225] and hippocampal tissue [300] via the same pathway due to their
kaempferol abundance. C. tinctorus is rich in kaempferol, produces a similar effect, and
invokes protective AMPK signaling [188]. Finally, recent studies also suggested that other
herbs such as Morenga oleifera, Cuscuta chinensis, Allium cepa, Litchi chinensis, Prakia roxburghii,
Radix astragali, Acoritatan Fagopyrum tataricum, Carthami flos, Punica granatum, and Cyperi
rhizoma [251,257,264,301–305] may also be great sources of kaempferol and/or quercetin
and produce anti-AD effects. Their medicinal properties and expression of kaempferol and
quercetin are outlined in Table 2.

Polyherbal cocktails, such as Chaihu shugan san (CSS) and Huangqi Sijunzi (HQSJDZ),
could treat AD and its risk factors. CSS is abundant in kaempferol and quercetin and
contains herbs such as Glycyrrhiza uralensis, Cyperus rotundus, and Buplerum falcatum [256].
Specifically, the antidepressant effect of CSS is mediated by increased PI3K/AKT/BDNF
signaling and decreased GSK-3β and IL-2 activity [256], suggesting that polyherbal cocktails
may be protected from AD development. HQSJDZ, rich in kaempferol and quercetin, had
cholinergic, anti-inflammatory, and anti-GSK-3β effects [278,306]. Moreover, a cocktail of C.
sinensis, Hypericum perforatum, and Bacopa monnieri produced robust antioxidant effects
compared to single-herb treatment [298]. These data suggest that polyherbal treatment
may be superior to single-herb therapy.

Due to the well-documented effects of quercetin and kaempferol on Aβ, GSK-3β,
PI3K/AKT, and multiple pro-inflammatory molecules, it is possible that both phytochemi-
cals, given their abundance, contribute vastly to the anti-AD effects of several herbs. Such
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herbs include Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus rotundus, and
Buplerum falcatum. The herbal sources outlined in Table 2 may also be great additions to
the treatment protocol that can enhance the dietary intake of kaempferol and quercetin.
According to the practice of TCM, it is possible that a multi-herb cocktail containing varying
amounts of these herbs could alleviate AD symptoms, as seen with current medications,
but it may also halt progression relative to a unique multi-modal mechanism. Multiple
studies have suggested that the synergistic effects of polyherbal treatments produce greater
anti-AD efficacy compared to single-herb treatment [256,278,298]. Thus, the research and
development of future AD drugs should consider the applications of these common herbs
in future drug cocktails. On the other hand, since clinical trials featuring Ginkgo biloba ex-
tracts have demonstrated controversial results on the progression of AD [296], single-herb
treatments may be insufficient to treat AD.

Table 2. Plant sources of kaempferol and quercetin and/or their metabolites and a description of
reported herbal health effects.

Species Name Kaempferol Quercetin Example Health
Effects Reference

Ginkgo biloba + + Memory and cognition
improvement [285,296,307,308]

Camellia sinensis + + Improved memory and
antioxidant effects [297–299]

Maesa membranacea + + Neuroprotective [175,188,225,278]

Schima wallichii Korth + − Neuroprotective [175,187,225,278]

Carthamus tinctorius + + Neuroprotective [175,187,225,278,309]

Panax ginseng + + Neuroprotective [175,187,225,278,310]

Morenga oleifera + + Memory improvement [300–302]

Cuscuta chinensis + +

Memory improving,
Neuroprotective,
Hepatoprotective,

Immunomodulatory

[311]

Allium cepa + + Anti-inflammatory [312,313]

Hippophae rhamnoides L. + + Anti-inflammatory [294,295]

Litchi chinensis + + Neuroprotective [303,314]

Prakia roxburghii - + Neuroprotective [304]

Radix astragali + + Neuroprotective [213]

Fagopyrum tataricum (L.) + + Decrease neurotoxicity [251]

Carthami flos + + Anti-ischemic [213]

Punica granatum + + Anti-inflammatory [264,315]

Cyperi rhizoma + + Antidepressant [257]

7. Limitations of Kaempferol and Quercetin Treatment
7.1. Bioavailability

Despite the promising effects of these herbs and flavonoids in AD treatment, low
bioavailability and blood-brain barrier (BBB) permeability are common obstacles interfer-
ing with drug delivery to the brain [316–318]. Thus, structural manipulations are commonly
required to improve the bioavailability of flavonoids. Moreover, the varying dietary intake
of macromolecules like fats and carbohydrates also impacts BBB permeability relative to
polyphenols [44]. Other factors, such as aging or diagnosis with AD, may increase BBB
permeability to peripheral chemicals [39,319–321]. However, tau hyperphosphorylation
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and astrocytic hyperactivity invoke neuroinflammatory signaling that damages BBB in-
tegrity and increases its permeability [112,322–324]. The limited BBB permeability may
also explain the lack of clinical trials in humans [68].

Despite its lipophilicity and easy oral administration in common foods, quercetin
treatment for AD may be challenged by its limited bioavailability relative to the brain [3,258].
Since quercetin absorption is predominantly mediated by the small intestine, it is vulnerable
to extensive first-pass metabolism [133,258,325]. While its distribution was evidenced in the
plasma, liver, heart, spleen, kidneys, and lungs, quercetin levels were non-detectable in the
rat brain [326,327]. Hence, it has around 65% BBB permeability [321,328] and is absorbed in
the stomach with 24–53% bioavailability [329]. The P-glycoprotein transporter, which is a
BBB efflux transporter, has a high affinity for free, unaltered quercetin and greatly reduces
its bioavailability by pumping quercetin away from the brain [51,330]. While in vitro
studies showed the promising antioxidant effects of quercetin, most studies in animal
models have demonstrated limited efficacy [3,331]. These data show that quercetin’s
limited bioavailability could debilitate anti-AD effects [258].

Chemical modifications are necessary to ensure quercetin distribution to the brain,
as some metabolites may also have higher efficacy than quercetin alone. For instance,
quercetin–glucoside conjugation enhanced its bioavailability [129]. Quercetin glycosides
are commonly available in fruits and vegetables, improving its delivery to the CNS [51,332].
Glucuronidation in the liver also increased the distribution of quercetin to the brain in
oxidative stress models [23]. Moreover, in vivo studies showed that lipid nanoparticle-
loaded quercetin enhances its entry into the brain [39,44,146,158,163,333,334]. Moreover,
quercetin loading into selenium nanoparticles improved brain distribution and anti-Aβ

mechanisms [335]. However, excess selenium levels in the body can produce oxidative
stress [336,337], potentially limiting the clinical efficacy of this approach.

Like quercetin, free kaempferol generally has low oral bioavailability due to metabolic
degradation [324,338,339]. Kaempferol is generally slowly absorbed in the GI tract and
can be distributed to several tissues [326,340], suggesting that the primary limitation
of kaempferol treatment is limited bioavailability. However, several modifications to
improve its BBB permeability have been proposed. First, nanoparticle loading also im-
proves kaempferol bioavailability [194,334,341–344], and kaempferol–sugar conjugates also
demonstrate superior protective efficacy [36]. For instance, nanoparticle-loaded kaempferol
has more robust anti-inflammatory effects than kaempferol alone [68]. Clinical trials re-
vealed that quercetin had superior memory-modulating activity in AD patients compared
to healthy elderly controls [345–347], suggesting that the increased BBB permeability in
AD may, in turn, improve flavonoid bioavailability and efficacy in neurodegenerative
brains. Several other forms of delivery have been proposed for both flavonoids, includ-
ing gold-infused nanoparticles [348,349], multi-targeted drugs [350], extracellular vesi-
cles [351], and intranasal administration [352]. Finally, other proposed nanoformulation
delivery systems include nanomatrixes, nanoemulsions, nanostructured lipid carriers, and
nanocomplexes [343,344,353].

7.2. Adverse Health Effects and Other Limitations

Most studies show promising medical benefits for kaempferol and quercetin and sug-
gest that they are safe in a variety of doses. For example, quercetin is included in the Food
and Drug Administration’s Generally Recognized as Safe (GRAS) list for supplemental
use of up to 500 mg per serving in foods and beverages [129,354]. However, flavonoids’
clinical efficacy may also be limited by adverse effects [329]. While the Ames test suggested
that quercetin could have carcinogenic properties, most studies have opposed this finding
and suggested that quercetin is safe [355]. One study suggested that high-dose quercetin
treatment reduced neuronal survival, induced oxidative stress, and inhibited AKT [356].
Thus, physicians should carefully manage the abundance of quercetin in the AD patient’s
diet to maintain its proper anti-degenerative effects. Moreover, the efficacy of quercetin
may be limited in AD patients who are also diagnosed with leukemia, as quercetin inhibits
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the PI3K/AKT signaling pathway in HG3 cells [282]. It is possible that, since most dietary
quercetin is distributed to peripheral sites, lower concentrations in the brain may decrease
its efficacy in AD.

Although kaempferol is most likely safe to consume [339] and most studies showed
low toxicity in mice [357–359], some studies have reported concerns about potential muta-
genic effects in people with iron and folic acid deficiencies [338,339,360]. Since the excess
inhibition of GSK-3β may produce toxic effects in cells [233], kaempferol’s low-affinity
GSK-3β interactions may underlie its generally low toxicity. In a 4-week randomized,
double-blind clinical trial, participants were divided into a group that received 50 mg of
kaempferol daily and a placebo group; kaempferol was reported as mostly safe, but the
small sample size of 24 in each group limits this study [359]. Overall, the majority of work
on the herb suggests it to be safe, even in high doses, but more clinical trials are highly
recommended.

8. Discussion

Since AD still lacks a true cure, and currently available medications are insufficient to
halt disease progression, the field has sought out multimodal treatments for AD. However,
little progress in drug development has been made in recent decades, necessitating new
alternative treatments. Thus, the objective of this review was to deduce the anti-AD
mechanisms of kaempferol and quercetin. These phytochemicals were selected for multiple
reasons, including their abundance [38,116] and their multimodal mechanisms (Figure 5)
that include antioxidant, anti-inflammatory, pro-neuroplastic, and neuroprotective effects.
Thus, quercetin and kaempferol may treat Alzheimer’s disease, and we aimed to explore
their anti-amyloidogenic, antioxidant, anti-inflammatory, anti-tau, and pro-neuroplastic
mechanisms [6,29,38,39,51,127,128,149,159,167,361]. In turn, phytochemicals may not only
reduce AD symptoms [29,33,132] but also delay the progression of the disorder. Of note,
the efficacy of these flavonoids to produce the effects outlined in this review depends on
any chemical modifications that may occur throughout the absorption and distribution of
phytochemicals to the brain.

Perhaps the most significant contribution of this review is the complex anti-degenerative
mechanism of kaempferol. We utilized the available literature to show that kaempferol’s
dual anti-tau and anti-Aβ mechanisms are due to its modulation of the PI3K/AKT/GSK-3β
signaling pathway. Both phytochemicals resolve oxidative stress by increasing antioxidant
levels and inhibiting ROS signaling [119]. Meanwhile, they halt inflammatory signal-
ing [29,38] to commence a neuroprotective effect. Then, resolved microglial and astrocytic
activity facilitates proper Aβ clearance from the brain [6] and reduces continued neuronal
damage due to the neuroinflammatory environment [122,188,195]. The modulation of
PI3K/AKT/GSK-3β and Trkβ/BDNF signaling potentiates neuroplasticity and protects
neurons from insults like Aβ [10,240], decreasing tau hyperphosphorylation and preserving
the neuronal cytoskeletal structure. These phytochemicals, in turn, protect neuronal net-
works [33,40], improving memory and cognitive function in AD patients. Other flavonoids
with heterocyclic structures [362], including morin [363–366], rutin [367,368], and lute-
olin [369–371], share many similar anti-AD properties relative to kaempferol and quercetin.
However, rutin [368] failed to increase BDNF levels, like kaempferol and quercetin.

Due to the superior efficacy of polyherbal treatments, such as HQSJDZ and
CSS [256,278,298], we proposed that polyherbal treatment, containing quercetin- and
kaempferol-rich herbs like Ginkgo biloba, Camellia sinensis, Glycyrrhiza uralensis, Cyperus
rotundus, and Buplerum falcatum may produce superior anti-AD efficacy compared to single-
herb supplements. Recent studies also suggested that herbs such as Morenga oleifera, Cus-
cuta chinensis, Allium cepa, Hippophae rhamnoides, Litchi chinensis, Prakia roxburghii,
Radix astragali, Fagopyrum tataricum, and Carthami flos [251,294,301–304] may also be
candidates for polyherbal treatment. However, a recent review noted that kaempferol and
quercetin are widely available in hundreds of herbs, and it is possible that they may not
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be as abundant as other phytochemicals in some species [372], supporting the necessity of
polyherbal treatment to obtain biologically effective concentrations.
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Figure 5. A graphical summary of the underlying mechanisms behind AD progression (pathogenesis),
the proposed mechanisms of kaempferol and quercetin (K/Q), where K/Q represents kaempferol and
quercetin, and the impact of these molecular changes on behavior and disease progression (outcomes).
Each category is presented in a top-to-bottom chronological order.

As previously mentioned, clinical trials suggest that kaempferol and quercetin could
treat AD in humans [135,346,347,373,374], but single-herb treatment was unsuccessful in
clinical trials [296]. Future trials should assess bioavailability-enhancing delivery methods
for quercetin and kaempferol. However, recent studies also suggested that both quercetin
and kaempferol have the ability to maintain and protect BBB integrity [375–379]. This
could possibly be due to their anti-inflammatory properties that could be invoked if they
reach the brain. Of course, clinical trials should continue to assess the efficacy of herbal
sources in AD-related symptoms. However, the misuse of herbal treatments may produce
side effects, including gastrointestinal discomfort, insomnia, and tachycardia [298]. Thus,
studies assessing these side effects are limited and require further investigation [36,37].
Nonetheless, these natural herbs are generally considered safe, and toxic effects are uncom-
mon [51,116,142]. Finally, an investigation of interactions between these polyphenols and
other drugs commonly prescribed to AD patients is required.
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Although the data presented in this review showcase the great potential of these herbs
in AD treatment, a few limitations have impacted this review. Specifically, studies investi-
gating the tau hyperphosphorylation-inhibiting mechanisms of these herbs may be limited
due to the rapid dephosphorylation of the protein in postmortem AD tissues [15,279].
Moreover, the abundantly described bioavailability limitations of both herbs critically limit
the efficiency of human studies. This could be one reason underlying the lack of kaempferol
and quercetin’s clinical efficacy to date. Clinical trials investigating compounds that in-
crease the bioavailability of these phytochemicals are still needed. Since quercetin and
kaempferol are naturally abundant in the average diet, future clinical trials can be easily
conducted. Finally, while molecular docking studies show the potential pharmacodynamic
interactions between kaempferol/quercetin and the outlined pro-neuroplastic targets, these
approaches are merely estimates of binding affinity based on the crystal structures of the
target protein and the molecular structures of the ligand, and they could be vulnerable to
mispredictions [380]. Thus, future studies must either employ competition assays or ligand
inhibitor/antagonist studies to confidently elucidate the true affinity of kaempferol and
quercetin for the targets of interest. Nonetheless, recent data support the exciting potential
of kaempferol and quercetin to slow the progression of AD and alleviate the symptoms.

9. Conclusions

Kaempferol and quercetin clearly exhibit multimodal mechanisms that halt AD pro-
gression and alleviate symptoms. Given the multifaceted nature of AD pathogenesis,
future treatments need to adopt a multimodal approach that targets the Aβ-tau signal-
ing pathway via the modulation of the PI3K/AKT/GSK3β signaling cascade, leading to
a pro-neuroplastic effect via enhanced BDNF signaling. To our knowledge, our review
demonstrates how kaempferol and quercetin address various aspects of AD, including
neuroinflammation, oxidative stress, reduced plasticity, and Aβ and tau signaling. Notably,
our review is the first to propose that kaempferol can mitigate both tau hyperphosphoryla-
tion and Aβ toxicity by directly targeting the PI3K/AKT/GSK3β pathway. Additionally,
we suggest that polyherbal cocktails rich in kaempferol and quercetin may yield robust
anti-AD effects, and we identified potential herbal sources of kaempferol and quercetin. Fi-
nally, we discuss the limitations that currently impede the efficacy of kaempferol/quercetin
treatment, and suggest potential adjustments to circumvent these challenges. Together,
these changes can improve the anti-AD efficacy of natural flavonoids and could be ideal
adjunctive or alternative treatments to currently available drugs.
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Aβ amyloid beta
AChEIs acetylcholinesterase inhibitors
AChE acetylcholinesterase
ACh acetylcholine
AD Alzheimer’s disease
AKT protein Kinase B



Biology 2023, 12, 1453 16 of 32

AMPK AMP-activated protein kinase
APP amyloid precursor protein
BACE1 beta-site APP cleaving enzyme 1
Bax bcl-2-like protein 4
BBB blood-brain barrier
BDNF brain-derived neurotrophic factor
Cdk5 cyclin-dependent kinase 5
p-Cdk5 phosphorylated forms of Cdk5
CNS central nervous system
COX-1 cyclooxygenase-1
COX-2 cyclooxygenase-2
CREB cAMP response element-binding protein
CSS Chaihu shugan san
EGCG epigallocatechin-3-gallate
EPM elevated plus-maze test
ERK1/2 extracellular receptor signal-regulated kinase 1&2
GLUT4 glucose transporter type 4
GSH glutathione
GSK3β glycogen synthase kinase-3 beta
GPx glutathione peroxidase
HT22 immortalized mouse hippocampal cell line
HO-1 heme oxygenase-1
HQSJDZ Huangqi Sijunzi
H2O2 hydrogen peroxide
IDE insulin-degrading enzyme
IFN-γ interferon gamma
IL-1β interleukin-1β
IL-2 interleukin-2
iNOS inducible nitric oxide synthase
ICR strain of Swiss mice produced at the Institute of Cancer Research
IR insulin resistance
I/R cerebral ischemia/reperfusion
IRS1 insulin response substrate-1
JNK c-Jun N-terminal kinase
KAG kaempferol 3-O-(6′′-acetyl)-β-glucopyranoside
KAT lysine acetylase
KDAC lysine deacetylase
K-3-Rh kaempferol-3-O-rhamnoside
K/Q kaempferol and quercetin co-treatment
LPS lipopolysaccharide
PGE2 prostaglandin E2
PI3K phosphoinositide 3-kinases

PI3K/AKT/GSK-3β
phosphoinositide 3-kinase/protein kinase B/glycogen synthase kinase-3
beta signaling pathway

PKC protein kinase C
PP2A protein phosphatase 2
PSD-95 postsynaptic density protein 95
MAP microtubule-associated protein
MAPK mitogen-activated protein kinase
MDA malondialdehyde
MLK2 mixed lineage kinase 2
NF-kB nuclear factor kappa B
NFTs neurofibrillary tangles
NMDARs N-methyl-D-aspartate receptors
NO nitric oxide
Nrf2 nuclear factor erythroid 2-related factor 2
NR2B N-methyl D-aspartate receptor subtype 2B
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PET positron emission tomography
PON2 paroxonase 2
ROS reactive oxygen species
SIRT1 Sirtuin 1
Ser serine
Ser9 serine 9
SOD superoxide dismutase
STZ streptozotocin
TCM traditional Chinese medicine
Thr threonine
TLRs toll-like receptors
TLR2 toll-like receptor 2
TLR4 toll-like receptor 4
TLR9 toll-like receptor 9
TNF-α tumor necrosis factor-α
Trkβ tropomycin-related kinase β

3 × Tg AD mice triple transgenic Alzheimer’s disease mice
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