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Simple Summary: The main objective of this work was to integrate a review of methodologies to
estimate closed-loop baroreflex sensitivity, an index used for autonomic nervous system evaluations,
into a new software package, CardioRVAR, developed for the R programming environment. We
present the results obtained after applying the tool in different scenarios and discuss its potential
applications in a clinical setting. The tool is open-source and stored in a public GitHub repository,
which allows feedback and provides room for the improvement and continuation of the work.

Abstract: CardioRVAR is a new R package designed for the complete evaluation of closed-loop
cardiovascular interactions and baroreflex sensitivity estimated from continuous non-invasive heart
rate and blood pressure recordings. In this work, we highlight the importance of this software tool
in the context of human cardiovascular and autonomic neurophysiology. A summary of the main
algorithms that CardioRVAR uses are reviewed, and the workflow of this package is also discussed. We
present the results obtained from this tool after its application in three clinical settings. These results
support the potential clinical and scientific applications of this tool. The open-source tool can be
downloaded from a public GitHub repository, as well as its specific Shiny application, CardioRVARapp.
The open-source nature of the tool may benefit the future continuation of this work.

Keywords: autonomic nervous system; baroreflex sensitivity; vector autoregressive modeling;
discrete wavelet transform; R programming environment

1. Introduction

Non-invasive methods to study autonomic functions are common and highly popular
in the field of autonomic neurophysiology. We would like to highlight in this context the
contributions of Rodríguez-Liñares et al. [1] and Martínez et al. [2] to the R programming
environment in the form of the RHRV, a software package designed for the assessment of
the state of vagal and sympathetic modulation in individuals through the evaluation of
heart rate variability (HRV), estimated from interbeat intervals (IBI) and heart rate (HR)
recordings [1–3]. In this work, the focus of study comprises both the evaluation of said HRV
together with the behavior of the mechanisms that control both HRV and blood pressure
variability (BPV).

There are several procedures to estimate HRV and BPV. The procedure of interest in
this work is the frequency-domain assessment method, which consists of the identification
and isolation of the activity present in two frequency bands associated with adrenergic
and vagal modulation: respectively, the low-frequency (LF) band, consisting of frequencies
from 0.04 to 0.15 Hz, and the high-frequency (HF) band, which encompasses frequencies
from 0.15 to 0.4 Hz [3,4]. These components are extracted from HR and blood pressure (BP)
recordings, such as systolic or diastolic blood pressure (SBP, DBP). One should note that,
in BPV, this HF band would be representative of the respiratory activity, whose frequency
components are usually located at this band [3,4].
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In the frequency domain, the magnitude that relates both BPV and HRV is the spon-
taneous baroreflex sensitivity (BRS) [4]. The BRS can be estimated as the transfer func-
tion [4–6] between both measurements, which is usually computed as the ratio between the
cross-spectrum of the IBI series and the BP recording, and the BP auto-spectrum [5,6], and
it is summarized in Equation (1) as described in works such as Barbieri et al. [5] (p. 36) or
Faes et al. [6] (p. 278):

αo(f) =
SBP,IBI(f)
SBP,BP(f)

(1)

However, this method assumes an open-loop model to describe the dynamics of the
cardiovascular system [5]. A closed-loop model can be used to take into account both
feedforward and feedback interactions, in which HR and BP both influence themselves by
different mechanisms: either mechanical ones that induce changes in BPV through changes
in HRV, or baroreflex ones that induce changes in the opposite direction [5,7]. Moreover,
these variabilities may be influenced by other factors external to this closed-loop, which
should also be considered [5,7,8].

In this context, several toolboxes that consider this type of model have been designed
for MATLAB, most of them based on contributions from Faes et al. [9–11], for the analysis of
EEG signals and closed-loop cardiovascular data. From these MATLAB tools, we highlight
the eMVAR toolbox [9] (http://www.lucafaes.net/emvar.html (accessed on 30 August
2023)) and the blockMVAR toolbox (http://www.lucafaes.net/blockmvar.html (accessed
on 30 August 2023)), designed for the evaluation of causal relationships between variables
through autoregressive modeling [8,9,12]. It is also worth mentioning the works of Barnett
and Seth in the form of the GCCA [13,14] and MVGC [15] MATLAB toolboxes, which,
although designed for and centered on neural connectivity analysis, share both procedures
and core algorithms with the ones employed to analyze closed-loop cardiovascular data.

In the R statistical environment, the authors have recently proposed a software tool for
the determination of spontaneous BRS changes using wavelet analyses [16]. In addition, we
highlight R-based package grangers (https://github.com/MatFar88/grangers (accessed on
30 August 2023)), by Farnè and Montanari and based on their work [17], which allows causal
analysis between pairs of signals. However, the R environment lacks sufficiently specific
and detailed contributions such as the ones designed for MATLAB for the measurement of
baroreflex sensitivity using causal closed-loop models of interactions.

We present in this work the R package CardioRVAR, a tool developed in the R environ-
ment to better describe these interactions in individual subjects by working at the same
time with both the present feedback and feedforward mechanisms that regulate the studied
variables, using the R statistical environment for data analysis. In the following sections of
this work, a review of the methodology integrated into the package will be presented, as
well as the general workflow of the package.

2. Materials and Methods
2.1. Vector Autoregressive Models

The core of this work is centered on the computation of vector autoregressive (VAR)
models [5,6,8,9,12–15,17–19]. These models are able to describe causal interactions between
lagged values of the modeled variables against themselves as well as against the other
involved variables, until a specific lag conventionally denoted as p is reached, a limit that
corresponds to the order of the VAR model [5,6,8,9,12–15,17–19]. Equation (2), as in Barnett
and Seth [15] (pp. 52–53) or Faes et al. [6] (p. 278), describes the general structure of a
bivariate VAR(p) model [5,17], modified as in Faes et al. [9] (p. 4) to include a(0) coefficients
in the structure:

y[n] =
p
∑

k=0
a11(k)y[n− k] +

p
∑

k=0
a12(k)x[n− k] + wy[n]

x[n] =
p
∑

k=0
a21(k)y[n− k] +

p
∑

k=0
a22(k)x[n− k] + wx[n]

(2)

http://www.lucafaes.net/emvar.html
http://www.lucafaes.net/blockmvar.html
https://github.com/MatFar88/grangers
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If this model were to be applied to a system describing the interactions between
variables x and y, the first branch of Equation (2) would represent the main process
of this system (e.g., how HRV influences BPV) whereas the second would describe a
feedback controller for the main process (e.g., the baroreflex interaction between BPV
and HRV) [5,8]. One should note that the traditional VAR model only considers lagged
interactions; therefore, all direct and instantaneous interactions would be due to the model
residuals, and a11(0) = a12(0) = a21(0) = a22(0) = 0 [8,19]. By applying the Fourier transform
on the autoregressive coefficients as described in Equation (3) [5] (p. 35) [9] (p. 4), one can
obtain the frequency-domain representation of these coefficients, and, thus, of the whole
model, as presented in matrix notation in Equation (4) [5] (p. 35):

A(f) =
p

∑
k=0

a(k)e−i2πfk (3)

[
Y(f)
X(f)

]
=

[
A11(f) A12(f)
A21(f) A22(f)

][
Y(f)
X(f)

]
+

[
WY(f)
WX(f)

]
(4)

From Equation (4), one can derive the functions that constitute the closed-loop transfer
functions for each branch of the system. Equations (5) and (6) represent, respectively, the
transfer functions of the main process and the feedback controller described in Equation (2),
as discussed in Barbieri et al. [5] (p. 35):

βc(f) =
A12(f)

1−A11(f)
(5)

αc(f) =
A21(f)

1−A22(f)
(6)

However, this model, in the context of cardiovascular variables, is actually biased [7–9].
In order to correct it, direct transfer paths not previously included should be allowed from
one of the variables to the other [7–9,19]. By rearranging Equation (4), one can arrive at the
following matrix equation, given by Equation (7) as in Barbieri et al. [5] (p. 36) or Barnett
and Seth [15] (p. 52):

S = HΣH* (7)

Here, S is a matrix representing the frequency-domain cross-spectral matrix of the
previous variables X and Y, whereas Σ represents the noise-covariance matrix of the model,
and H is a matrix containing the transfer functions that link the activity of the estimated
noise sources of the model to the modeled variables [5,8,13,15,19]. In addition, operator *
applied to matrix H in Equation (7) represents its conjugate transpose [8,13,15,19]. Matrix
Σ will therefore contain every direct instantaneous interaction in the model, as the main
model is designed so that its coefficients represent the captured lagged interactions [8].
These instantaneous interactions can be isolated and incorporated into the main structure
of the model by estimating a matrix of interactions capable of diagonalizing the original
matrix Σ [8,9,19]. This process is described in Equation (8) [8] (p. 104):

Σ = DΣdiagDT (8)

Then, the coefficients of matrix D will be incorporated into matrix H and will be
propagated back to the transfer functions previously described in Equations (5) and (6) [8].
This makes either a12(0) 6= 0 or a21(0) 6= 0, depending on which direct transfer path
is selected, as these paths are unidirectional, while generating a new noise-covariance
matrix [8,9,19]. Not only are the corresponding transfer functions estimated, but also one
can evaluate the specific contribution that each noise makes to each variable, which can be
indicative of the causal strength in the interactions among the modeled variables [8]. These
computations and transformations are applied to the frequency-domain representation
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of the model, but they could also be performed on the time-domain model [9,19]. The
time-domain representation of this type of MVAR model is defined by Faes et al. [9,19] as
its extended version and also represents the core of the eMVAR MATLAB toolbox.

2.2. Causal Coherence and Noise Contribution

We integrated in our package the computation of the causal coherence measure,
based on the works of Porta et al. [18] and Faes et al. [6,9,19]. As explained in the
literature [6,9,18,19], the causal coherence of a bivariate series refers to the value of the
spectral coherence after suppressing one of the possible causal interactions, i.e., turning to
zero a specific portion of the matrix of interactions of the modeled system, representative
of a certain interaction. Therefore, the spectral coherence and the causal coherence can be
defined using Equations (9) and (10), respectively, as reported in Porta’s work [18] (p. 243):

coh2
SBP,IBI(f) =

|SSBP,IBI(f)|2

SSBP,SBP(f)SIBI,IBI(f)
(9)

coh2
SBP→IBI(f) = coh2

SBP,IBI(f)
∣∣∣
HSBP,IBI(f)=0

(10)

Causal coherence therefore would measure the coupling strength of a single interac-
tion. The measurement of causal coherence can also be used as an indicator of baroreflex
mechanisms [6,18]. A related measure to the causal coherence is the noise source contribu-
tion measure, which is also related to causal interactions [8]. As defined in the literature,
the noise source contribution is calculated as the percentage of a certain spectrum that is
explained by a particular noise source [8]. In a bivariate process, such as an IBI-SBP model,
the IBI spectrum is influenced by both the IBI white noise source and, to a certain degree,
the SBP noise source [8].

2.3. Trend Removal with the Discrete Wavelet Transform

In addition, a brief summary of the discrete wavelet transform [20] (DWT) is given here,
as it has been considered for the preprocessing algorithms of this software. The DWT is able
to decompose a signal into detail [20,21] and approximation or smooth coefficients [20,21],
each contained in a specific decomposition level representing a frequency band, whose
limits are defined by powers of two [20,22]. The frequency ranges contained in each
band are determined by the number of decomposition levels applied, and the so-called
Nyquist frequency (i.e., half of the sample frequency of a given signal) [20,22]. In this work,
this decomposition is performed with the maximal overlap discrete wavelet transform
(MODWT) [21]. An example of the result of this type of decomposition algorithm on a given
signal and its potential to isolate and detrend said signal is depicted in Figures 1 and 2,
in which decompositions were performed using the Haar [22,23] wavelet. In Figure 2, an
additional border handling strategy [24] is added to the decomposition, therefore producing
a different representation of the coefficients.

As one can observe in Figure 1, due to the applied number of decomposition levels,
the approximation coefficients form a representation of a very-low-frequency trend of the
signal, while the detail coefficients contain information for each analyzed frequency band,
represented by a specific decomposition level. This allows the design of an algorithm
capable of isolating such trends, which consists of editing the coefficients calculated from
the decomposition process by comparing each coefficient to a certain threshold [25,26].
After the coefficients have been edited, an inverse transform is performed to estimate and
then subtract a trend from the original signal, resulting in a detrended version of said
signal [25,26]. While other detrending methods, such as the smoothness priors [25–27],
could also be performed, the wavelet detrending method achieves the desired results in a
more computationally efficient manner [25,26]. The importance of this detrending process
will be discussed in the following sections.
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coefficients (black), as well as to each decomposition level from D1 to D6, which hold the detail
coefficients obtained from the analysis (red).
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2.4. CardioRVAR Workflow

The discussed tool is currently stored in two GitHub repositories. The first one, Car-
dioRVAR, allows the user to work with an R package and to use the provided functions
directly in the R console. The second one, CardioRVARapp, houses a Shiny application
(https://shiny.posit.co/ (accessed on 15 October 2023)) [28] that can automate the available
routines of CardioRVAR through a graphical user interface. CardioRVAR operates on the
algorithms previously described to achieve a complete profile of the cardiovascular interac-
tions present among HR and BP variables. The software algorithm can be summarized into
the following steps:

• Select a data file with CardioRVARapp and upload it into the software structure;
• Resample the uploaded time series after selecting a certain frequency, if needed;
• Manually select from the estimated HR and BP recordings a specific time window

of interest;
• Preprocess the windowed data, first by subtracting the mean of each series and then

by detrending them with an adaptative MODWT-based algorithm, and validate them
accordingly [13,14] for further analyses;

https://shiny.posit.co/
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• Estimate a time-domain VAR(p) model from the validated chosen segments and then
diagnose and validate the model with the criteria described in the literature [13–15,29];

• Transform the model into the frequency domain;
• Extract instantaneous unidirectional interactions from this frequency-domain repre-

sentation, given a specific zero-lag-interaction path already chosen by the user, and
update the model with such interactions;

• Estimate the most important features of the model and then display and report them;
• Generate and report single-subject indices from the model, allowing the user to choose

a method to estimate said indices.

This workflow can be achieved using the functions provided in the CardioRVAR pack-
age, or automatically by using the graphical user interface CardioRVARapp. The workflow
will be discussed in more detail in the following subsections, and transcripts of the required
commands from the current version of CardioRVAR will be provided.

2.5. Data Upload and Preprocessing

After uploading a data file, several functions can be used to preprocess said data. The
first preprocessing steps would be to interpolate and detrend the data, as well as to assess
their stationarity, as indicated in the literature [1,13–15,29,30]. This can be achieved by
using the following commands.

> library(CardioRVAR)
> # Data is a list with elements Time, RR, and SBP:
> Data <- ResampleData(Data, 4) # Interpolates data
> IBI <- DetrendWithCutoff(Data$RR) # Detrends IBI signal
> SBP <- DetrendWithCutoff(Data$SBP) # Detrends SBP signal
> New_Data <- cbind(SBP = SBP, RR = IBI)
> CheckStationarity(New_Data) # Checks stationarity of the data
[1] TRUE
> # Or alternatively:
> Check_stationarity <- CheckStationarity(New_Data, verbose = TRUE)
Time series are stationary

CardioRVAR’s graphical interface allows one to upload data from csv and txt files,
which contain information regarding beat-to-beat BP and IBIs. During the program testing,
these csv files were obtained from the ACQKnowledge v4.2.0 software. The application also
offers the possibility to interpolate each recording, if not done yet, to a sample frequency
of 4 Hz by default, as suggested in the literature [1,30]. After uploading the data, a visual
representation of the HR tachogram associated with the SBP data will be displayed on-
screen. The user will now have the possibility to select a time window to isolate a specific
interval from the recording for its analysis. Mean HR and SBP values of the isolated
segments will be reported once the window is selected. Figure 3 depicts this interface and
this process.

Once a time window has been chosen, the windowed signals are then preprocessed
by the R package, which results in detrended segments of the original signals through the
MODWT algorithm, adjusted through a border handling strategy (Figure 2) by default.
The detrending process is necessary for two main reasons: first, the detrending method
has been designed to mitigate the effects of the very-low-frequency (VLF) band [3,27], as
shown in Figure 4; second, the detrending allows one to make the data stationary, which
is a necessary step in order to further analyze the data [13,14]. As with the smoothness
priors detrending method, for which a frequency cutoff can be selected to better perform
the detrending [25,27], the nature of the MODWT allows one to define a frequency cutoff,
or a reference frequency from which the cutoff can be computed, that will determine which
frequency bands will be contained in the estimated trend [25].
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during a head-up tilt session.

Based on the strategy suggested by Li et al. [25], the detrending method included in
CardioRVAR adapts the number of decomposition levels to the sample frequency of the
series, in combination with a desired cutoff or reference frequency provided by the user. For
a specific decomposition level d, a frequency cutoff fC would be defined by Equation (11),
as the allowed frequency bands’ limits are powers of two and depend on the Nyquist
frequency fN [20,22,25]:

fCd =
fN

2d (11)

If a reference frequency is set by the user instead of a proper cutoff, the cutoff will be
computed as the lower limit of the frequency band to which the reference frequency belongs.
In other words, if a frequency fref is selected, CardioRVAR will find a decomposition level

associated with an interval of possible reference frequencies
[

fCd, fCd−1

)
that contains fref

and will use said interval to select frequency fCd as the cutoff. By reordering Equation (11),
and adapting it to include reference frequencies, we can obtain Equation (12), which
integrates the described steps and generates the optimal decomposition level according
to a reference frequency lower than the Nyquist frequency, with d·e representing the
ceiling operator:

d =
⌈

log2fN − log2fref

⌉
(12)

For a reference frequency of 0.04 Hz, as in Li et al. [25], and a sample frequency of
4 Hz, the detrending algorithm will generate a six-level decomposition, in which the last
decomposition level will contain a frequency band between 0.03125 Hz and 0.0625 Hz. From
this band, its lower limit, which is also the upper limit of the frequency band represented
by the approximation coefficients, will be used as a cutoff. CardioRVAR assumes by default
a sample frequency of 4 Hz and uses a reference frequency from the interval [0.03125 Hz,
0.0625 Hz) (e.g., 0.04 Hz, the lower limit of the LF band), and therefore the frequency
0.03125 Hz, as suggested by Li et al. [25], as a cutoff to estimate the trend, reducing the VLF
component of the signal (Figure 4B).
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Figure 4. Time-domain and frequency-domain changes in HRV due to the preprocessing algo-
rithms available in CardioRVAR. (A) Non-detrended signal, with a sample frequency of 4 Hz, and its
frequency-domain non-parametric and parametric spectra, with a significant very-low-frequency
component. (B) Detrended signal after selecting a reference frequency of 0.04 Hz (cutoff: 0.03125 Hz,
blue mark), accompanied by its non-parametric and parametric spectra, showing a mitigated very-
low-frequency component. (C) Detrended signal after selecting a reference frequency of 0.07 Hz
(cutoff: 0.0625 Hz, blue mark), with spectral densities showing a more mitigated very-low-frequency
component, while also affecting part of the LF component. Yellow areas indicate ranges of possi-
ble reference frequencies associated with the last decomposition level, used to identify the cutoff
frequency (blue marks) in each case. Green marks indicate cutoff frequencies (0.0625 Hz, 0.125 Hz)
associated with the previous decomposition level. Red areas indicate frequency components below
0.04 Hz.

This cutoff can be modified by the user so as to ensure the stationarity of the detrended
signals: the lower the frequency cutoff, the more the VLF component is retained, while this
component will be more mitigated if the cutoff is increased (Figure 4C). By selecting, for
example, a reference frequency from the interval [0.0625 Hz, 0.125 Hz) (e.g., 0.07 Hz), a
five-level decomposition will be performed, and the frequency 0.0625 Hz will be used as a
cutoff. Using a high cutoff or reference frequency, however, may also have the undesirable
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effect of affecting the spectral components of interest, especially the LF component, as
shown in Figure 4C.

Moreover, the use of a specific wavelet to perform the detrending is important as,
apart from mitigating the VLF components, it is desirable to preserve the HF and LF
components as much as possible. An example of the importance of this choice is shown in
Figure 5, where the relative errors between the non-parametric spectra of a raw IBI signal
and its detrended version using the MODWT-based algorithm included in CardioRVAR are
depicted. Two different wavelets were used to perform the detrending, the Haar and the
Daubechies 8 [23] wavelets, which are commonly renamed in R packages such as RHRV as
haar and d16, respectively [23]. While both wavelets generate high relative errors below
0.04 Hz, indicating that the VLF component has been mitigated, the Daubechies 8 wavelet
tends to maintain lower relative errors for the HF and LF components than the Haar
wavelet. This indicates that the former is better for preserving these HF and LF components
and therefore is more suitable for the detrending process. CardioRVAR allows the use of
several wavelets to modify the detrending and operates with the Daubechies 8 wavelet
by default.
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Figure 5. Relative errors computed for each frequency between the frequency-domain non-parametric
spectra of a raw IBI signal and its detrended version using the MODWT-based detrending algorithm
with (A) the Haar wavelet and (B) the Daubechies 8 wavelet. Vertical lines indicate frequencies
0.04 Hz and 0.15 Hz.

After this detrending is performed on the windowed data, CardioRVAR then tests
each segment to check if they are stationary. As suggested by Seth’s work [13,14] on the
use of MVAR models to describe and analyze neurological connectivity, the augmented
Dickey–Fuller (ADF) and the KPSS tests are employed for this task. Once the detrended
segments are statistically confirmed to be stationary, CardioRVAR starts the data modeling.

2.6. Analysis of Cardiovascular Closed-Loop Interactions

Once the data have been preprocessed, CardioRVAR proceeds to generate a VAR(p)
model of the chosen segments, which will be defined by a specific model order or maximum
lag limit and will capture the interactions of interest present at said segments. This model
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order is usually chosen by applying an information criterion, which, in the case of CardioR-
VAR is, by default, the Akaike Information Criterion (AIC) [31,32], as suggested by authors
such as Faes et al. [9] regarding closed-loop cardiovascular analysis. However, the software
allows one to select the model order that users consider more appropriate. It should be
noted that very low model orders will decrease the resolution of the frequency-domain
results, and too high model orders will produce extra peaks in the variability spectra that
may deviate from the true frequency-domain representation of the studied signals [32].

Once the model is estimated, certain statistical criteria are used to validate it. These
criteria are widely reported in the literature and consist of assessing the stability of the
model and the white noise nature of the model residuals [13–15,29]. While the validation
criteria used by CardioRVAR were proposed in the context of neural connectivity analysis,
the systems that are analyzed in said context share similar properties with the ones analyzed
in a cardiovascular one, such as the possible presence of cross-correlated noise sources
in the systems [8,13]. This justifies the use of said criteria for cardiovascular analyses.
CardioRVAR reports both these features, as well as the best model order according to the
chosen information criterion, the AIC by default, for a specific multivariate signal. When a
valid model has been estimated, one can use it as a source to calculate frequency-related
data. CardioRVARapp performs this routine automatically using its graphical interface; if
the user wants to do this by themselves using the functions provided by CardioRVAR, the
following are the commands that should be used.

> # Data represents a matrix with two interpolated time series, IBI and SBP.
> Data[,“IBI”] = DetrendWithCutoff(Data[,“IBI”])
> Data[,“SBP”] = DetrendWithCutoff(Data[,“SBP”])
> # Both signals have been detrended with these commands.
> CheckStationarity(Data)
[1] TRUE
> # A VAR model is estimated from the stationary time series and then validated:
> model <- EstimateVAR(Data)
> Check_residuals <- DiagnoseResiduals(model, verbose = TRUE)
Model residuals are white noise processes
> Check_stability <- DiagnoseStability(model, verbose = TRUE)
The model is stable

With these commands, once the data have been checked for stationarity, a model can
be estimated from the data and can also be checked to ensure its validity. The estimated
model can then be used to further assess its properties in the frequency domain.

2.7. Analysis in the Frequency Domain

The main functionality of CardioRVAR is to transform the time-domain VAR(p) models
into their frequency-domain representations. To do so, one should use the following
command, which will be applied to the previous model object:

> freq_model <- ParamFreqModel(model).

When calculating this new representation, the software estimates both branches of the
cardiovascular closed-loop model and allows users to choose which branch of the model
should be evaluated by selecting a specific input and output. If SBP (HR) is the input
(output), baroreflex interactions will be evaluated. On the contrary, mechanical effects will
be evaluated if HR (SBP) is chosen as the input (output).

CardioRVAR allows users to choose a direct transfer path from one of the variables into
the other. Although users are free to choose which direct transfer path they wish to include
in the model, from SBP to HR or vice versa, we strongly suggest the former option, as the
literature considers this a means of including fast baroreflex interactions in the model [6,8].
For this reason, CardioRVAR also reports these instantaneous interactions after isolating
them from the frequency-domain representation of the model.
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2.8. Assessment of the Transfer Functions

CardioRVARapp is able to display three types of transfer functions (Figure 6). The first
one is a biased representation of the closed-loop transfer function, as it is calculated without
taking into account the chosen direct transfer paths and is only shown for comparison
purposes. The second one is the corrected closed-loop transfer function, adjusted to allow
these direct transfer paths. The third one is the classical open-loop transfer function, obtained
either from Equation (1) or as the type I index indicated by Barbieri et al. [5] (p. 36). All the
representations are accompanied by their respective indices to allow statistical comparisons.
The interpretation of these transfer functions depends on the evaluated arm of the loop: for
example, Figure 6 depicts the calculated transfer functions with SBP (HR) as the main input
(output) of the arm, with a direct transfer path from SBP to HR, which is also reported by the
software (not shown in the figure). This transfer function represents the baroreflex sensitivity
of the analyzed data.
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Figure 6. Transfer functions reported by the software from patient during (A) head-up tilt and
(B) post-tilt recovery. From left to right: closed-loop transfer function without zero-lagged interactions,
closed-loop transfer function with zero-lagged interactions, and open-loop transfer function. Color
code: LF band (green), HF band (yellow).

Several methods have been introduced in CardioRVAR to estimate expected values from
the computed transfer functions. The first method is to perform this estimation by simply
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reporting the arithmetic mean of the transfer function at each frequency band of interest.
This method, however, is not recommended as it does not evaluate the reliability of the
estimates and could induce misrepresented expected values [33,34]. Thus, other methods
were introduced in the package to tackle this problem. The second one is the classical
thresholding method, which makes use of the squared spectral coherence to estimate the
reliability of the data by only considering estimates whose associated coherence values
surpass a certain threshold, which is usually 0.5 n.u. [8,33]. This method, however, can be
too strict to the point of sometimes not obtaining valid estimates from a particular subject
due to low coherence values [34,35]. The method proposed by McLoone and Ringwood [35]
was also introduced in our software, which consists of applying a frequency-domain
Gaussian window to the transfer function at a specific band before computing the expected
values. As both authors point out, with this method, the center of each frequency band
is mainly considered for the evaluation of the baroreflex activity [35]. Finally, another
estimation method, which consists of reporting the value of the transfer function at the
maximum coherence value of the bands of interest [36], is also included in our software.

2.9. Assessment of the Noise Source Contribution and Causal Coherence

As the computed models consider noise sources, one can evaluate their contribution
to the variability of the analyzed segment. This is reported by CardioRVAR in two dif-
ferent ways: first, the software reports the percentage of this contribution as defined by
Hytti et al. [8], from each noise source to each type of variability (Figure 7); second, it can be
achieved as a frequency-domain causal coherence function. This can also be interpreted as
a causality measure: the more that one type of variability can be explained by external noise
sources concerning a certain variable, the stronger these causal interactions [8]. Figure 7
depicts an example of a noise source evaluation obtained from a patient before and during
a head-up tilt (HUT) test, which was displayed by CardioRVARapp.
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2.10. Evaluation of the Tool: Data Sources

In this work, we present three analyses conducted with the tool in order to test its
effectiveness. The first analysis consists of the descriptive study of different autonomic
and baroreflex features from two subjects: a healthy subject and a patient with Postural
Orthostatic Tachycardia Syndrome (POTS) induced by COVID-19, the latter of which is
a phenomenon that has been recently reported in the literature [37]. The second analysis
consists of a comparison of estimates produced from the tool from five individual nor-
motensive subjects and seven hypertensive subjects in the context of HUT sessions. In
the final analysis, estimates computed with the tool from subjects from the EUROBAVAR
data set [34] are compared in the supine and standing positions, a validation strategy
already used in other works [16,35,38,39]. For these two last analyses, the normality of
distributions in the former analysis and of the difference in distributions in the latter is
tested with the Shapiro–Wilk test. Then, depending on whether normality can be rejected
or not, a Wilcoxon test or a t-test for unpaired samples, in the case of the former analysis,
and for paired samples, in the case of the EUROBAVAR data, is performed to compare the
estimates, assuming a confidence level of 0.95. More information regarding the composition
of this data set, which includes two baroreflex-impaired subjects, is available in the work of
Laude et al. [34].

3. Results and Discussion
3.1. Descriptive Study of Two Subjects

We offer a practical example in which our software was used to evaluate cardiovascular
interactions from certain subjects, who will be referred to as subjects A and B. Both subjects
participated in a HUT test, during which HR and beat-to-beat non-invasive SBP recordings
were obtained. In each example, three intervals were considered for the analysis, which
will be referred as pre-tilt, tilt, and post-tilt. A closed-loop model of interactions was
estimated for each interval using CardioRVAR, and the BRS transfer functions, as well as the
feedforward transfer functions, were isolated from each model. To ensure the reliability
of the measurements, the spectral squared coherence, also computed by CardioRVAR, was
considered alongside each transfer function, and only those frequencies whose spectral
coherence was higher than 0.5 n.u. were used in the computations. For comparison
purposes with the coherence-thresholding method, estimates were also recovered using
the other estimation strategies available in CardioRVAR.

The obtained closed-loop BRS indices from these subjects are reported in Table 1.
Subject A exhibits a weak response during tilt (Figure 8A), with a rather bradycardic
behavior. As can be seen, weak changes in HR rate and SBP are found in this subject
during each interval of the HUT test. However, changes in the baroreflex components
are highly evident. The HF component of the BRS is highly predominant during the pre-
tilt and post-tilt periods, which could be correlated and would explain the bradycardic
basal state of this subject. In fact, the coherence levels are below 0.5 n.u. for the LF band
during post-tilt, making the BRS estimate unreliable according to the coherence threshold
criterion for said band. The Gaussian-averaging estimation and the estimate at maximum
coherence methods are able to give individual estimates for these intervals. However,
during post-tilt, they differ in their magnitudes for the LF band: after visual inspection, it
was noticed that around 0.06 Hz, where the maximum coherence level was located, the gain
of the transfer function dropped, giving a low estimate for this coherence level, while, at
frequencies around 0.1 Hz, the gains computed were of much higher magnitude. Therefore,
we attribute this finding to the fact that the maximum coherence level, at which the gain
dropped, was not located near the center of the frequency band, a region that is better
explored by the Gaussian-averaging method [35], which in this case had gains of greater
magnitude. During tilt, the response at the HF band is reduced, but the activity of the LF
component is still not predominant.
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Table 1. Estimates from subjects A and B during the different periods of the head-up tilt test returned
by CardioRVAR, using its graphical interface. The displayed results were obtained through the
following estimation methods and criteria: coherence threshold (CT), weighted average (WA), and
maximum coherence (MC).

Subject A Subject B

Variable Pre-Tilt Interval Tilt Interval Post-Tilt Interval Pre-Tilt Interval Tilt Interval Post-Tilt Interval

HR (bpm) 48.27 54.03 49.42 78.42 109.74 69.75
SBP (mmHg) 102.12 109.15 111.65 125.84 121.62 120.95

CT-HF αc
(ms/mmHg) 26.54 11.57 35.90 13.30 N/A † 13.60

WA-HF αc
(ms/mmHg) 24.13 9.05 31.56 9.54 1.76 12.81

MC-HF αc
(ms/mmHg) 27.34 12.50 36.33 13.10 1.78 16.33

CT-LF αc
(ms/mmHg) 6.95 1.74 N/A † 11.78 3.98 17.88

WA-LF αc
(ms/mmHg) 7.33 4.59 17.41 11.28 3.81 17.78

MC-LF αc
(ms/mmHg) 7.02 1.73 1.63 12.25 4.11 16.77

† Squared coherence was below 0.5 n.u.
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Figure 8. Heart rate (red) and systolic blood pressure (blue) recordings obtained from (A) subject A,
a healthy patient who exhibited a weak response during head-up tilt, and (B) subject B, who suffered
from Postural Orthostatic Tachycardia Syndrome induced by long-COVID.
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Subject B, who participated in a similar protocol, exhibited, however, an intense
response during tilt (Figure 8B). This subject had recovered from COVID-19 infection and
was suffering from long-COVID-induced POTS. The data were analyzed by the software
and its corresponding results are also reported as with subject A in Table 1. As can be seen,
the strong HR response during tilt is accompanied by a strong decrease in the HF baroreflex
component according to the non-thresholding estimation methods, and a decrease in the
coherence levels below the threshold, thus not allowing a correct estimation for this band
according to the coherence criterion method. The LF component also decreases, but tends
to be predominant during tilt according to the non-thresholding estimation methods. Both
components increase again after HUT.

3.2. Comparison between Normotensive and Hypertensive Subjects

Table 2 summarizes the obtained results from seven hypertensive and five normoten-
sive subjects from the analysis of recordings from HUT tests. Two methods for the esti-
mation of BRS were used in the analyses: a weighted-averaged BRS without coherence
thresholding, as in McLoone and Ringwood’s work [35], and BRS indices obtained at the
maximum coherence level for each frequency band. Significant differences are found for
both bands in the supine position, and for the LF band during HUT; however, disagreement
between the estimation methods is detected at the LF band in the supine position.

Table 2. Comparison of estimates obtained from the tool between normotensive and hypertensive
subjects using two strategies for the computation of the BRS.

Position Band Estimate Type Normotensive
(n = 5)

Hypertensive
(n = 7) p Value

Supine rest HF Weighted-averaged 9.02 ± 3.88 2.03 ± 0.45 p < 0.01
Estimate at maximum coherence 10.99 ± 4.14 3.10 ± 0.75 p < 0.05

LF Weighted-averaged 5.94 ± 1.38 2.25 ± 0.39 p = 0.054
Estimate at maximum coherence 6.19 ± 1.32 1.69 ± 0.37 p < 0.05

Tilt HF Weighted-averaged 4.34 ± 1.39 1.27 ± 0.29 p = 0.091
Estimate at maximum coherence 5.01 ± 1.95 1.46 ± 0.21 p = 0.143

LF Weighted-averaged 4.90 ± 0.64 2.06 ± 0.22 p < 0.01
Estimate at maximum coherence 4.69 ± 0.96 1.66 ± 0.23 p < 0.05

Data are presented as means ± standard errors of the mean (SEM). Normality was first tested with the Shapiro–
Wilk test. Significance was computed with the unpaired t-test or Wilcoxon test. Significant p values (p < 0.05) are
shown in bold.

No significant differences were found for the HF band during HUT. In certain distribu-
tions, normality was rejected through the Shapiro–Wilk test due to the presence of extreme
values in said distributions. These extreme values were mainly attributed to the previously
discussed subject A, who was included among the normotensive subjects and whose char-
acteristics were previously discussed. One should note that both strategies to compute the
BRS tend to share the same statistical conclusions, except for the LF band during supine
rest, for which the estimates produced by windowing and averaging through the frequency
band were not considered to have a statistically significant difference, whereas the estimates
produced by considering the BRS at its maximum coherence level did, although a tendency
was evidenced regarding the weighted-averaged estimates. The significant differences
found between normotensive and hypertensive subjects correlate with findings reported in
the literature, which show that hypertensive patients tend to have lower BRS levels when
compared to normotensive ones [40].

3.3. EUROBAVAR Analysis Results

We also tested the tool on the open-access EUROBAVAR data set, as done in previous
works in the literature [34,35,38,39], including the evaluation of our previous contribution [16].
Preliminary results from the closed-loop BRS assessment from the EUROBAVAR data have
been previously presented at a Spanish Society of Physiological Sciences meeting [41]. A set
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of individual results obtained through the maximum coherence method from each subject is
displayed in Figures 9 and 10, divided according to the reported A and B series of the data
set [34,38]. For each of these subjects, after uploading their respective recordings into CardioR-
VARapp and preprocessing them, a bivariate VAR model was estimated to model each arm
of the closed loop and was transformed into the frequency domain, while incorporating an
instantaneous transfer path from BPV to HRV. Then, CardioRVARapp-reported estimates from
these models were then computed using the maximum coherence strategy (Figures 9 and 10)
or McLoone and Ringwood’s weighting strategy.

It should be noted that although McLoone and Ringwood originally applied their
weighting method on the EUROBAVAR data set, the strategy was applied to models
derived from a direct approach strategy proposed by both authors, analyzing the closed-
loop baroreflex system as if it were an open one [35]. CardioRVAR, however, aims to follow a
different approach, by considering both arms of the closed-loop system in its computations
and combining the computed models with the previously described individual estimation
strategies. By applying its entire workflow to these data, and through the comparisons
of the obtained results with the available works on this data set, the performance of
CardioRVAR in this setting can be validated.

For comparison purposes, estimates computed through the coherence-thresholding
strategy for the A series (Figure 9C,D) and the B series (Figure 10C,D) are also shown
together with the ones computed through the maximum coherence strategy. It can be no-
ticed that the coherence-thresholding strategy is not able to produce estimates from certain
subjects, particularly from the B series: regarding the impaired subjects [34,35,38], both esti-
mates could be recovered from one of these subjects in the supine position, while estimates
from the other one could not be recovered from any band. In the standing position, only
estimates for the HF band could be computed from these subjects. This not only affected
the impaired subjects, but also some of the non-impaired ones (Figures 9B and 10B,D). The
maximum coherence strategy, however, is able to produce estimates for both bands of
interest for every subject in the data set, which tend to be similar to the ones produced
through the coherence-thresholding strategy. The estimates computed by CardioRVAR
correlate with findings described in the literature: the baroreflex impairment tends to be
better assessed qualitatively in the standing position [35], allowing the identification of
the two impaired baroreflex subjects [35]. There is also an extreme baroreflex component
in subject 13 from the B series, visible in the supine position (Figure 10A,B), expected
according to the literature [38], which shares characteristics with the previously discussed
subject A. Subject A008 also tends to give high BRS values for the HF band when com-
pared to the rest of the A series, which is similar to what was observed by McLoone and
Ringwood through their methodology [35].

Figure 11A shows changes in baroreflex sensitivity estimates assessed by the Car-
dioRVAR after applying McLoone and Ringwood’s weighting method to the computed
VAR models for all patients, excluding subjects 5 and 10 from the B series due to their
baroreflex impairment as in [16], showing significant differences between the supine and
standing positions for the HF band (p < 0.001) and the LF band (p < 0.001), with supine-to-
standing rations of (mean ± S.D.) 3.21 ± 1.44 and 1.98 ± 0.88 for each band, respectively.
Figure 11B shows the same estimates after applying the maximum coherence strategy,
obtaining supine-to-standing ratios of 2.89 ± 1.17 and 1.91 ± 1.21 for the same bands,
respectively. Significant differences between the supine and standing positions for the HF
band (p < 0.001) and the LF band (p < 0.01) were also observed again. These results are
summarized in Table 3, which also shows estimates obtained from open-loop strategies,
classified as types I and II according to Barbieri et al. [5]. While these estimates were
computed through the Gaussian-weighting and the maximum coherence procedures, they
share several properties already described for open- vs. closed-loop estimates [5]: type I
open-loop estimates tend to be higher than type II estimates, and closed-loop estimates
tend to be smaller than open-loop ones, as shown in Table 3. The overall significant dif-
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ferences found between the estimates also correlate with other results reported in the
literature [16,35,39], validating the ability of CardioRVAR to identify these features.
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Figure 9. Individual closed-loop BRS estimates computed through CardioRVARapp from the EU-
ROBAVAR A series of subjects, and their distributions, obtained in (A) supine position, through
the maximum coherence strategy; (B) supine position, through the coherence-thresholding strategy;
(C) standing position, through the maximum coherence strategy; and (D) standing position, through
the coherence-thresholding strategy. Blue arrows indicate subjects with missing estimates due to the
coherence-thresholding strategy. Color code: HF band (black), LF band (white).
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Figure 10. Individual closed-loop BRS estimates computed through CardioRVARapp from the EU-
ROBAVAR B series of subjects, and their distributions, obtained in (A) supine position, through
the maximum coherence strategy; (B) supine position, through the coherence-thresholding strat-
egy; (C) standing position, through the maximum coherence strategy; and (D) standing position,
through the coherence-thresholding strategy. Red arrows indicate baroreflex-impaired subjects. Blue
arrows indicate non-impaired subjects with missing estimates due to the coherence-thresholding
strategy. Purple arrows indicate baroreflex-impaired subjects with missing estimates due to the
coherence-thresholding strategy. Color code: HF band (black), LF band (white).
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Figure 11. Baroreflex sensitivity changes in closed-loop estimates computed by CardioRVARapp
from EUROBAVAR during supine and standing positions in HF and LF bands, excluding the two
impaired ones (n = 19), through (A) Gaussian-weighting strategy and (B) maximum coherence
strategy. Significance: p < 0.01 (**), p < 0.001 (***).

Table 3. Supine and standing position BRS estimates computed by CardioRVARapp through Gaussian-
weighting and maximum coherence strategies from EUROBAVAR subjects, excluding the two im-
paired ones (n = 19).

Closed-Loop Open-Loop
(Type II)

Open-Loop
(Type I)

Band Method Supine
(ms/mmHg)

Standing
(ms/mmHg) p Value Supine

(ms/mmHg)
Standing

(ms/mmHg) p Value Supine
(ms/mmHg)

Standing
(ms/mmHg) p Value

HF Weighted
average 11.06 ± 2.46 3.54 ± 0.54 p < 0.001 13.82 ± 2.92 5.03 ± 0.81 p < 0.001 20.79 ± 3.74 7.82 ± 1.27 p < 0.001

Maximum
coherence 13.03 ± 2.47 4.84 ± 0.79 p < 0.001 16.07 ± 2.68 6.40 ± 1.07 p < 0.001 17.40 ± 2.92 7.51 ± 1.38 p < 0.001

LF Weighted
average 8.12 ± 1.72 4.12 ± 0.55 p < 0.001 9.23 ± 2.25 5.12 ± 0.77 p < 0.001 12.72 ± 2.75 7.12 ± 0.91 p < 0.001

Maximum
coherence 7.92 ± 1.50 4.06 ± 0.54 p < 0.01 10.48 ± 2.04 5.42 ± 0.68 p < 0.01 12.43 ± 2.25 6.41 ± 0.77 p < 0.01

Data are presented as means ± standard errors of the mean (SEM). Normality was first tested with the Shapiro–
Wilk test. Significance was computed from t-test or Wilcoxon test for paired samples. Significant p values (p < 0.05)
are shown in bold.

An analysis of causal coherence (Figure 12, Table 4) in both positions was performed on
the same subjects, which revealed, as briefly reported in the Spanish Society of Physiological
Sciences meeting [41], that the IBI-to-SBP coherence was significantly higher than the SBP-
to-IBI one for the LF band in the supine position (p < 0.001), whereas, in the standing
position, both coherence flows were statistically equally predominant. For the HF band,
no significant changes in causal coherence were observed. The changes observed in the
causal coherence in the LF band are important in the context of BRS, as they follow a similar
pattern as reported in the literature, which is indicative of baroreflex mechanisms taking
place in the analyzed system [6].



Biology 2023, 12, 1438 21 of 24

Biology 2023, 12, x FOR PEER REVIEW  21  of  25 
 

 

Table 3. Supine and standing position BRS estimates computed by CardioRVARapp through Gauss-

ian-weighting and maximum coherence strategies from EUROBAVAR subjects, excluding the two 

impaired ones (n = 19). 

    Closed-Loop 
Open-Loop 

(Type II) 

Open-Loop 

(Type I) 

Band Method 
Supine 

(ms/mmHg) 

Standing 

(ms/mmHg) 
p Value 

Supine 

(ms/mmHg) 

Standing 

(ms/mmHg) 
p Value 

Supine 

(ms/mmHg) 

Standing 

(ms/mmHg) 
p Value 

HF  Weighted average  11.06 ± 2.46  3.54 ± 0.54  p < 0.001  13.82 ± 2.92  5.03 ± 0.81 
p < 

0.001 
20.79 ± 3.74  7.82 ± 1.27  p < 0.001 

  Maximum coherence  13.03 ± 2.47  4.84 ± 0.79  p < 0.001  16.07 ± 2.68  6.40 ± 1.07 
p < 

0.001 
17.40 ± 2.92  7.51 ± 1.38  p < 0.001 

LF  Weighted average  8.12 ± 1.72  4.12 ± 0.55  p < 0.001  9.23 ± 2.25  5.12 ± 0.77 
p < 

0.001 
12.72 ± 2.75  7.12 ± 0.91  p < 0.001 

  Maximum coherence  7.92 ± 1.50  4.06 ± 0.54  p < 0.01  10.48 ± 2.04  5.42 ± 0.68  p < 0.01  12.43 ± 2.25  6.41 ± 0.77  p < 0.01 

Data are presented as means ± standard errors of the mean (SEM). Normality was first tested with 

the Shapiro–Wilk test. Significance was computed from t-test or Wilcoxon test for paired samples. 

Significant p values (p < 0.05) are shown in bold. 

 

Figure 12. Causal coherence flows from (A) HF band from IBI to SBP (dark green) and vice versa 

(light green) at both supine (left) and standing (right) positions, and (B) HF band from IBI to SBP 

(dark green) and vice versa (light green) at both supine (left) and standing (right) positions. The two 

impaired subjects were excluded from the analysis (n = 19). Significance: p < 0.001 (***). 

Table 4. Supine and standing position causal coherence estimates computed by CardioRVARapp from 

EUROBAVAR subjects, excluding the two impaired ones (n = 19). 

Position  Band  𝐂𝐨𝐡𝟐𝐒𝐁𝐏→𝐈𝐁𝐈  (n.u.)  𝐂𝐨𝐡𝟐𝐈𝐁𝐈→𝐒𝐁𝐏  (n.u.)  p Value 

Supine  HF  0.23 ± 0.02  0.21 ± 0.02  p = 0.644 

  LF  0.19 ± 0.03  0.54 ± 0.04  p < 0.001 

Standing  HF  0.21 ± 0.03  0.19 ± 0.02  p = 0.510 

  LF  0.29 ± 0.04  0.32 ± 0.03  p = 0.606 

Figure 12. Causal coherence flows from (A) HF band from IBI to SBP (dark green) and vice versa
(light green) at both supine (left) and standing (right) positions, and (B) HF band from IBI to SBP
(dark green) and vice versa (light green) at both supine (left) and standing (right) positions. The two
impaired subjects were excluded from the analysis (n = 19). Significance: p < 0.001 (***).

Table 4. Supine and standing position causal coherence estimates computed by CardioRVARapp from
EUROBAVAR subjects, excluding the two impaired ones (n = 19).

Position Band Coh2
SBP→IBI (n.u.) Coh2

IBI→SBP (n.u.) p Value

Supine HF 0.23 ± 0.02 0.21 ± 0.02 p = 0.644
LF 0.19 ± 0.03 0.54 ± 0.04 p < 0.001

Standing HF 0.21 ± 0.03 0.19 ± 0.02 p = 0.510
LF 0.29 ± 0.04 0.32 ± 0.03 p = 0.606

Data are presented as means ± standard errors of the mean (SEM). Normality was first tested with the Shapiro–
Wilk test. Significance was computed from t-test for paired samples. Significant p values (p < 0.05) are shown
in bold.

3.4. Comparison with Other Works

A comparison with other works published in the literature is provided. As ex-
plained before, the preprocessing steps used in CardioRVAR to validate the produced
VAR models are based on the preprocessing workflow proposed by Barlett and Seth in
their works [13–15]. In CardioRVAR’s workflow, the discrete wavelet transform is used in
the preprocessing steps of the signals, but not in the analyses per se. This differs from a
recently published package from our team, BaroWavelet [16], in which wavelet transforms
are used as the core of the analysis of the BRS. In this sense, BaroWavelet offers particular
utility regarding BRS analysis, which is the application of the multiresolution approach of
the wavelet transform for a time-frequency assessment of the BRS, aiming for the isolation
of both time and frequency components at the same time while mitigating the possible
loss of information in these components [16]. Here, CardioRVAR can only provide analysis
results in the frequency domain. However, it should be highlighted that the main focus of
CardioRVAR lies in the obtention of closed-loop interaction models of the cardiovascular
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dynamics. Thus, the simultaneous use of both tools could probably allow the obtention of
a more complete overview of the cardiovascular profile, through the combination of both
methodological strategies offered by each tool.

CardioRVAR also allows users to choose amongst several different strategies to compute
estimates from the frequency-domain models. The results depicted in Table 1 as well as
Figures 9 and 10 serve as examples of why several estimation methodologies that allow
the computation of as many estimates as possible while maintaining the reliability of said
estimates at the same time must be included in the software, which is in line with the
opinions of several authors [34,35]: estimates from certain subjects may be compromised
due to the application of harsh validation methods, such as the application of a coherence
threshold (Figure 10B,D), in which case a softer validation strategy could be appropriate
to compute said estimates (Figure 10A,C). Thus, CardioRVAR includes several coherence-
independent mechanisms described in the literature and reviewed in this work to produce
these estimates, apart from the classical coherence-thresholding method.

The package grangers, also developed for R, offers a very useful set of tools to analyze
causal connectivity between sets of signals, which represents another way to demonstrate
the presence of causal baroreflex interactions among the measured recordings. However,
it does not consider a detailed analysis of the transfer functions that define this system of
interactions. Its usage in combination with CardioRVAR is nevertheless highly suggested, as
grangers can also generate frequency-domain significance testing results for the evaluation
of the present causal interactions [17].

Although the package RHRV is not specifically designed to analyze BRS, its contribu-
tion to the R environment for the analysis of HRV is outstanding. The package BaroWavelet
was in fact designed to work together with the RHRV algorithms to produce some of
its BRS estimates [16]. While this is not the case for CardioRVAR, we strongly encour-
age its use in combination with RHRV in order to generate a complete assessment of the
cardiovascular profile.

Finally, it should be noted that CardioRVAR, when compared with other tools for closed-
loop BRS assessment, is also accompanied by a graphical user interface to simplify the
analysis for users. In this way, users that are not used to the mechanics of the R environment
can conduct the same analyses with the help of the interface. This strategy was also followed
for the BaroWavelet package [16], for the same reasons.

4. Conclusions

In this work, a new R package and Shiny application capable of evaluating closed-
loop cardiovascular interactions have been described. A review of the methodological
aspects of the tool is provided, and several demonstrations of analyses performed by
the tool are given. These analyses tackled the characterization of postural changes and
baroreflex impairment, the identification of decreases in baroreflex sensitivity caused by
hypertension, and a descriptive analysis in the context of COVID-19-induced POTS. With
these results, the potential clinical and scientific applications of this R-based package,
CardioRVAR, have been highlighted. This package therefore serves as a contribution to the
R statistical environment, allowing the analysis of closed-loop cardiovascular dynamics
through the reviewed algorithms.

The tool can be accessed through two public GitHub repositories, for both the main
package, through the URL https://github.com/CIMES-USNA-UMA/CardioRVAR, and its
graphical user interface through https://github.com/CIMES-USNA-UMA/CardioRVARapp.
Thanks to the nature of this package, new updates can be introduced in the future to further
improve its structure and data analysis algorithms, enabling the possible continuation of
this work.
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