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Simple Summary: Research on proteins and their interactions with other proteins yields many new
findings that help explain how diseases emerge. However, manual curation of scientific literature
delays new discoveries in the field. Artificial intelligence and deep learning techniques have played
a significant part in information extraction from textual forms. In this study, we used text mining
and artificial intelligence techniques to address the issue of extracting protein–protein interaction
networks from the vast amount of scientific research literature. We have created an automated system
consisting of three models using deep learning and natural language processing methods. The ac-
curacy of our first model, which employs recurrent neural networks using sentiment analysis, was
95%. Additionally, the accuracy of our second model, which employs the named entity recognition
technique in NLP, was effective and achieved an accuracy of 98%. In comparison to the protein
interaction network, we discovered by manual curation of more than 30 articles on Autism Spectrum
Disorder, that the automated system testing on 6027 abstracts was successful in developing the net-
work of interactions and provided an improved view. Discovering these networks will greatly help
physicians and scientists understand how these molecules interact for physiological, pharmacological,
and pathological insight.

Abstract: Text mining methods are being developed to assimilate the volume of biomedical textual
materials that are continually expanding. Understanding protein–protein interaction (PPI) deficits
would assist in explaining the genesis of diseases. In this study, we designed an automated system to
extract PPIs from the biomedical literature that uses a deep learning sentence classification model,
a pretrained word embedding, and a BiLSTM recurrent neural network with additional layers, a
conditional random field (CRF) named entity recognition (NER) model, and shortest-dependency
path (SDP) model using the SpaCy library in Python. The automated system ensures that it targets
sentences that contain PPIs and not just these proteins mentioned in the framework of disease
discovery or other context. Our first model achieved 13% greater precision on the Aimed/BioInfr
benchmark corpus than the previous state-of-the-art BiLSTM neural network models. The NER model
presented in this study achieved 98% precision on the Aimed/BioInfr corpus over previous models.
In order to facilitate the production of an accurate representation of the PPI network, the processes
were developed to systematically map the protein interactions in the texts. Overall, evaluating
our system through the use of 6027 abstracts pertaining to seven proteins associated with Autism
Spectrum Disorder completed the manually curated PPI network for these proteins. When it comes
to complicated diseases, these networks would assist in understanding how PPI deficits contribute to
disease development while also emphasizing the influence of interactions on protein function and
biological processes.

Keywords: artificial intelligence; PPI; protein–protein interaction; text mining; BiLSTM; recurrent
neural network
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1. Introduction

Intracellular and extracellular proteins are the core building blocks of many intra-
cellular signaling pathways [1]. Protein–protein interactions (PPIs) describe the primary
pathways for cell function and have been associated with disease development. With
reference to the available PPI databases, such as BioPAX [2], Pathway Commons [3], and
CausalPath [4], discovering the most recent form of interactions between proteins and
other elements remains difficult [5]. With the tremendous expansion of biomedical liter-
ature, manualcuration of this literature creates difficulties in having revised PPI figures
and revealing the hidden knowledge contained within the unstructured text. Protein–
protein interaction prediction online applications that use text mining approaches are
GENEMANIA [6] and STRING DB [7]. Their method for predicting PPI networks is
unique and incorporates seven evidence-based channels, namely neighborhood, fusion,
co-occurrence, co-expression, experiments, database, and text mining model, trained on
biomedical RoBERTa-large model, with different sub-scores provided from each channel.
These channels detect the PPI from different sources related to biological information,
including genomic databases, functional genomic databases, protein databases, pathway
databases, and the PubMed database. Their method of operation is as follows: If you
submit the name of a protein, the system will predict the proteins with which it interacts
based on their functional partners. If you enter more than one protein, however, the PPI
network edges will indicate where these two proteins were mentioned, and the user will
need to return to the publication to determine the relationship between the two proteins, if
there is one, or if they were mentioned as biomarkers for a disease (for example [8]).

With the emergence of Natural Language Processing (NLP) methods, PPI extraction
from biomedical abstracts becomes feasible. The most challenging aspect of the job in-
volves interpreting biological and biomedical language in order to obtain a meaningful
explanation of all living things’ complicated nature. Another challenge lies in the need
to search through a large number of articles to find an explanation for the cause of the
disease, particularly in the case of complex diseases. PPI extraction can be interpreted in
several different techniques, and many machine learning and deep learning techniques
have been implemented. Kernel-based machine learning methods have attained good
performance, but they require extensive feature engineering, including lexical and syn-
tactic features [9–12]. In contrast, the application of Neural Networks (NNs) to learn the
semantic features and structure of sentences in order to classify them has been regarded
as an effective technique for PPI extractions because they do not require an extensive
amount of feature engineering like the kernel-based method does [13]. Previous attempts
for extracting sentences with relationships between proteins’ names in text were developed
using machine learning (ML) and deep learning (DL) schemes. These attempts achieved
the highest level of implementation in the field of PPI extraction from text, with deep
learning methods being more accurate and achieving greater performance [14–17]. The
objectives of PPI mining can be illustrated as a binary classification problem to distinguish
positive sentences from negative ones. Positive sentences would contain the names of
proteins in conjunction with relationship words, while negative sentences would represent
the opposite [18,19]. Another technique is the named entity recognition (NER) method [20].
This method relies on features engineering and training on datasets so as to recognize
proteins’ names in sentences and relationship words.

In the beginning of developing named entity recognition (NER) models, generative
models such as Hidden Markov Models (HMMs) were used. Generative models such as
HMM have strict rules of learning that rely on the joint distribution of the data, which
results in dependent features [21]. The conditional random field (CRF) method was shown
to be an effective approach to be used for those types of tasks, especially when learning
from widely distributed data, such as the diversity in writing the contexts in the biomedical
literature [22]. Discriminative models such as CRF rely on conditional functions with
neighboring contextual consideration. This results in more efficient learning when learning
from widely distributed data [23]. The pattern-based approach, one of the NLP methods,
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is the prevalent strategy for building PPI networks. The pattern-based method combines
precision and complexity in its pattern design [24,25], but this method requires that the
extracted words or sentences match the selected patterns [11]. Although the pattern-based
approach has limitations, the high precision of the outturns makes it useful in discovering
PPI relation words.

This study proposed a comprehensive method for generating graph figures of PPI
networks from only the biomedical literature obtained from the PubMed database, com-
bining the three approaches mentioned above. This method is comprised of three main
phases including the development of DL models and the application of patterns to ex-
tract information from the text and transfer it to a knowledge graph. In the first step,
PPI sentences that only contain the two proteins’ names and their relationship words are
extracted from the biomedical literature using a DL with a recurrent neural network (RNN)
methodology that competes with the current state-of-the-art methods in extracting PPI from
the biomedical literature. The method takes advantage of the AIMed and BioInfer corpora
(both available at http://corpora.informatik.hu-berlin.de, accessed on 15 March 2019) [12],
which are commonly used reference corpora for PPI extraction applications, to train the
DL model. Furthermore, to expand the learning of semantic and syntactic features of the
text, a pretrained word embedding vector on more than 20 million biomedical documents
from PubMed and more than four billion words of biomedical terms was used to train the
DL model [26]. The second step involves developing a named entity recognition (NER)
model to label the protein names in sentences using the conditional random field (CRF)
method. This model output should be a tagging tool designed to find the protein names in
the sentences. Lastly, by using the shortest dependency path model offered by the spaCy
library in Python [27], the third step consists of creating the patterns that will be used to
extract relationship words from PPI sentences. The final model assigns the dependency
parsing labels for the words in the sentences and finds the shortest route between the names
of the proteins in the sentences. The starting point of this route usually represents the
relation words between the two proteins’ names, sometimes including other dependency
labels. The patterns we created to extract the relation words would be defined according to
the dependency labels in the shortest path between the proteins’ names in the sentences.

Despite the methods that have been developed previously, either using Kernel-based
machine learning or deep learning approaches, most of them require identifying the lexical
and syntactic features of words, characters in the words, and sentences and manipulating
these features to improve the performance of machine learning or deep learning models.
For example, in article [20], the researcher used character embedding for each word in the
embedding vector and presented it to the LSTM layer forward and backward to overcome
some scientific words such as hyperbilirubinemia and oligonucleotide to be out of the
vocabulary. As another example, all previous methods were training their models on
AIMed or BioInfer separately, and this might be the reason for the decreased F1 score
performance of their models. Furthermore, some studies used both convolution neural
networks (CNNs) in conjugation with recurrent neural networks (RNNs) to develop a
model with high accuracy, but this would create a model with a complicated structure and
take time in the training process. CNN exhibits a hierarchical structure, but RNN exhibits a
sequential structure and exhibits better performance when applied to models using textual
context [26,28]. The simplest model created from all previous methods is the model in the
study [13]. The model is composed of an embedding layer trained on an old biomedical
vector developed in 2016 by [29] and one layer of BiLSTM, a recurrent neural network.
Their model performance was considerably good.

The methods presented in the current study overcame these problems and simplified
the approach by using BioWordVic, the newly developed 2019 word-embedding vector of 4
billion tokens [26], and three-layer BiLSTM neural network in designing the first model in
order to achieve better accuracy than the previous models. Also, during training, the first
and second models, combining the AIMed and the BioInfer datasets in one dataset, achieved
an effective training dataset. Moreover, some previous approaches developed NER models
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to search for the proteins’ names in the text. In contrast, one objective of the current study
is to construct an accelerated method instead of relying only on the NER model alone to
identify protein names within an entire abstract or a collection of abstracts. The proposed
method involves utilizing the first model to extract sentences related to PPI while discarding
other sentences. Subsequently, our NER model will exclusively search for proteins’ names
within the extracted PPI sentences. Furthermore, the prior approaches focused on method
development rather than constructing a visible protein–protein interaction (PPI) network.
Our method is unique in testing it on more than 6000 abstracts and subsequently publishing
a protein–protein interaction (PPI) network derived from our method.

The remaining sections are grouped as follows: The Section 2 outlines the new system
and explains how the models were created and which methods were chosen in each step
of the models’ creation. Then, Section 3 describes the evaluation of the performance of
our system consisting of the sentence classification model, the named entity recognition
model, and the patterns chosen to drive the PPI network. A thorough review of the current
work and related literature is found in Section 4. In Section 5, the impact of the work is
summarized to give an insight into the value of using the system created in this study.
The PPI system developed in this study depends on extracting the interaction between the
proteins from biomedical literature, which means that it would always present updated
information in the field of protein–protein interaction networks.

2. Materials and Methods

The development of the PPI network, which includes extracting the relationship
between the proteins from biomedical literature and transferring it to a knowledge graph,
was accomplished using machine learning and deep learning methods. Three phases were
involved in the process of establishing the PPI network, including developing a sentence
classification model, named entity recognition model using a conditional random field
(CRF) method, and employing patterns to extract information from the text and transfer it
to a knowledge graph (Figure 1).
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2.1. Text Pre-Processing

The model was trained with AImed and Bioinfer corpus data. The two datasets
were integrated and prepped for processing via the Python NLTK library [30]. Combined,
the two datasets had approximately 1060 abstracts and 3067 sentences. We performed
two types of data processing; however, multiword tokenization was used to ensure that
protein names were comprehended in their entirety. Multiword tokenization, for instance,
tokenizes Beta and catenin with a dash sign between them if the term beta-catenin is written
in this shape (Beta-catenin). The processing of data for the sentence classification model
included the terms “PROT1” and “PROT2”. These terms are meant to replace the first
and second proteins in the sentences, respectively. When a sentence contains the names
of two proteins with a relationship between them, it is considered a positive sentence
and is labeled 1 and 0 otherwise. On the other hand, the data processing for the named
entity recognition was different. The words in the sentences of each corpus were tokenized,
position-tagged, and labeled. The P label was applied to the proteins mentioned in the text,
whereas the O label was applied to everything else.

2.2. Sentence Classification Model

The model was created in order to distinguish between sentences containing protein
relationships and sentences containing no protein links in biomedical abstracts.

2.2.1. Word Embedding

Word embedding is a representation learning technique comprising aligning words
with similar meanings and convergingly representing them in a low-dimensional vector
space. In the dataset, each word is represented as a vector of positive real values. Specifically,
the publicly available pretrained word embedding BioWordVic [26] and GloVe [31] were uti-
lized in this model, with embedding representations of 4 billion tokens and 200-dimensional
word embeddings, and 6 billion tokens and 200-dimensional word embeddings, respec-
tively. When using Keras, these pretrained word embedding models were used to create a
weight matrix for the embedding layer. Pretrained word embedding, as opposed to one-hot
encoding [29], which turns the words into binary vectors, reduces the distance between
words with the same meaning and vectorizes them in real numbers. By minimizing the gap
between the words, this strategy increases the coverage of words and makes it simpler to
recognize the sentences containing information about the protein–protein interaction. On
the other hand, one-hot encoding encodes two words with the same meaning in different
real numbers. For example, the words (rise and increase) can be synonyms but have a
different real number and are not clustered together.

2.2.2. BiLSTM Layer

Long short-term nemory (LSTM) artificial recurrent neural network (RNN) is useful in
reducing the vanishing gradient mistakes and capturing the semantic information in long
sentences because it is fast and efficient [32]. Each LSTM cell has three gates: input gate,
forget gate, and output gate. During each time step, the quantity of information that travels
through the neurons is controlled by the three gates (Figure 2). Forget gates are used to
determine which of the previously hidden states should be reserved. Specifically, the forget
gate enables the LSTM cell to be effective and scalable for a wide variety of sequential data
feature learning. The input gate decides which of the currently hidden states should be
retained. The cell state updates the cell states from the forget gate, output gate, and input
gate. The output gate decides the next hidden state [33,34].
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Figure 2. Schematic representation of long short-term memory, LSTM cell, a type of (RNN) that could
learn long-term dependencies. Each time iteration t the cell has layer input x and layer output h
in light blue circles. The C is the input and the out-of-cell state. The red circles contain arithmetic
operations: multiplication and addition. The light blue squares are the gate activation function
sigmoid, and tanh is the hyperbolic tangent function. The three gates represented in colors with the
cell states control the learning route of the models.

Each LSTM cell’s mathematical representation and the equations governing its three
gates are as follows:

it = σ (Wix xt + Wih ht−1 + bi) (1)

ft = σ (Wfx xt + Wfh ht−1 + bf) (2)

ot = σ (Wox + Woh ht−1 + bo) (3)

ct = ft × ct−1 + it × tanh (Wcx xt + Wch ht−1 + bc) (4)

ht = ot × tanh (ct) (5)

where i is the input gate, f is the forget gate, o is the output gate, c is the cell states, xt is the
word embedding vector, ht−1 is the hidden state, the W’s are the weight matrices, The b’s
are the bias vectors, σ is the sigmoid function, and tanh is the hyperbolic tangent function.

BiLSTM is well suited for use in sentiment analysis and text classification models. The
LSTM cells in the forward and backward layers of the recurrent neural network form the
structure of the BiLSTM recurrent neural network. To obtain optimal performance, it is
important to train on both the input sequence and its reverse duplicate. As a result, the
sequence categorization classification is swiftly and thoroughly acquired.

As demonstrated in (Figure 3), xt is the word embedding vector.
→
h is the forward

hidden layer,
←
h is the backward hidden layer, and yt is the joining outputs from the forward

and backward hidden layers. The output layer values are processed as follows:

→
h t = σ (W →

x h
xt + W →

h h

→
h t−1 xt + b(→h )) (6)

←
h t = σ (W ←

x h
xt+W ←

h h

←
h t+1 xt + b(←h )) (7)
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yt = W →
h y

→
h t+W ←

h y

←
h t + by (8)

where W is weights matrices, b is the bias term, σ is sigmoid function, and ht is the hidden
state. A dense layer was added at the end to ensure that all of the output neurons in the
BiLSTM neural network were fully connected. Because of the usage of two classes, positive
and negative sentences, the output prediction of the model with a Softmax activation
function is performed using the dense layer. This layer predicts a multinomial probability
distribution. In this case, the prediction probability range is 0 to 1. A prediction of less than
0.5 is regarded as a negative prediction, whereas a prediction of equal to or greater than 0.5
is seen as a positive prediction.
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Figure 3. Schematic representation of bidirectional long short-term memory (BiLSTM) network. The
output of the word embedding layer is taken as input x. The BiLSTM network will train both the
original sequence and its reversed counterpart. The sigmoid function will aggregate the result of
both training directions and represent it as an output y.

2.3. Named Entity Recognition Model Using Conditional Random Field

The model has been developed to tag the names of proteins after they have been
extracted from positive sentences that describe the relationships between proteins.

Entity Tagging

After text pre-processing for the two datasets (Aimed/Bioinfer) and using the letters
(P) and (O) to label the protein names and other words, respectively, the dataset is used to
train the model using the sklearn-CRFSuite library in Python (version 3.8) [35]. Conditional
random field (CRF) is a statistical probabilistic modelling method used for structured
prediction. Because it is only two labels, the NER-CRF model would perform better than
utilizing neural network (NN) models [36]. The output of the trained model is a tagging
tool to search and recognize the protein names in the sentences.

2.4. Relation Extraction

Following the selection of sentences containing relationships between proteins using
the sentence classification model and the tagging of proteins names using the NER-CRF
model, the shortest dependency path model in spaCy was then employed to extract the
shortest path between the names of the proteins in the selected positive sentences. Inter-
action sentences in PPI are composed of nouns and verbs. The verbs are almost always
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the focal point of all sentences. Dependency parsing illustrates the sentences as trees and
recognizes and labels the center of the sentences as the ROOT of the tree, which is usually
reflected in the verbs. The dependency labels for the remaining words are assigned by the
spaCy shortest dependency path model based on the syntactic structure of the sentence
(Figure 4).
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Figure 4. The shortest dependency path of the sentence “Mechanistically INTS6 increased WIF-1
expression and then inhibited the Wnt/beta-catenin signaling pathway” and the relation extrac-
tion exemplification.

It is necessary to transform each sentence’s syntactic structure into a graph represen-
tation, which is performed using the networkx module in Python [37], in order to find
the shortest path between two protein names. For example, the sentence “Mechanistically
INTS6 increased WIF-1 expression and then inhibited the Wnt/beta-catenin signaling path-
way” has three tagged protein names: INTS6, WIF1, and Wnt/beta-catenin. There are a
definite number of relations that can be extracted based on the number of protein names
present, and in the example given in the preceding line, there are three relations that can
be extracted (Figure 4). Having collected the phrases with the shortest dependency paths,
the dependency labels were examined and investigated in order to identify a common
pattern that could be used to extract the accurate relationship. The first protein name
dependency label is usually subj, and the second protein name dependency label is usually
obj. Discovering the range of dependency labels in which the relation words should be
placed was the difficult part of the task. Usually, the ROOT dependency label (the verb in
the middle of the sentence) defines the relation word, but in some shortest dependency path
sentences, the ROOT dependency label in conjugation with the amod or dep dependency
label is found to explain the relation words even more clearly. Other dependency labels
were discovered to describe the relationships in the sentences, and these were taken into
consideration as well. The pattern was defined, and the relationship was extracted using
the spaCy shortest dependency path model and matcher library.

3. Results

The approach developed in this paper to extract PPI networks from biomedical publi-
cations involves text dataset preparation, sentence classification model generation, named
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entity recognition model creation, and relation extraction. In Section 3, each of the pre-
ceding approaches and the features employed in each method, as well as their impact
on the models’ performance, are described. In addition, the performance of the methods
developed in this study is compared with other previous state-of-the-art approaches to
demonstrate one of the strengths of the proposed model.

3.1. Data Preparation

Two datasets were prepared to train the NLP models. For the sentence’s classification
model, AImed and Bioinfer corpora were used and processed. The processing includes
joining all of the sentences from the two corpora, multiword tokenization, and changing
the protein names in sentences, as well as labelling positive sentences with 1 and negative
sentences with 0. The number of positive (sentences contain relationships between the
proteins) and negative (sentences do not contain relationships between the proteins) in the
AIMed/BioInfer PPI dataset are 3067 total sentences, 1267 total positive sentences, and
1800 total negative sentences.

For the named entity recognition model, AImed and Bioinfer corpora were also used
and processed, but we only consider the positive sentences that exhibit a relationship
between proteins. Processing the sentences included multiword tokenization, position-
tagging, and labelling the words in the sentences. Label P was considered for the proteins’
words and O for other words. So, the datasets were transformed to a dataset with words la-
beled as P or O. It is estimated that there were 31,472 words with an O label and 4078 words
with a P label.

3.2. Sentence Classification Models

Sentence classification is one of the natural language processing (NLP) tasks that labels
sentences according to predefined classes. In the context of this study, the primary sentence
classes are positive and negative, with positive sentences indicating the presence of two
protein names and a relation between them. We followed the architecture of the previous
state-of-the-art methods devised in the field of PPI extraction, which consists of a neural
network layer followed by a pretrained word embedding layer. The following describes
the initialization of the two layers:

3.2.1. Word Embedding Initialization

We utilized the BioWordVic and GloVe models of vector representations for words
while modelling the sentence classification model. BioWordVic was trained on 28 million
PubMed articles and 2 million MIMIC III Clinical notes. GloVe was trained using news
stories and the Wikipedia database. Because various earlier state-of-the-art models have
been created utilizing these two pretrained word embedding models, we aimed to compare
and contrast the differences and precisions of the models developed in this paper using
those pretrained word embedding techniques.

3.2.2. The RNN Layer

We constructed four sentence classification models using Keras v 2.13.1 with Tensor-
Flow v 2.13 (Chollet and others). In the first two models, input sentences from both datasets
(AIMed and BioInfer) are fed into the model, and the words in the input sentences are
given their real number representation through the word embedding layer, which contains
the weight matrix of the above-mentioned pretrained word embedding vectors, before
being transferred to the neural nodes. We set the number of BiLSTM nodes to 100, the
dropout rate to 0.5, and the learning rate for the Adam optimizer to 1 × 10−4. In the second
two models, we stacked three hidden BiLSTM layers after the word embedding layer that
has a weight matrix of the two pretrained word embedding models. Also, we dropped
the number of nodes in all BiLSTM layers to 32. There is no predetermined number of
nodes used for the BiLSTM layer. The number of nodes needs to be nearly compatible
with the number of the input sequence of 120. In the model that has one BiLSTM layer,
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100 nodes were used, and in the model that has three hidden BiLSTM layers, 32 nodes were
used. The total number of nodes in the three hidden layers is 96 (32 × 3); that is, the input
sequence passes 96 nodes forward and 96 nodes backward. Although our network would
be considered small, when many dropout rates were tested, the best rate was 0.5 for the
dropout layer and 0.2 for the recurrent dropout layer. The activation function is SoftMax
because the model has two labels: 0 for negative sentences with no PPI and 1 for positive
sentences with PPI. Adam optimization is a method for stochastic gradient descent that
utilizes adaptive methods to estimate first-order and second-order variables. Rates from
0.01 to 0.0001 were tested with the finding that the lower the rate of learning, the higher
the accuracy of the model prediction. The following are the parameters that govern the
sentence classification models are shown in (Table 1).

Table 1. Sentence classification model parameters.

Parameter Combination of AIMed/BioInfer

Maximum of sentences length 120
BiLSTM units 100

Hidden BiLSTM units 32
Dropout rate 0.5

Recurrent dropout rate 0.2
Optimization algorithm Adam

Activation function Softmax
Learning rate 1 × 10−4

Epochs 40
Batch size 128

3.2.3. Measures of Performance

The F1 score, which is often used to measure the performance of classification models,
was utilized to evaluate the models. The F1 score is determined by the precision and recall
scores that describe the model’s performance. The final two scores depend on the model’s
true positive, true negative, false positive, and false negative predictions. The following
equations define the precision, recall, and F1 score:

Precision =
TP

TP + FP
(9)

Recall =
TP

TP + FN
(10)

F1Score = 2× Precision× Recall
Precision + Recall

(11)

We utilized the classification report matric in the Python sklearn library. The data
was divided into 60% training data and 40% testing data. The global average F-score was
calculated in order to evaluate the overall performance of the models regardless of the class.

3.3. Named Entity Recognition Model Initialization

In this stage, the Python sklearn-CRFSuite module was utilized. Initially, the training
data consisted of a list of each word, its position tag, and its label (P or O). This data list
would be utilized to train the NER model. Certain conditions are implemented while
training the model, such as defining the surrounding word features. Finally, a labeler
that recognizes protein names in sentences will be created. When evaluating the model’s
efficacy, the weighted F1 score was employed due to the presence of label imbalance in the
dataset, as there were only 4078 words with portion label (P) and 31,472 other words with
label (O) (Figure 5). The metrics for each label are calculated, and their average weight by
support is determined using the weighted F1 score, how many actual occurrences there are
for each label. Table 2 shows the parameters that were used in the NER-CRF model.



Biology 2023, 12, 1344 11 of 20

Biology 2023, 12, x FOR PEER REVIEW 11 of 20 
 

 

support is determined using the weighted F1 score, how many actual occurrences there 
are for each label. Table 2 shows the parameters that were used in the NER-CRF model. 

 
Figure 5. Statistics for the NER model dataset. P label for protein names and O label for other words. 

Table 2. Conditional random field (CRF) model parameters. 

Parameter Combination of AIMed/BioInfer 
Number of words 35,550 

Algorithm lbfgs 
C1 0.1 
C2 0.1 

Maximum iterations 100 
All possible transitions False 

3.4. Relation Extraction Implementation 
The shortest dependency path model provided and modelled by the spaCy library in 

Python was used to extract the shortest path between the proteins in the PPI sentences 
after using the first two proposed models to first extract the sentences that have PPI and 
then extract and label the protein names in the PPI sentences. This model’s unique contri-
bution is the way it assigns the dependency labels for words according to the norms of 
sentence formation. We found that words with a ROOT dependency label locate and de-
fine the relationship between the two protein names in the sentences. The dependency 
label range of the first protein is usually (�nsubj’, �amod’, �compound’), and the depend-
ency label range of the second protein is usually (�dobj’, �pobj’, �npadvmod’, �appos’). The 
patterns we chose to locate and define the relationship words are as follows: (�DEP’: 
�amod’, �OP’: “*”), (�DEP’: �conj’, �OP’: “*”), (�DEP’: �ROOT’, �OP’: “*”), (�DEP’: �acomp’, 
�OP’: “*”), and we used matcher library in Python to locate the relationship words from 
the sentences, with their dependency labels matching the arrangement we created in the 
patterns. 

3.5. Evaluation of Models’ Performance 
The aim of this section is to elucidate how the learning performance of the models 

developed in this study was determined. Also, the sequence of using these models in the 
order of searching for positive sentences containing the relation between proteins, fol-
lowed by searching for the names of the proteins and the relation words, was successful 
when compared to a manual method of reviewing abstracts related to seven proteins. 

Figure 5. Statistics for the NER model dataset. P label for protein names and O label for other words.

Table 2. Conditional random field (CRF) model parameters.

Parameter Combination of AIMed/BioInfer

Number of words 35,550
Algorithm lbfgs

C1 0.1
C2 0.1

Maximum iterations 100
All possible transitions False

3.4. Relation Extraction Implementation

The shortest dependency path model provided and modelled by the spaCy library in
Python was used to extract the shortest path between the proteins in the PPI sentences after
using the first two proposed models to first extract the sentences that have PPI and then
extract and label the protein names in the PPI sentences. This model’s unique contribution
is the way it assigns the dependency labels for words according to the norms of sentence
formation. We found that words with a ROOT dependency label locate and define the
relationship between the two protein names in the sentences. The dependency label range
of the first protein is usually (‘nsubj’, ‘amod’, ‘compound’), and the dependency label range
of the second protein is usually (‘dobj’, ‘pobj’, ‘npadvmod’, ‘appos’). The patterns we
chose to locate and define the relationship words are as follows: (‘DEP’: ‘amod’, ‘OP’: “*”),
(‘DEP’: ‘conj’, ‘OP’: “*”), (‘DEP’: ‘ROOT’, ‘OP’: “*”), (‘DEP’: ‘acomp’, ‘OP’: “*”), and we
used matcher library in Python to locate the relationship words from the sentences, with
their dependency labels matching the arrangement we created in the patterns.

3.5. Evaluation of Models’ Performance

The aim of this section is to elucidate how the learning performance of the models
developed in this study was determined. Also, the sequence of using these models in the
order of searching for positive sentences containing the relation between proteins, followed
by searching for the names of the proteins and the relation words, was successful when
compared to a manual method of reviewing abstracts related to seven proteins.

3.5.1. Sentence Classification Models

Lately, BiLSTM neural networks have been shown to be effective in PPI tasks. With
the differences in text pre-processing (e.g., joining the two datasets of AIMed/BioInfer, and
multiword tokenization to fully obtain the protein names), the hyperparameter settings, and
the models used as pretrained word embedding, we are comparing our four created models
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with state-of-the-art previously created models that are nearly similar to the structure of
our models. The following table shows the performance of the four models compared to
other models. Because the previous models were trained on Aimed and BioInfer separately,
we took the average F1 scores for both models (Table 3).

Table 3. Comparison between all the models created in this project (3, 4, 5, and 6) to similar previous
models created before (1, 2). Class (1) means sentence labeled with 1, and class (0) means sentences
labeled with 0.

Method Positive Class
(1) F1 Score

Negative Class
(0) F1 Score

Cumulative
F1 Score

Bidirectional LSTM + CNN + word embedding (BioNLP) + SDPs
embedding [17] - - 0.74

Bidirectional LSTM + word embedding (BioNLP) [13] - - 0.82
CloVe pretrained word embedding + BiLSTM layer 0.73 0.75 0.74

BioWordVic pretrained word embedding + BiLSTM layer 0.76 0.77 0.77
CloVe pretrained word embedding + 3 hidden layers of BiLSTM 0.94 0.92 0.93

BioWordVic pretrained word embedding + 3 hidden layers of BiLSTM 0.94 0.95 0.95

Taking advantage of the pretrained word technique and the availability of its mod-
els, the BioWordVic model performed better than the GloVe model between our models
(3 and 4), (5 and 6). This means that the RNN had the ability to automatically collect
contextual information from the BioWordVic model more than the GloVe model in terms of
PPI tasks. If we compare our models 3 and 4 to 1 and 2, our models nearly achieved similar
accuracy to the previously created models in the case of 1 and 2, with differences in the
word embedding vectors that the models were trained on. Stacking the three hidden layers
of BiLSTM in our models 5 and 6 further improves the models’ performance and increases
their accuracy.

3.5.2. NER-CRF Model

For named entity recognition (NER) models and capturing biological molecules (e.g.,
DNA, RNA, Protein) from texts and biomedical abstracts, CRF models proved to be effective
in the field. Our NER-CRF model trained on 35,550 AIMed/BioInfer corpus words achieved
an F1 score of 0.98. Previous NER attempts developed tools using the CRF method.
ABNER is a biomedical NER tool used to tag biomedical entities in texts using CRF. They
trained the model on an NLPBA corpus (modified version of the GENIA corpus) that has
22,402 training and testing sentences and a BioCreative corpus that has 10,000 training and
testing sentences. The F1 scores of the tagging models are 0.705 on the NLPBA corpus
and 0.699 on the BioCreative corpus [38]. ProNER is another named entity recognition
model that recognizes the protein names in sentences using the Bayesian probability-based
Finite State Machine (BFSM). BFSM is based on the conditional probability of identifying
specific entities in texts. The model was trained on the GENIA corpus with F1 scores of
0.907 [16]. The differences between our model and the previous model lie in the use of
different corpus, number of sentences and the words it was trained on, and also in that we
developed our model to be trained on two types of labels (O and P).

3.6. Testing the Models and PPI Network Creation

Four patients with Autism Spectrum Disorder (ASD), as mentioned in study [39], with
a confirmation of the genetic variants implicated in ASD, are described in Table 4.
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Table 4. The number of autism patients and the genetic variants considered in this article and collected
from the study of [39]. DC: disease-causing; PD: possibly damaging; B: benign; D: damaging.

Gender Clinical Demographic
Information

Protein Name Variant
Position

Effect of the Variant

Mutation Taster PolyPhen

Patient 1 F
Language delay and

regression

DDX26B/INTS6L p:E435V DC PD/0.843
USP9X p:Y1268C DC B/0.007

RPS6KA6/RSK4 p:Q512R DC B/0.195

Patient 2 M NR
FGF5 p:S84L DC D/1.0
FLNA p:Y2360A DC D/0.971

Patient 3 M Language delay IDS p:D175E DC PD/0.94

Patient 4 M Language delay SUMF1 p:Q237R DC D/1.0

After an exhaustive manual annotation of the protein databases and literature cu-
rations, a streamline of the interactions between these proteins and the other molecules
in the Wnt and mTOR pathways was discovered, and convergence was found between
these two signaling pathways according to the evidence extracted from previous studies
(Figure 1). The manual curation included the following: (i) defining the positions where
the genetic variants are located, (ii) identifying the function of the genetic variants position,
and (iii) searching and reviewing previous studies for the proteins (Table 4), including
finding information about their paralogs and protein families. The main databases used
for the manual curation were UniProt, the conserved domain database (CDD), PROSITE,
iPTMnet, and PubMed. For example, INTS6L is paralog to INTS6. A review of the protein’s
profile in UniProt and conserved domain databases confirms the comprising of the von
Willebrand factor type A (VWFA) domain in the N-terminus, a DEAD-box motif, and a
functional C-terminal domain. The mutation of INTS6L is not located in any of the previous
critical functional locations. Also, the protein was found to be not well studied when
compared to the number of studies extracted from PubMed, but INTS6, its paralog, has
been well studied in previous studies; the latter protein was discovered to be a critical
element affecting restrictive dorsal cell growth through the Wnt pathway [40]. Similar
reviews were undertaken for the other proteins in the protein databases and PubMed to
see if their mutations are positioned in critical function locations on the proteins or not.

From the summary of the interactions between the proteins (Figure 6), it can be
concluded that INTS6, the paralog of INTS6L, has an important effect on the Wnt pathway,
and its mutation is connected to dorsal cell growth. It increases the expression of WIF-
1, the inhibitor of Wnt protein, and regulates the activity of the Wnt pathway [40–42].
USP9X physically interacts with RAPTOR and β-catenin to prevent their degradation
through the proteasomal degradation pathway [43–45]. RPS6KA6/RSK4 is abundantly
expressed in the brain, and its mutation is associated with non-specific mental retardation
and development defects [46,47]. RSK enzymes phosphorylate RAPTOR to activate the
mTOR pathway [48–50]. Also, they inhibit the enzyme activity of GSK3β, leading to the
accumulation of β-catenin and cell survival [51]. FGF5 binds to FGFR1 receptors to activate
different pathways, including PI3K/Akt, RAS/MAPKs, and PLCγ/DAG. These pathways
are engaged in a wide range of cell proliferative processes, including embryonic growth,
cell growth and survival, and tissue repair [52]. Altering signaling has been tied to many
diseases, such as bone diseases, cancers, dwarfism, hair growth, neural plasticity, and
ASD [53–55]. The FLNA actin-binding mechanism is vital for cell adhesion processes.
There are 24 repeat areas in the protein’s C-terminal region, and these regions are involved
in protein interactions. FLNA mutations alter important cellular processes and have been
linked to several disorders, including ASD [56,57]. The mutation in FLNA is located in
repeat 22, where the protein interacts with β-Arrestin to activate MEK and SMAD to
translocate to the nucleus and transcribe the targeted genes [58–60]. IDS is a sulfatase
lysosomal enzyme important in protein metabolism and specifically in degrading large
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carbohydrate molecules, glycosaminoglycans, from its substrate dermatan sulfate and
heparan sulfate [61]. Heparan sulfate is a specific and central component in FGF/FGFR
dimerization and binding [62]. SUMF1 is a cofactor that enhances the activity of sulfatase
enzymes, such as IDS [63]. Mutation in SUMF1 causes a deficiency of sulfatase enzymes
because it is an essential molecule in the post-translation modification of these enzymes
and a critical molecule present in the modification of cysteine residue to the formyl glycine
residue site [64].
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Using automated text mining and pattern recognition techniques, a PPI network
diagram was generated (Figure 7). The PubMed database was searched for all articles
pertaining to USP9X, INTS6L, RSK4, IDS, and SUMF1, and all PMIDs, including those of
manually curated articles, FGF5 and FLNA, were collected. There was a total of 6027 articles
compiled to generate the PPI figure. The PPI outlined in Figure 7 was more informative
regarding the other proteins that interact with USP9X, INTS6L, RSK4, IDS, FGF5, FLNA,
and SUMF1. Remarkably, this also demonstrated whether or not the later proteins interact
with each other. The interactions found manually between the proteins in Figure 6 have
been identified in the PPI network generated through the use of text mining and pattern
recognition algorithms. The interaction terms and the PMIDs extracted from the articles
were added to the edges so that the original paper describing the interaction between the
two proteins’ nodes could be reviewed.
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4. Discussion

Here, our results demonstrated that the system developed for PPI extraction success-
fully extracted the manually curated relationships between seven proteins and discovered
additional relationships. The majority of PPI extraction research focuses on improving
the accuracy of their models rather than validating their models to demonstrate actual
results of PPI network creation and compete with existing tools that generate PPI networks.
Testing our designed system was the most crucial phase in proving our theory regarding
the formation of PPI networks. We have already manually evaluated 25 articles for seven
proteins identified as the cause of autism in four patients. To evaluate our methodology,
we extracted all abstracts pertinent to the seven proteins, totaling 6027, from the scientific
literature. After applying our system to the abstracts, we generated an expandable image of



Biology 2023, 12, 1344 16 of 20

all the proteins that interact with the seven proteins. What was intriguing was the inclusion
of the manually curated PPI network (Figure 6) in the expandable image.

In this study, we proposed developing and combining effective mining and generation
techniques for PPI networks. In addition, we organized these methods in a manner that
helps facilitate the development of PPI networks. When we first created the sentence
classification model, we were aware that the application of deep learning has significantly
supported PPI initiatives in recent years. The effect of deep learning models is determined
by their architecture. In general, the arrangement of the word embedding layer and the
neural network layer was the most commonly used arrangement. The word embedding
techniques can influence the classifier’s performance. To accelerate feature learning, the
semantic and syntactic features of incoming text are embedded in their distribution repre-
sentations. In our project, using the BioWordVic, the most recently developed word vector
model for biomedical texts and which has never been used in any previous study, improved
the deep learning model’s feature learning more than using the CloVe word embedding
model, which is trained on news and Wikipedia articles. Then, our sentence classification
model demonstrated that stacking three hidden BiLSTM layers as opposed to utilizing a
single BiLSTM layer improved the efficacy of extracting sentences with PPI. Moreover, our
model showed an improvement of 21% and 13% in precision compared to the previous
studies [13,17], respectively.

After successfully extracting the sentence with PPI, we needed a model that automati-
cally searched for protein names in these sentences. NER was the most suitable strategy for
this objective. The CRF method performed remarkably well in identifying protein names in
the biomedical abstracts, as it was the most dependable and effective method we evaluated.
Our identifiers for protein words in the AImed/BioInfr corpus sentences have been simpli-
fied. We labeled non-protein words with the letter O and protein words with the letter P.
Previous methods included P1 and P2 labels for the names of the two proteins because they
relied on NER models to find PPI sentences [16,38]. In our case, we relied on the sentence
classification model to obtain all PPI sentences, and then we required an automated method
to extract the protein names from these sentences in order to determine their relationship.
Because of this, our model has a superior F1 score of 0.97. Incorporating the words that
define the relationship between the proteins was challenging. We were compelled to utilize
the shortest dependency path model offered by spaCy, the Python library for advanced
natural language processing (NLP). This model supplies dependency identifiers for every
word in the sentence. These identifiers represent the semantic characteristics of words,
making it easier to locate related words in sentences. Then, we defined and implemented
patterns containing dependency labels. This method, which had never been used before,
was exceedingly effective at deriving relational words between protein names in sentences.

Only our method, which consists of two NLP models and a pattern recognition
technique, shown in Figure 1, was successful in extracting the PPI and generating the PPI
network. Prior to developing our method, we experimented with various NLP techniques,
such as locating protein entities in the text and then extracting PPI, but this would increase
the number of sentences the model must search for and slow down the process. Our
method was the only reliable means to perceive and extract the PPI network. When
comparing the online PPI tools STRING and GENEMANIA to our method, which were
used as they are the only tools available that are comparable to ours as both use text mining
and NLP techniques, we found that our method is more accurate in detecting PPI than
STRING or GENEMANIA. We tested the sentence “Our pipeline uncovered variants in
15 ASD-candidate genes, including 5 (GLT8D1, HTATSF1, OR6C65, ITIH6 and DDX26B)
that have not been reported in any human condition.” using our sentiment analysis model,
STRING, and GENEMANIA. However, we still have some challenges to address, such
as the problem of searching through a large number of abstracts and the availability
of full texts, which continue to be obstacles to the implementation of our system, as in
order to successfully complete the task, it is necessary to have access to high-performance
computers and sufficient storage capacity. Of note, our methodology involves inputting
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specific protein entries and retrieving the PubMed Identifiers (PMIDs) associated with
research related to the given protein names from the PubMed database. Subsequently, we
extracted the abstracts of these PMIDs and proceeded with the extraction of the protein–
protein interaction (PPI) network. The current algorithm does not encompass synonyms
associated with the protein, and this step is left for future work. Furthermore, in the future,
it is essential to provide users with the option to upload either a complete article text or
supplementary table for the purpose of extracting the PPI network. Also, a hypothesized
PPI or PPI driver achieved via a computational method is considered a bias. The limitations
of digitizing tasks appear in these situations. Once an article is published and the PPI is
cited, computational learning methods are unable to distinguish between computer- and
laboratory-based work.

However, the field of NLP is swiftly evolving. For the upkeep of our method, the
NLP model must be revised continuously to remain current in relation to developments in
the field of NLP. As mentioned earlier, BiLSTM RNN was chosen over CNN because the
developed models trained on textual datasets and RNN have a sequential architecture more
suitable for a sequence of words. GRU is another form of RNN. Because of their shared
architecture and similar performance characteristics, LSTM and GRU are often compared
as two variants of the same model. LSTM has three gates in its cells: the input gate, the
output gate, and the forget gate. The GRU architecture incorporates two different gates
within its cells, namely the update gate and the reset gate. One notable characteristic of
these gates is their ability to retain previous data without eliminating them, even if they
become irrelevant to the prediction. In LSTM, the forget gate is used to selectively keep or
discard specific components of the preceding cell state. The GRU update and reset gate
is better in keeping the data and would be more beneficial in generative AI models [64].
In our case, the analysis was restricted to a dataset containing PPI sentences, and using
either of the models is a suitable approach for training our model. When mentioning
generative AI, BioGPT is the most recent innovation in the field of biomedical NLP, and
its development continues. Currently, BioGPT can be utilized to seek relevant materials.
If you input the term KRAS, for example, a list of sentences that mention KRAS in the
biomedical literature will appear. This model has the ability to expedite the extraction of
sentences from an abstract or full-text article that mentions the target protein. This model
lacks information about the article from which the sentences were extracted, which is a
disadvantage. Additionally, it is not adaptable to the requirements of all consumers. In
other words, the model requires coding expertise and is not an application. This model
can only be utilized by bioinformaticians and software developers in the biomedical field.
Therefore, the use of this model is questionable in the field of text mining when generating
a PPI network.

5. Conclusions

In this study, an automated method for defining and constructing a protein–protein
interaction (PPI) network was described. This paper summarizes the use of artificial
intelligence (AI) approaches in text mining, which provides the opportunity to learn more
about the other factors that contribute to the development of a disease. This strategy has the
potential to reduce the amount of time spent manually searching for reliable information
and to streamline the development of a comprehensive picture of the events leading to
the onset of disease phenotypes. Although we focused our research on genetic variants
associated with ASD, we have found that this strategy may be applicable to other types of
disorders and diseases. As part of our future research, we are discussing the creation of a
web tool that is accessible to the scientific community, with the expectation that additional
discoveries will be made in the future. In addition, a generative AI method should be
implemented so that our model can retrain itself without human intervention in the process
of updating the system.



Biology 2023, 12, 1344 18 of 20

Author Contributions: Conceptualization, L.N. and M.S.J.; methodology, L.N.; software, L.N.; vali-
dation, L.N. and M.S.J.; formal analysis, L.N.; investigation, L.N.; resources, L.N. and M.S.J.; data
curation, L.N.; writing, original draft preparation, L.N.; writing, review and editing, L.N. and M.S.J.;
visualization, L.N.; supervision, M.S.J. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: All data generated or analyzed during this study are included in this
published article and its supplementary information files (“Al-Mubarak, B.; Abouelhoda, M.; Omar,
A.; AlDhalaan, H.; Aldosari, M.; Nester, M.; Alshamrani, H.A.; El-Kalioby, M.; Goljan, E.; Albar, R.;
et al. Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder:
a trio study from Saudi families. Sci. Rep. 2017, 7, 5679. https://doi.org/10.1038/s41598-017-060
33-1”) [39]. The PPI model and other code are shared in https://github.com/lnezamuldeen/PPI_
creation_models (accessed on 15 October 2023).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Alberts, B.; Johnson, A.; Lewis, J.; Raff, M.; Roberts, K.; Walter, P. Protein function. In Molecular Biology of the Cell, 4th ed.; Garland

Science: New York, NY, USA, 2002.
2. Demir, E.; Cary, M.P.; Paley, S.; Fukuda, K.; Lemer, C.; Vastrik, I.; Wu, G.; D’Eustachio, P.; Schaefer, C.; Luciano, J.; et al. The

BioPAX community standard for pathway data sharing. Nat. Biotechnol. 2010, 28, 935–942. [CrossRef] [PubMed]
3. Cerami, E.G.; Gross, B.E.; Demir, E.; Rodchenkov, I.; Babur, Ö.; Anwar, N.; Schultz, N.; Bader, G.D.; Sander, C. Pathway Commons,

a web resource for biological pathway data. Nucleic Acids Res. 2010, 39, D685–D690. [CrossRef] [PubMed]
4. Babur, Ö.; Luna, A.; Korkut, A.; Durupinar, F.; Siper, M.C.; Dogrusoz, U.; Jacome, A.S.V.; Peckner, R.; Christianson, K.E.; Jaffe,

J.D. Causal interactions from proteomic profiles: Molecular data meet pathway knowledge. Patterns 2021, 2, 100257. [CrossRef]
[PubMed]

5. Yang, Z.; Lin, H.; Li, Y. BioPPISVMExtractor: A protein–protein interaction extractor for biomedical literature using SVM and rich
feature sets. J. Biomed. Inform. 2010, 43, 88–96. [CrossRef]

6. Warde-Farley, D.; Donaldson, S.L.; Comes, O.; Zuberi, K.; Badrawi, R.; Chao, P.; Franz, M.; Grouios, C.; Kazi, F.; Lopes, C.T. The
GeneMANIA prediction server: Biological network integration for gene prioritization and predicting gene function. Nucleic Acids
Res. 2010, 38, W214–W220. [CrossRef]

7. Szklarczyk, D.; Gable, A.L.; Lyon, D.; Junge, A.; Wyder, S.; Huerta-Cepas, J.; Simonovic, M.; Doncheva, N.T.; Morris, J.H.; Bork, P.
STRING v11: Protein–protein association networks with increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 2019, 47, D607–D613. [CrossRef]

8. Szklarczyk, D.; Kirsch, R.; Koutrouli, M.; Nastou, K.; Mehryary, F.; Hachilif, R.; Gable, A.L.; Fang, T.; Doncheva, N.T.; Pyysalo,
S. The STRING database in 2023: Protein–protein association networks and functional enrichment analyses for any sequenced
genome of interest. Nucleic Acids Res. 2023, 51, D638–D646. [CrossRef]

9. Airola, A.; Pyysalo, S.; Bjorne, J.; Pahikkala, T.; Ginter, F.; Salakoski, T. All-paths graph kernel for protein-protein interaction
extraction with evaluation of cross-corpus learning. BMC Bioinform. 2008, 9 (Suppl. 11), S2. [CrossRef]

10. Bui, Q.; Katrenko, S.; Sloot, P.M. A hybrid approach to extract protein–protein interactions. Bioinformatics 2011, 27, 259–265.
[CrossRef]

11. Lee, J.; Kim, S.; Lee, S.; Lee, K.; Kang, J. High precision rule based PPI extraction and per-pair basis performance evaluation. In
Proceedings of the ACM Sixth International Workshop on Data and Text Mining in Biomedical Informatics, Maui, HI, USA, 29
October 2012; pp. 69–76.

12. Miwa, M.; Sætre, R.; Miyao, Y.; Tsujii, J. A Rich Feature Vector for Protein-Protein Interaction Extraction from Multiple Corpora;
Association for Computational Linguistics: Toronto, ON, Canada, 2009; pp. 121–130.

13. Hsieh, Y.; Chang, Y.; Chang, N.; Hsu, W. Identifying Protein-Protein Interactions in Biomedical Literature Using Recurrent Neural
Networks with Long Short-Term Memory; Association for Computational Linguistics: Toronto, ON, Canada, 2017; pp. 240–245.

14. Hakenberg, J.; Leaman, R.; Vo, N.H.; Jonnalagadda, S.; Sullivan, R.; Miller, C.; Tari, L.; Baral, C.; Gonzalez, G. Efficient extraction
of protein-protein interactions from full-text articles. IEEE/ACM Trans. Comput. Biol. Bioinform. 2010, 7, 481–494. [CrossRef]

15. Hua, L.; Quan, C. A shortest dependency path based convolutional neural network for protein-protein relation extraction. BioMed.
Res. Int. 2016, 2016, 8479587. [CrossRef] [PubMed]

16. Li, M.; Munkhdalai, T.; Yu, X.; Ryu, K.H. A novel approach for protein-named entity recognition and protein-protein interaction
extraction. Math. Probl. Eng. 2015, 2015, 942435. [CrossRef]

https://doi.org/10.1038/s41598-017-06033-1
https://doi.org/10.1038/s41598-017-06033-1
https://github.com/lnezamuldeen/PPI_creation_models
https://github.com/lnezamuldeen/PPI_creation_models
https://doi.org/10.1038/nbt.1666
https://www.ncbi.nlm.nih.gov/pubmed/20829833
https://doi.org/10.1093/nar/gkq1039
https://www.ncbi.nlm.nih.gov/pubmed/21071392
https://doi.org/10.1016/j.patter.2021.100257
https://www.ncbi.nlm.nih.gov/pubmed/34179843
https://doi.org/10.1016/j.jbi.2009.08.013
https://doi.org/10.1093/nar/gkq537
https://doi.org/10.1093/nar/gky1131
https://doi.org/10.1093/nar/gkac1000
https://doi.org/10.1186/1471-2105-9-S11-S2
https://doi.org/10.1093/bioinformatics/btq620
https://doi.org/10.1109/TCBB.2010.51
https://doi.org/10.1155/2016/8479587
https://www.ncbi.nlm.nih.gov/pubmed/27493967
https://doi.org/10.1155/2015/942435


Biology 2023, 12, 1344 19 of 20

17. Quan, C.; Luo, Z.; Wang, S. A hybrid deep learning model for protein–protein interactions extraction from biomedical literature.
Appl. Sci. 2020, 10, 2690. [CrossRef]

18. Choi, S. Extraction of protein–protein interactions (PPIs) from the literature by deep convolutional neural networks with various
feature embeddings. J. Inf. Sci. 2018, 44, 60–73. [CrossRef]

19. Peng, Y.; Lu, Z. Deep learning for extracting protein-protein interactions from biomedical literature. arXiv 2017, arXiv:1706.01556.
20. Gridach, M. Character-level neural network for biomedical named entity recognition. J. Biomed. Inform. 2017, 70, 85–91. [CrossRef]
21. Zhao, S. Named entity recognition in biomedical texts using an HMM model. In Proceedings of the International Joint Workshop

on Natural Language Processing in Biomedicine and Its Applications (NLPBA/BioNLP), Geneva, Switzerland, 28–29 August
2004; pp. 87–90.

22. Sun, C.; Guan, Y.; Wang, X.; Lin, L. Biomedical named entities recognition using conditional random fields model. In Fuzzy
Systems and Knowledge Discovery; Springer: Berlin/Heidelberg, Germany, 2006; pp. 1279–1288.

23. Sutton, C.; McCallum, A. An introduction to conditional random fields. Found. Trends®Mach. Learn. 2012, 4, 267–373. [CrossRef]
24. Allot, A.; Peng, Y.; Wei, C.; Lee, K.; Phan, L.; Lu, Z. LitVar: A semantic search engine for linking genomic variant data in PubMed

and PMC. Nucleic Acids Res. 2018, 46, W530–W536. [CrossRef] [PubMed]
25. Caporaso, J.G.; Baumgartner, W.A., Jr.; Randolph, D.A.; Cohen, K.B.; Hunter, L. MutationFinder: A high-performance system for

extracting point mutation mentions from text. Bioinformatics 2007, 23, 1862–1865. [CrossRef]
26. Zhang, Y.; Chen, Q.; Yang, Z.; Lin, H.; Lu, Z. BioWordVec, improving biomedical word embeddings with subword information

and MeSH. Sci. Data 2019, 6, 52. [CrossRef]
27. Honnibal, M.; Montani, I. spaCy 2: Natural Language Understanding with Bloom Embeddings, Convolutional Neural Networks

and Incremental Parsing. Appear 2017, 7, 411–420.
28. Yin, W.; Kann, K.; Yu, M.; Schütze, H. Comparative study of CNN and RNN for natural language processing. arXiv 2017,

arXiv:1702.01923.
29. Chiu, B.; Crichton, G.; Korhonen, A.; Pyysalo, S. How to train good word embeddings for biomedical NLP. In Proceedings of the

15th Workshop on Biomedical Natural Language Processing, Berlin, Germany, 12 August 2016; pp. 166–174.
30. Bird, S.; Klein, E.; Loper, E. Natural Language Processing with Python: Analyzing Text with the Natural Language Toolkit; O’Reilly

Media, Inc.: Sebastopol, CA, USA, 2009.
31. Pennington, J.; Socher, R.; Manning, C.D. Glove: Global vectors for word representation. In Proceedings of the 2014 Conference

on Empirical Methods in Natural Language Processing (EMNLP), Doha, Qatar, 25–29 October 2014; pp. 1532–1543.
32. Feng, Y.; Zhang, H.; Hao, W.; Chen, G. Joint extraction of entities and relations using reinforcement learning and deep learning.

Comput. Intell. Neurosci. 2017, 2017, 7643065. [CrossRef]
33. Cai, L.; Zhou, S.; Yan, X.; Yuan, R. A stacked BiLSTM neural network based on coattention mechanism for question answering.

Comput. Intell. Neurosci. 2019, 2019, 9543490. [CrossRef]
34. Zhu, J.; Sun, K.; Jia, S.; Lin, W.; Hou, X.; Liu, B.; Qiu, G. Bidirectional long short-term memory network for vehicle behavior

recognition. Remote Sens. 2018, 10, 887. [CrossRef]
35. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.

Scikit-learn: Machine learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
36. Gasmi, H.; Laval, J.; Bouras, A. Information extraction of cybersecurity concepts: An LSTM approach. Appl. Sci. 2019, 9, 3945.

[CrossRef]
37. Hagberg, A.; Swart, P.; Chult, S.D. Exploring network structure, dynamics, and function using NetworkX. In Proceedings of the

7th Python in Science Conference, Pasadena, CA, USA, 19–24 August 2008.
38. Settles, B. ABNER: An open source tool for automatically tagging genes, proteins and other entity names in text. Bioinformatics

2005, 21, 3191–3192. [CrossRef]
39. Al-Mubarak, B.; Abouelhoda, M.; Omar, A.; AlDhalaan, H.; Aldosari, M.; Nester, M.; Alshamrani, H.A.; El-Kalioby, M.; Goljan, E.;

Albar, R.; et al. Whole exome sequencing reveals inherited and de novo variants in autism spectrum disorder: A trio study from
Saudi families. Sci. Rep. 2017, 7, 5679. [CrossRef]

40. Kapp, L.D.; Abrams, E.W.; Marlow, F.L.; Mullins, M.C. The integrator complex subunit 6 (Ints6) confines the dorsal organizer in
vertebrate embryogenesis. PLoS Genet. 2013, 9, e1003822. [CrossRef]

41. Chen, H.; Shen, H.; Lin, Y.; Mao, Y.; Liu, B.; Xie, L. Small RNA-induced Ints6 gene up-regulation suppresses castration-resistant
prostate cancer cells by regulating B-catenin signaling. Cell Cycle 2018, 17, 1602–1613. [CrossRef]

42. Lui, K.Y.; Zhao, H.; Qiu, C.; Li, C.; Zhang, Z.; Peng, H.; Fu, R.; Chen, H.; Lu, M. Integrator complex subunit 6 (INTS6) inhibits
hepatocellular carcinoma growth by Wnt pathway and serve as a prognostic marker. BMC Cancer 2017, 17, 644. [CrossRef]
[PubMed]

43. Bridges, C.R.; Tan, M.; Premarathne, S.; Nanayakkara, D.; Bellette, B.; Zencak, D.; Domingo, D.; Gecz, J.; Murtaza, M.; Jolly, L.A.
USP9X deubiquitylating enzyme maintains RAPTOR protein levels, mTORC1 signalling and proliferation in neural progenitors.
Sci. Rep. 2017, 7, 391. [CrossRef] [PubMed]

44. Taya, S.; Yamamoto, T.; Kanai-Azuma, M.; Wood, S.A.; Kaibuchi, K. The deubiquitinating enzyme Fam interacts with and
stabilizes β-catenin. Genes Cells 1999, 4, 757–767. [CrossRef] [PubMed]

45. Yang, B.; Zhang, S.; Wang, Z.; Yang, C.; Ouyang, W.; Zhou, F.; Zhou, Y.; Xie, C. Deubiquitinase USP9X deubiquitinates β-catenin
and promotes high grade glioma cell growth. Oncotarget 2016, 7, 79515. [CrossRef]

https://doi.org/10.3390/app10082690
https://doi.org/10.1177/0165551516673485
https://doi.org/10.1016/j.jbi.2017.05.002
https://doi.org/10.1561/2200000013
https://doi.org/10.1093/nar/gky355
https://www.ncbi.nlm.nih.gov/pubmed/29762787
https://doi.org/10.1093/bioinformatics/btm235
https://doi.org/10.1038/s41597-019-0055-0
https://doi.org/10.1155/2017/7643065
https://doi.org/10.1155/2019/9543490
https://doi.org/10.3390/rs10060887
https://doi.org/10.3390/app9193945
https://doi.org/10.1093/bioinformatics/bti475
https://doi.org/10.1038/s41598-017-06033-1
https://doi.org/10.1371/journal.pgen.1003822
https://doi.org/10.1080/15384101.2018.1475825
https://doi.org/10.1186/s12885-017-3628-3
https://www.ncbi.nlm.nih.gov/pubmed/28899352
https://doi.org/10.1038/s41598-017-00149-0
https://www.ncbi.nlm.nih.gov/pubmed/28341829
https://doi.org/10.1046/j.1365-2443.1999.00297.x
https://www.ncbi.nlm.nih.gov/pubmed/10620020
https://doi.org/10.18632/oncotarget.12819


Biology 2023, 12, 1344 20 of 20

46. Frödin, M.; Jensen, C.J.; Merienne, K.; Gammeltoft, S. A phosphoserine-regulated docking site in the protein kinase RSK2 that
recruits and activates PDK. EMBO J. 2000, 19, 2924–2934. [CrossRef] [PubMed]

47. Cargnello, M.; Roux, P.P. Activation and function of the MAPKs and their substrates, the MAPK-activated protein kinases.
Microbiol. Mol. Biol. Rev. 2011, 75, 50–83. [CrossRef]

48. Carrière, A.; Cargnello, M.; Julien, L.; Gao, H.; Bonneil, É.; Thibault, P.; Roux, P.P. Oncogenic MAPK signaling stimulates mTORC1
activity by promoting RSK-mediated raptor phosphorylation. Curr. Biol. 2008, 18, 1269–1277. [CrossRef]

49. Roux, P.P.; Ballif, B.A.; Anjum, R.; Gygi, S.P.; Blenis, J. Tumor-promoting phorbol esters and activated Ras inactivate the tuberous
sclerosis tumor suppressor complex via p90 ribosomal S6 kinase. Proc. Natl. Acad. Sci. USA 2004, 101, 13489–13494. [CrossRef]

50. Roux, P.P.; Shahbazian, D.; Vu, H.; Holz, M.K.; Cohen, M.S.; Taunton, J.; Sonenberg, N.; Blenis, J. RAS/ERK signaling promotes
site-specific ribosomal protein S6 phosphorylation via RSK and stimulates cap-dependent translation. J. Biol. Chem. 2007, 282,
14056–14064. [CrossRef]

51. Sutherland, C.; Leighton, I.A.; Cohen, P. Inactivation of glycogen synthase kinase-3 β by phosphorylation: New kinase connections
in insulin and growth-factor signalling. Biochem. J. 1993, 296, 15–19. [CrossRef] [PubMed]

52. Xie, Y.; Su, N.; Yang, J.; Tan, Q.; Huang, S.; Jin, M.; Ni, Z.; Zhang, B.; Zhang, D.; Luo, F. FGF/FGFR signaling in health and disease.
Signal Transduct. Target. Ther. 2020, 5, 181. [CrossRef]

53. Esnafoglu, E.; Ayyıldız, S.N. Decreased levels of serum fibroblast growth factor-2 in children with autism spectrum disorder.
Psychiatry Res. 2017, 257, 79–83. [CrossRef] [PubMed]

54. Haub, O.; Drucker, B.; Goldfarb, M. Expression of the murine fibroblast growth factor 5 gene in the adult central nervous system.
Proc. Natl. Acad. Sci. USA 1990, 87, 8022–8026. [CrossRef] [PubMed]

55. Reuss, B.; von Bohlen und Halbach, O. Fibroblast growth factors and their receptors in the central nervous system. Cell Tissue Res.
2003, 313, 139–157. [CrossRef]

56. Modarres, H.P.; Mofrad, M.R. Filamin: A structural and functional biomolecule with important roles in cell biology, signaling and
mechanics. Mol. Cell. Biomech. 2014, 11, 39.

57. Wegiel, J.; Kuchna, I.; Nowicki, K.; Imaki, H.; Wegiel, J.; Marchi, E.; Ma, S.Y.; Chauhan, A.; Chauhan, V.; Bobrowicz, T.W. The
neuropathology of autism: Defects of neurogenesis and neuronal migration, and dysplastic changes. Acta Neuropathol. 2010, 119,
755–770. [CrossRef]

58. Sasaki, A.; Masuda, Y.; Ohta, Y.; Ikeda, K.; Watanabe, K. Filamin associates with Smads and regulates transforming growth
factor-β signaling. J. Biol. Chem. 2001, 276, 17871–17877. [CrossRef]

59. Savoy, R.M.; Ghosh, P.M. The dual role of filamin A in cancer: Can’t live with (too much of) it, can’t live without it. Endocr. Relat.
Cancer 2013, 20, R341–R356. [CrossRef]

60. Scott, M.G.; Pierotti, V.; Storez, H.; Lindberg, E.; Thuret, A.; Muntaner, O.; Labbé-Jullié, C.; Pitcher, J.A.; Marullo, S. Cooperative
regulation of extracellular signal-regulated kinase activation and cell shape change by filamin A and β-arrestins. Mol. Cell. Biol.
2006, 26, 3432–3445. [CrossRef]

61. Clarke, L.A. The mucopolysaccharidoses: A success of molecular medicine. Expert Rev. Mol. Med. 2008, 10, e1. [CrossRef]
62. Ornitz, D.M. FGFs, heparan sulfate and FGFRs: Complex interactions essential for development. Bioessays 2000, 22, 108–112.

[CrossRef]
63. Fraldi, A.; Biffi, A.; Lombardi, A.; Visigalli, I.; Pepe, S.; Settembre, C.; Nusco, E.; Auricchio, A.; Naldini, L.; Ballabio, A. SUMF1

enhances sulfatase activities in vivo in five sulfatase deficiencies. Biochem. J. 2007, 403, 305–312. [CrossRef] [PubMed]
64. Sardiello, M.; Annunziata, I.; Roma, G.; Ballabio, A. Sulfatases and sulfatase modifying factors: An exclusive and promiscuous

relationship. Hum. Mol. Genet. 2005, 14, 3203–3217. [CrossRef] [PubMed]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1093/emboj/19.12.2924
https://www.ncbi.nlm.nih.gov/pubmed/10856237
https://doi.org/10.1128/MMBR.00031-10
https://doi.org/10.1016/j.cub.2008.07.078
https://doi.org/10.1073/pnas.0405659101
https://doi.org/10.1074/jbc.M700906200
https://doi.org/10.1042/bj2960015
https://www.ncbi.nlm.nih.gov/pubmed/8250835
https://doi.org/10.1038/s41392-020-00222-7
https://doi.org/10.1016/j.psychres.2017.07.028
https://www.ncbi.nlm.nih.gov/pubmed/28734240
https://doi.org/10.1073/pnas.87.20.8022
https://www.ncbi.nlm.nih.gov/pubmed/1700424
https://doi.org/10.1007/s00441-003-0756-7
https://doi.org/10.1007/s00401-010-0655-4
https://doi.org/10.1074/jbc.M008422200
https://doi.org/10.1530/ERC-13-0364
https://doi.org/10.1128/MCB.26.9.3432-3445.2006
https://doi.org/10.1017/S1462399408000550
https://doi.org/10.1002/(SICI)1521-1878(200002)22:2%3C108::AID-BIES2%3E3.0.CO;2-M
https://doi.org/10.1042/BJ20061783
https://www.ncbi.nlm.nih.gov/pubmed/17206939
https://doi.org/10.1093/hmg/ddi351
https://www.ncbi.nlm.nih.gov/pubmed/16174644

	Introduction 
	Materials and Methods 
	Text Pre-Processing 
	Sentence Classification Model 
	Word Embedding 
	BiLSTM Layer 

	Named Entity Recognition Model Using Conditional Random Field 
	Relation Extraction 

	Results 
	Data Preparation 
	Sentence Classification Models 
	Word Embedding Initialization 
	The RNN Layer 
	Measures of Performance 

	Named Entity Recognition Model Initialization 
	Relation Extraction Implementation 
	Evaluation of Models’ Performance 
	Sentence Classification Models 
	NER-CRF Model 

	Testing the Models and PPI Network Creation 

	Discussion 
	Conclusions 
	References

