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Simple Summary: Of all the Arctic seas, the prokaryotic communities of the Barents Sea are the
most affected by climate change and are strongly influenced by microbiota from the Atlantic Ocean.
Using 16S metabarcoding, we analyzed samples of prokaryotic plankton communities in the Barents
Sea and found two types of communities. The origin of these communities is discussed in terms
of biogeography.

Abstract: The Barents Sea is one of the most rapidly changing Arctic regions, with an unprecedented
sea ice decline and increase in water temperature and salinity. We have studied the diversity of
prokaryotic communities using 16S metabarcoding in the western and northeastern parts of the
Barents Sea along the Kola Section and the section from Novaya Zemlya to Franz Joseph Land. The
hypothesis-independent clustering method revealed the existence of two distinct types of commu-
nities. The most common prokaryotic taxa were shared between two types of communities, but
their relative abundance was different. It was found that the geographic location of the sampling
sites explained more than 30% of the difference between communities, while no statistically signifi-
cant correlation between environmental parameters and community composition was found. The
representatives of the Psychrobacter, Sulfitobacter and Polaribacter genera were dominant in samples
from both types of communities. The first type of community was also dominated by members of
Halomonas, Pseudoalteromonas, Planococcaceae and an unclassified representative of the Alteromonadaceae
family. The second type of community also had a significant proportion of Nitrincolaceae, SAR92,
SAR11 Clade I, NS9, Cryomorphaceae and SUP05 representatives. The origin of these communities can
be explained by the influence of environmental factors or by the different origins of water masses.
This research highlights the importance of studying biogeographic patterns in the Barents Sea in
comparison with those in the North Atlantic and Arctic Ocean prokaryote communities.

Keywords: Barents Sea; Arctic Ocean; Atlantification; Kola Section; prokaryote diversity; biogeography

1. Introduction

Over the past 20 years, a new climatic regime has been developing rapidly in the
Arctic Ocean [1]. Characteristic features of this new regime are reduction of sea ice area
and its thickness, increase in duration of open water periods during the summer season
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and, as a consequence, more intensive absorption of short-wave solar radiation, leading to
strong summer heating of the surface water layer. Due to the inflow of warmer and more
saline waters from the North Atlantic, the process of “Atlantification” is also developing.
The essence of this process is the increasing influence of ocean heat on the surface layer and
ice cover due to a significant reduction in sea ice volume in the Arctic Ocean [2–6]. These
changes are especially noticeable in the shelf seas, where the ice cover has steadily become
seasonal. Positive temperature trends are also observed, especially in the Kara and Barents
Seas and around Spitsbergen [7].

In the Arctic, the most intense changes occurred in the northern part of the Barents
Sea. Since the mid-2000s, there has been an increase in water temperature and salinity,
which is likely associated with a general reduction in the volume of sea ice in the Arctic
Ocean [8–10]. This has resulted in decreased ice input to the Barents Sea from the north,
consistent salinization, weakened density stratification, increased vertical mixing and
increased heat and salt input from depth to the sea surface. These changes resulted in a
further reduction of sea ice and the implementation of positive ice-ocean feedback [11]. Due
to the shallowness of the Barents Sea (average sea depth 230 m), the positive feedback effect
appeared here earlier than in neighboring deeper areas. This may explain why little to no
ice was observed in the central and eastern parts of the Barents Sea during the 2010s [12].

The process of “Atlantification” affects the Arctic Ocean microbial community, leading
to changes in its taxonomic composition [13]. There are changes in the composition of
primary producers; for example, the number of blooms of the haptophytic alga Phaeocystis
spp. more typical of the Atlantic Ocean has increased [14]. Meanwhile, satellite obser-
vations show a 57% increase in primary production in the Arctic Ocean between 1998
and 2018, leading to increased vertical carbon transport in the ocean [15]. Changes in the
ratios of different taxonomic groups of microscopic eukaryotes, archaea and bacteria, as
well as changes in the distribution ranges and habitats of fish and mammals have been
reported [16–21].

The current number of studies examining prokaryotic diversity in the Arctic Ocean
water column utilizing metagenomic methods and 16S rRNA metabarcoding is insignificant
in comparison to its extensive territory and diverse hydrological conditions [22–30]. Never-
theless, the results already obtained allowed to the identification of the major groups of
prokaryotes in the Arctic Ocean. These include primarily bacteria belonging to the groups
Alphaproteobacteria and Gammaproteobacteria, as well as Bacteroidota. Archaea are represented
in the water column in smaller numbers and are dominated mostly by the representatives
of the Thaumarchaeota group. The prokaryotic communities of Arctic waters have a dynamic
and heterogeneous composition due to seasonal changes in insolation, the presence of
sea ice and nutrient concentration [28]. These factors strongly influence the diversity of
prokaryotes in different parts of the Arctic Ocean [23,24,27]. An important question that
has yet to receive a definitive answer is whether planktonic prokaryote communities have
biogeographic distribution. Previous studies have demonstrated that planktonic prokary-
ote communities from adjacent basins can exhibit similar composition [27]. However, a
growing amount of research, utilizing molecular approach, shows that Arctic microbial
communities have biogeographic patterns [24,31–33]. This raises the question of the driving
factors shaping these communities and controlling their distribution in the ocean.

The Barents Sea plays an important role in the formation of microbial communities in
the Arctic Ocean. According to hydrological modeling, about 10 times more water enters
the Arctic Ocean through the Barents Sea and Fram Strait than through the Bering Strait,
which affects the temperature regime, chemical composition and microbiota of the Arctic
Ocean [34]. In the Barents Sea, there is a mixing of waters from the Atlantic and Arctic
Oceans, their transformation and the formation of specific Barents Sea waters [35,36]. In
this region, prokaryote diversity studies using modern genomic methods were conducted
only in the western part of the sea, which is most affected by the Atlantic Ocean, while the
northeastern part of the sea near the Kara Sea has not been previously studied [27–30,37].
This prevents the formation of a comprehensive picture of the prokaryotic communities in
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this important region of the Arctic. To address this gap, we conducted a geographically
broader investigation of the diversity of prokaryote communities and hydrological charac-
teristics, which encompassed not only the western part of the Barents Sea, but also its less
studied northeastern part.

2. Materials and Methods

Water sampling and measurements were conducted during two cruises of the “Arc-
tic Floating University” in 2019 and 2021. In 2019, research was conducted on the R/V
“Professor Molchanov” in the western part of the Barents Sea along the section “Kola
Meridian” running along the 33◦30′ E meridian from 69◦30′ N to 77◦00′ N and being one of
the world’s longest oceanic time-series [38]. Between 24 and 28 June 2019, 17 oceanological
stations were performed on the “Kola Section” running along the meridian 33◦30′ E from
69◦59′58′′ N to 76◦28′20′′ N, as well as at 4 stations (#18–21) located near the Spitsber-
gen Archipelago (Figure 1). Seawater and hydrooptical parameters were measured at
all stations. Water sampling to determine microbial biodiversity was conducted at sta-
tions #1 (start coordinates 69◦59′58′′ N, 33◦30′00′′ E, 24 June 2019, 17:25 UTC) and #13
(74◦30′08′′ N, 33◦28′48′′ E, 26 June 2019, 7:45 UTC) at 10, 30 and 75 m depths. Water sam-
pling for microbial diversity was also conducted at station #19 at 10, 30 and 75 m depths (start
coordinates 76◦48′51′′ N, 13◦29′28′′ E, 29 June 2019, 10:01 UTC), located off the southwest
coast of Spitsbergen.
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In the summer of 2021, the R/V “Mikhail Somov” carried out a section in the north-
eastern part of the Barents Sea from Cape Zhelaniya (Novaya Zemlya archipelago) to Salm
Island (Franz Josef Land archipelago) (Figure 1). A total of 16 oceanological stations from
station #16 in the southern part of the transect (76◦59′00′′ N, 68◦26′03′′ E) to station #1 in the
northern part of the section (79◦47′01′′ N, 59◦59′05′′ E) were deployed on 17–19 June 2021.
At stations #1 (2 and 100 m depth, 19 June 2021, 15:00 UTC), #8 (78◦13′46′′ N, 64◦48′27′′ E, 2
and 63 m, 18 June 2019, 16:00 UTC), #12 (77◦22′14′′ N, 67◦13′29′′ E, 2 and 51 m, 18 June 2021,
3:15 UTC) and #16 (2 and 71 m, 17 June 2021, 19:20 UTC), water was sampled to determine
the diversity of microorganisms. Seabird Electronics (Bellevue, WA, USA) water sampler
consisting of “SBE 32 Carousel water sampler” equipped with twelve 5-L water bottles
and Seabird Electronics CTD Probe “SBE 19 plusV2” for measuring temperature, pressure
and electric conductivity (salinity) of seawater was used for oceanographic measurements
and water sampling. Oceanological data were visualized using a software package “Ocean
data view” [39]. Measurement of photosynthetically active radiation (PAR, 400–700 nm)
and determination of the euphotic zone depth, at which 1% of the sea surface PAR remains
were performed using Li-COR (Lincoln, NE, USA) LI-192 photometer and Data-Logger
Li-1400 [40]. The airborne sensor (LI-190, LI-COR) was placed on an unshaded horizon-
tal platform. The flux of incoming solar radiation and solar radiation penetrating to a
fixed depth was recorded synchronously. Water transparency was also measured using
a 30-cm diameter white Secchi disk (“UfaPribor”, Ufa, Russia) lowered to 1/2 the relative
transparency depth. Current weather conditions (cloud cover score, sun disk condition,
horizontal visibility range and sea surface condition) were recorded during the measure-
ments. Water samples of 4 L for DNA extraction and metagenomic analysis were filtered
onto sterile 47 mm Millipore (Burlington, MA, USA) GSWG047S6 filters with a pore size of
0.22 um. Filters were flash-frozen and kept at −20 ◦C until analysis.

DNA was extracted using Qiagen PowerLyzer PowerSoil kit (Qiagen, Hilden, Ger-
many) according to manufacturer’s instructions. The amplicon libraries of the hypervari-
able V4 region of the 16S rRNA gene were prepared using the two-stage PCR strategy, as
described previously [41]. Briefly, approximately 2 ng of environmental DNA and two
negative controls were used for the first round of amplification with fusion primers, con-
taining partial TruSeq adapter, heterogeneity spacer [42] and rRNA primers 515F [43] and
Pro-mod-805R [44]. Amplification was performed by CFX96 Touch Real-Time PCR Detec-
tion System (Bio-Rad, Hercules, CA, USA) with the parameters described previously [41].
Amplificated mix, diluted 2–5 times (depending on Ct) was used as a matrix for the second
PCR with double index-containing primers [45]. Each PCR was performed in two replicates,
resulting in 34 V4 amplicon libraries. Libraries were checked with agarose gel and pooled in
equimolar amounts. The final pool was cleaned with AMPure XP beads (Beckman Coulter,
Brea, CA, USA), according to manufacturer’s instructions. Libraries were sequenced with
the MiSeq™ Personal Sequencing System (Illumina, San Diego, CA, USA) using the 156-bp
paired-end reads.

Identification of target amplicon reads in the total read pool was performed by cu-
tadapt [46]. Read pairs not containing the primer sequence were excluded from further
analysis. Demultiplexing was carried out using the deML software package [47] with parame-
ters excluding mismatches in the index sequences. Further analysis, including read filtering
(maxEE = 0.5), merging (minOverlap = 9) and chimera removal and amplicon sequence
variant (ASV) reconstruction were performed according to publicly available DADA2 work-
flow (https://benjjneb.github.io/dada2/tutorial.html, accessed on 25 September 2023) [48].
Taxonomy was assigned with naïve Bayesian classification using Silva138 16S rRNA
database [49]. ASV phylogenetic tree was constructed using msa library with clustalW [50].
After tree construction, the phyloseq object including abundance table, taxonomy table,
ASV sequences and phylogenetic tree was created and used for all further analysis steps.
In silico rarefaction analysis, ordination, alpha- and beta-diversity analysis was performed
using microeco R package. Nonmetric multidimensional scaling (NMDS) ordination of
samples was performed using a unifrac phylogeny-based distances [51]. Analysis of de-
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termining the optimal number of clusters was carried out using the package NbClust [52].
The following k-means cluster was made with native R package “stats”.

3. Results
3.1. Determination of the Seawater Parameters

In 2019, research was conducted in the western part of the Barents Sea. In the southern
part of the section, station #1 was sampled in the area of the coastal branch of the Nordkapp
Current, where high temperatures ranging from 4 ◦C at 75 m to 7 ◦C at 10 m were recorded
(Figure 2). Waters at station #13 had lower temperature values, but its location was closer to
the Atlantic water core with salinity of 34.9 at horizons deeper than 100 m. The 75 m, 30 m
and 10 m horizons were characterized by lower salinity values of 34.8 (Figure 3). Thus,
both investigated stations on the section are located in the areas of Atlantic water inflow to
the Barents Sea basin. All sampling horizons are located above the Atlantic water core. The
waters at 10-m horizon are subjected to seasonal desalinization due to ice melting, where
salinity value decreases to 34.7. Nevertheless, at the northernmost station #18, located
behind the polar front, it was possible to reveal arctic water intrusion at a depth of about
100 m with a temperature of less than −1 ◦C (Figure 2).

Biology 2023, 12, x FOR PEER REVIEW 5 of 20 
 

 

Silva138 16S rRNA database [49]. ASV phylogenetic tree was constructed using msa li-
brary with clustalW [50]. After tree construction, the phyloseq object including abun-
dance table, taxonomy table, ASV sequences and phylogenetic tree was created and used 
for all further analysis steps. In silico rarefaction analysis, ordination, alpha- and be-
ta-diversity analysis was performed using microeco R package. Nonmetric multidimen-
sional scaling (NMDS) ordination of samples was performed using a unifrac phyloge-
ny-based distances [51]. Analysis of determining the optimal number of clusters was 
carried out using the package NbClust [52]. The following k-means cluster was made 
with native R package “stats”. 

3. Results 
3.1. Determination of the Seawater Parameters 

In 2019, research was conducted in the western part of the Barents Sea. In the 
southern part of the section, station #1 was sampled in the area of the coastal branch of 
the Nordkapp Current, where high temperatures ranging from 4 °C at 75 m to 7 °C at 10 
m were recorded (Figure 2). Waters at station #13 had lower temperature values, but its 
location was closer to the Atlantic water core with salinity of 34.9 at horizons deeper than 
100 m. The 75 m, 30 m and 10 m horizons were characterized by lower salinity values of 
34.8 (Figure 3). Thus, both investigated stations on the section are located in the areas of 
Atlantic water inflow to the Barents Sea basin. All sampling horizons are located above 
the Atlantic water core. The waters at 10-m horizon are subjected to seasonal desaliniza-
tion due to ice melting, where salinity value decreases to 34.7. Nevertheless, at the 
northernmost station #18, located behind the polar front, it was possible to reveal arctic 
water intrusion at a depth of about 100 m with a temperature of less than −1 °C (Figure 2). 

 
Figure 2. Temperature distribution in the section “Kola meridian” according to the expedition data 
of 2019. The symbols indicate the horizons of sampling and sampling depth at stations #1 and 13. 
Figure 2. Temperature distribution in the section “Kola meridian” according to the expedition data
of 2019. The symbols indicate the horizons of sampling and sampling depth at stations #1 and 13.

Biology 2023, 12, x FOR PEER REVIEW 6 of 20 
 

 

 
Figure 3. Salinity distribution in the section “Kola Meridian” according to the expedition data of 
2019. The symbols indicate the horizons of sampling and sampling depth at stations #1 and 13. 

In addition to the Kola section, sampling was carried out at 10, 30, and 75 m depth at 
station #19, located off the southwestern coast of Spitsbergen (Figure 1). The West Spits-
bergen Current is located in the area of the investigated station. A maximum salinity 
value of 34.95 was recorded at 100 m. There is also a local maximum temperature at this 
depth reaching 3.8 °C. 

In 2021, a section from Cape Zhelaniya (Novaya Zemlya) to Salm Island (Franz Josef 
Land) was performed in the northeastern part of the Barents Sea (Figure 1). In the 
southeastern part of the section, at stations #11–16, the Barents Sea waters are carried by 
the West Novaya Zemlya Current into the Kara Sea. These waters are characterized by 
negative temperatures not reaching the freezing point from −1.5 °C to −0.5 °C (Figure 4) 
and high salinity of up to 34.8. At the surface, these waters have a lower salinity (34.1–
34.4) (Figure 5). In the deeper layers of the central part of the section at stations #4–10, 
there is an inflow of chilled Atlantic waters passing around the Spitsbergen and Franz 
Josef Land archipelagoes from the north. These waters are characterized by a positive 
temperature of up to 1.0 °C and an elevated salinity of up to 34.8. The surface layers of 
these waters have a lower salinity (33.7–34.2). In the shallow northwestern part of the 
section at stations #1–3, there is an inflow of Arctic waters with a salinity around 34.4–
34.7 (Figures 1 and 5). Their distinctive feature is the temperature is close to freezing 
point below −1.5 °C (Figure 5). At stations #5 and 13, there was a partial ice cover with a 
1/10 to 2/10 ice concentration. Other stations were free of ice. 

 

Figure 3. Salinity distribution in the section “Kola Meridian” according to the expedition data of
2019. The symbols indicate the horizons of sampling and sampling depth at stations #1 and 13.

In addition to the Kola section, sampling was carried out at 10, 30, and 75 m depth
at station #19, located off the southwestern coast of Spitsbergen (Figure 1). The West
Spitsbergen Current is located in the area of the investigated station. A maximum salinity
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value of 34.95 was recorded at 100 m. There is also a local maximum temperature at this
depth reaching 3.8 ◦C.

In 2021, a section from Cape Zhelaniya (Novaya Zemlya) to Salm Island (Franz
Josef Land) was performed in the northeastern part of the Barents Sea (Figure 1). In the
southeastern part of the section, at stations #11–16, the Barents Sea waters are carried by
the West Novaya Zemlya Current into the Kara Sea. These waters are characterized by
negative temperatures not reaching the freezing point from −1.5 ◦C to −0.5 ◦C (Figure 4)
and high salinity of up to 34.8. At the surface, these waters have a lower salinity (34.1–34.4)
(Figure 5). In the deeper layers of the central part of the section at stations #4–10, there is
an inflow of chilled Atlantic waters passing around the Spitsbergen and Franz Josef Land
archipelagoes from the north. These waters are characterized by a positive temperature of
up to 1.0 ◦C and an elevated salinity of up to 34.8. The surface layers of these waters have a
lower salinity (33.7–34.2). In the shallow northwestern part of the section at stations #1–3,
there is an inflow of Arctic waters with a salinity around 34.4–34.7 (Figures 1 and 5). Their
distinctive feature is the temperature is close to freezing point below −1.5 ◦C (Figure 5).
At stations #5 and 13, there was a partial ice cover with a 1/10 to 2/10 ice concentration.
Other stations were free of ice.
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Thus, the stations selected for microbial diversity studies belong to areas occupied by
different water masses. Stations #1, 13, 19, collected in 2019, are located in the area of the
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Atlantic waters. Station #1, collected in 2021, is located in the area of chilled Arctic water
inflow. Station #8 (2021) is located in the zone of mixing of Barents Sea and chilled Atlantic
waters. Stations #12 and #16 (2021) are located in the area of distribution of Barents Sea
water formed as a result of winter convection in the Barents Sea.

Euphotic zone depth and water transparency (Secchi depth) data were obtained for
each sampling station. In 2019, Secchi depth values at stations #1, 13 and 19 were 14, 14 and
9 m, respectively. The euphotic zone depth was 39.5 m at station #1, 47.8 m at #13 and 27 m
at station #19. In 2021, Secchi depth values at stations #1, 8, 12 and 16 were 10, 15, 9 and
14 m, respectively. Euphotic zone depths at these stations were 33.4, 46.3, 27.1 and 35.4 m,
respectively. The general features of the underwater light intensity in the upper layer of
the sea are shown in Figures 6 and 7. The highest water transparency was registered in the
areas with drifting ice, such as at station #16 of 2019 and 10 of 2021.
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3.2. Analysis of Prokaryote Diversity Using 16S Metabarcoding

The microbial communities inhabiting the water column of Barents Sea were analyzed
by high-throughput sequencing of V4 hypervariable region amplicons. In total, seventeen
samples of filtered water in two PCR replicates were analyzed. After primary analysis,
including read filtering, merging of the overlapping read pairs and removal of chimeric
sequences, approximately 340,000 reads were suitable for further analysis. The convergence
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of PCR replicates, checked by Bray–Curtis distances based NMDS ordination, allowed
merging of replicates for further analysis steps (Supplementary Figure S1). Readcount
for merged samples was in the range of 8059–44079 reads/sample. Rarefaction analysis,
performed with vegan package, showed that all the samples were sequenced with sufficient
depth (Supplementary Figure S2).

3.2.1. Hypothesis-Independent Clusterization of Samples by Community Type

The analysis of the number of community types, presented in the dataset was per-
formed with the NBclust package, allowing determination of the optimal number of clusters
using different indexes and clustering algorithms. Using NBclust on the CLR-normalized
abundance table of all ASVs, two types of microbial communities were identified in the
water column of the Barents Sea. Samples were assigned to different clusters using the
k-means method implemented in base R. The first cluster included samples taken in 2019
at the stations located in the western part of the Barents Sea and station #1, located in the
northwestern part of the 2021 section. Samples from stations #8, 12 and 16 collected in 2021
were located closer to Novaya Zemlya and belong to the second cluster (Supplementary
Figure S3).

3.2.2. Beta-Diversity

The analysis of multivariate homogeneity of group dispersions based on Bray–Curtis
distances, performed using the betadisper function of the vegan package, showed that
dispersions in both clusters were homogeneous (p-value > 0.01). This makes it possible
to apply permutational analysis of variance to test the hypothesis of differences in the
composition of the microbial communities of these groups. Permutational analysis of
variance, performed by adonis function, showed statistically significant differences in the
microbial community composition of cluster 1 and cluster 2 samples (p-value < 0.01). The
geographic location of sampling sites explained more than 30% of the difference in the
microbiome (R2 = 0.34). NMDS ordination of samples also showed distinctive clusterization
of cluster 1 and cluster 2 samples, causing the difference in the centroid of ellipses between
these two groups (Figure 8).

3.2.3. Alpha-Diversity

Picking of ASVs, performed with DADA2 pipeline, resulted in 617 ASVs correspond-
ing to 185 different genera. 572 ASVs, corresponding to 174 different genera, were presented
in significant amounts (more than 1% of classified reads at least in one sample). T-test
did not show significant difference between alpha-diversity metrics in cluster 2 samples
compared to cluster 1 (p-value > 0.01). Cluster 2 samples were characterized by higher
diversity and share of specific microorganisms than cluster 1 samples. Thus, 247 cluster
2-specific ASVs, representing 32.5% of total reads were detected in cluster 2 part of the
dataset, as opposed to 100 ASV, representing 1.2% of total reads, detected in cluster 1 part
of the dataset (Figure 8 and Supplementary Table S1). Analysis of alpha-diversity metrics
correlation with environmental parameters, including sampling depth, water temperature
and salinity, showed that the diversity increased with the increase in depth, while it de-
creased with the increase in temperature and salinity. However, all these correlations were
not statistically significant (p-value > 0.05).
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3.2.4. Prokaryote Community Composition

Bacteria dominated over Archaea in all analyzed samples. The latter was represented
by ‘Candidatus Nitrosopumilis’, ‘Candidatus Nitrosopelagicus’ and unidentified Marine
Group II Thermoplasmata, reaching maximum 0.4% of the total reads. Bacterial fraction was
dominated by representatives of three phyla: Pseudomonadota, Bacillota and Bacteroidota. The
most abundant phylum was Pseudomonadota (from 49.81% to 92.83% in cluster 2 samples
and from 70.99 to 96.54% in cluster 1) (Figure 9). In most cases, Pseudomonadota were mainly
presented by Gammaproteobacteria, however the set of gammaproteobacterial genera was
different for cluster 1 and 2 samples. There were four dominating gammaproteobacterial
ASVs in cluster 1 samples. The ASV1, assigned to Pseudoalteromonas sp. was found in
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most of cluster 1 samples, showing abundance in a range from 10.93% to 51.47%. ASV2
and ASV3 were associated with Psychrobacter sp. and found in most samples from cluster
1 (0.55–65.10%), while in cluster 2 samples Psychrobacter was presented by ASV7, proba-
bly corresponding to another uncultivated species. Another gammaproteobacterial ASV
common for cluster 1 was classified as Halomonas sp. (1.9–13.04%) and unclassified repre-
sentative of the family Alteromonadaceae (0.2–8.8%). The major clades of Gammaproteobacteria
of cluster 2 were unclassified representatives of Nitrincolaceae family, namely ASV12 (up to
9.3%, 2% on overage) and ASV8 (up to 16%, 6% on average). It should be noted that ASV8
was also presented in half of the cluster 1 samples as well; however, the abundance was
significantly lower (up to 0.9%, 0.1% on average). SAR92, belonging to Porticoccaceae, also
reached significant share of the Cluster 2 community (up to 8.8%, 1.3% on average). Their
abundance in Cluster 1 reached only 1.9% with 0.05% on average.
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Alphaproteobacteria, presented in cluster 1 samples, were mainly associated with repre-
sentatives of Rhodobacteraceae family, including Sulfitobacter, Yoonia-Loctanella, Planctomarina
and others (Figure 9), comprising 2.49–17.2% of the community. Among them, Sulfitobacter
litoralis was the most abundant, accounting for up to 12.7% of the community. The abun-
dance of Alphaproteobacteria in cluster 1 samples was much higher than in cluster 2 samples
(Figure 9). In cluster 2, in addition to Sulfitobacter the representatives of SAR11 Clade 1a
were present in abundance up to 2.8% of the community. Moreover, the representatives of
Clades II, III, IV were found in the studied samples, but their share in the community was
much smaller.
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The second most abundant phylum after Pseudomonadota was Bacteroidota, reaching
more than 25% of the total community in several samples. In samples from cluster 2, the
abundance of this phylum was higher than in cluster 1. In cluster 1 samples, it was repre-
sented mostly by the members of Flavobacteriaceae family, Salinimicrobium, Leeuwenhoekiella
and Gillisia. Bacteroidota of cluster 2 were more diverse and belong to three families, namely
Flavobacteriaceae, Cryomorphaceae and NS9 marine group. The most abundant representative
of Bacteroidota in cluster 2 was unclassified Polaribacter (up to 12.8%).

Bacillota (synonym Firmicutes) ASVs were also detected in significant abundance in
several samples. Thus, representatives of Planomicrobium sp. were found in station 1
and station 13 samples taken in 2021, at 9.87% and 22.87%, respectively. Other abundant
Firmicutes were Planococcus (up to 8.13%) and Bacillus (up to 1.61%).

Among other taxa, Actinobacteriota, represented mainly by Rhodococcus sp. showed
significant abundances (up to 1.54%) in some of the cluster 1 samples. Verrucomicrobiota
also accounted for more than one percent of the microbial community in some samples of
cluster 2.

Oxygenic phototrophic prokaryotes had lower abundance than heterotrophic bacteria
and were represented by unicellular cyanobacteria of the genus Synechococcus (up to 0.2%)
and filamentous cyanobacteria of the genera Tychonema (up to 0.6%), Phormidesmis (up to
0.2%) and Leptolyngbya (up to 0.4%).

4. Discussion

Marine polar environments are still considered among the most understudied ecosys-
tems [53]. However, in recent years, there has been an increasing number of studies using
metagenomics-based methods in the Arctic Ocean, which have revealed common patterns
of prokaryotic diversity in this region. Such studies have been conducted in various parts
of the Arctic Ocean and Northern Atlantic, including the Barents Sea, the deep Arctic
Ocean, including the Eurasian and Canadian Basins, the Chukchi Sea, the Fram Strait, the
Greenland Sea and the North Sea [23,24,26,27,54–57]. A comparison of the lists of domi-
nant prokaryote groups shows that the most widespread dominants in these communities
are representatives of the Polaribacter, SAR11 and SUP05 groups. Among the dominants,
representatives of groups such as SAR92, Nitrincola, Sulfitobacter and NS9 are frequently
mentioned. Interestingly, ‘Candidatus Nitrosopumilis’ is mentioned as a dominant species
in winter studies of the Barents Sea, Nansen Basin in the deep Arctic Ocean and sea-ice-
covered parts of the Greenland Sea, possibly indicating its association with colder and
organic matter-depleted habitats [23,27,28].

In the Barents Sea, various studies show the dominance of representatives of the
Gammaproteobacteria, Alphaproteobacteria and Bacteroidia groups in the prokaryotic commu-
nities. Thiele and coauthors studied the diversity of prokaryotes in the Barents Sea in
different seasons and showed that in winter the water is dominated by representatives of
the SAR11 clade and the community of nitrifiers, namely ‘Candidatus Nitrosopumilis’ (Ar-
chaea) and LS-NOB (Nitrospinia), indicating a possibly significant role of chemolithotrophic
metabolism in the community. During spring and summer, members of the Gammaproteobac-
teria (mainly members of the SAR92 and OM60(NOR5) clades, Nitrincolaceae) and Bacteroidia
(mainly Polaribacter, Formosa and members of the NS9 marine group) utilized different
phytoplankton-derived carbon sources [28]. A study by Aalto and coauthors showed that
in the Barents Sea, sequences classified within the orders Flavobacteriales (relative abun-
dance 31–50%, including Polaribacter and Ulvibacter), Rhodobacterales (relative abundance
30–43%, including Sulfitobacter, Amylibacter, Yoonia-Loctanella) and Pseudomonadales (relative
abundance 5–29%) were dominant [27].

The analysis of the composition of prokaryotic communities sampled in the Barents
Sea during our study showed the presence of two types of communities. We found that the
most common prokaryotic taxa were shared between two types of communities, but their
relative abundance was different. Among the dominant bacterial taxa, the representatives
of three genera (namely Psychrobacter, Sulfitobacter and Polaribacter) were dominant in
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samples from clusters 1 and 2. All three genera are widely distributed in the world ocean
and include aerobic heterotrophic bacteria. Psychrobacter within the family Moraxellaceae
includes strictly aerobic, cold-adapted and osmotolerant chemoheterotrophic bacteria.
They are mostly isolated from cold to warm, slightly to highly saline ecosystems [58].
Earlier Psychrobacter strains were isolated from the Arctic Ocean, including the Barents
Sea, the Bering Sea, the Chukchi Sea and Prydz Bay [59,60]. Sulfitobacter, which belongs
to the family Rhodobacteraceae, is a widely distributed aerobic bacterium capable of sulfide
oxidation and consumption of carboxylic acids [61,62]. Polaribacter, a member of the family
Flavobacteriaceae, is considered an ecologically central species within a cross-domain ocean
interactome community and is identified as one of the most connected taxa [63]. It is
widely distributed in polar seas and is able to utilize a wide range of organic substrates,
including carbohydrates, amino acids and organic acids [54,64]. Several members of the
genus possess proteorhodopsin that enhances living in oligotrophic seawaters [65].

Samples from cluster 1 were also dominated by members of four other groups:
Halomonas, Pseudoalteromonas, Planococcaceae and unclassified representative of the Al-
teromonadaceae family. Representatives of the Halomonas exhibit high salt tolerance over
a wide range of temperatures and are able to utilize diverse organic substrates [66–68].
Halomonas is frequently found in the Arctic seas, where it can be one of the dominant
phylotypes (>65%) [69]. Pseudoalteromonas within the family Pseudoalteromonadaceae is
one of the most ubiquitous heterotrophic marine bacteria, widely present in the polar
areas [70–72]. It usually comprises around 2–3% of the total bacterial communities in the
surface ocean [73]. Representatives of the Alteromonadaceae are obligate aerobic heterotrophs
with large genomes that contain several degradative genes [74]. Earlier, it was suggested
that representatives of this family may be destructors of extracellular polysaccharides
released by phytoplankton during blooms in the North Sea [75].

Cluster 2 also had a significant proportion of the following six groups in the com-
munity: Nitrincolaceae, SAR92, SAR11 Clade I, NS9, Cryomorphaceae and SUP05. Recently,
it was shown that uncultured Nitrincolaceae and SAR92 clade members prevailed in the
Nansen Basin samples [27], in the samples collected in the western part of the Barents
Sea during summer season [28] and in the North Sea spring bloom samples [75]. It was
proposed that members of these groups utilize different phytoplankton-derived carbon
sources after algal blooms [28,75,76]. SAR11 Clade I group is one of the most abundant
prokaryotes in the world’s oceans, which can reach up to 50% of the cells in the photic
zone of the ocean and also includes one of the most abundant microorganisms in the world,
the extremely oligotrophic ‘Candidatus Pelagibacter ubique’ [33,55,77–79]. NS9 members,
belonging to Flavobacteriaceae, reached high abundance in the Greenland Sea and Southern
Ocean and were noted among the dominant bacterial groups in the Barents Sea [23,30,80].
Flavobacteriaceae are known as degraders of phytoplankton-derived particulate organic
matter and polymeric dissolved organic matter [81]. Representatives of Cryomorphaceae
were also found in the Barents, Beaufort and Greenland Seas [16,22,30]. In the Chukchi Sea,
they make up 1–5% of the population based on estimates using fluorescent in situ hybridiza-
tion [54]. Based on the traits of the described species and molecular survey data, members
of Cryomorphaceae are not responsible for degradation of complex organic matter such as
polysaccharides, but can use a limited range of organic acids and amino acids [82]. The
SUP05/Arctic96BD-19 clade of gammaproteobacterial sulfur oxidizers (GSOs, Thioglobaceae)
comprises both primary producers and primary consumers of organic carbon in the oceans.
In aerobic conditions, Thioglobaceae grow heterotrophically and use osmolytes produced
by phytoplankton for growth, including methylated amines and sulfonates [83]. Isolated
cultures during aerobic growth are able to oxidize sulfur and reach higher final cell densities
when glucose and thiosulfate are added to the media [84]. Representatives of Cryomor-
phaceae were also found in the Barents and Greenland Seas [23,28,29]. Thus, comparison
of our results with the literature data shows the presence of almost all identified Arctic
dominant groups in our samples. However, many of these groups in our samples had a
minor share of the community.
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The most interesting result found during this study is the identification of distinct
clusters of prokaryotic planktonic communities. These two types of communities separated
according to the geographical location of the sampling sites. The second cluster included
samples collected in the central and southern parts of the strait between Novaya Zemlya
and Franz Josef Land. All other samples were grouped into the first cluster.

The strait between Novaya Zemlya and Frans Josef Land has very complicated hydro-
graphic characteristics [85]. In the northern part of the strait, there is an inflow of water
from the Arctic and the Atlantic Ocean. The freshened and cold Arctic waters (temperature
below 0 ◦C and salinity 33–34) come from the open part of the Arctic Ocean in the form
of surface currents [86]. In addition to the Arctic waters, there is also an inflow of cooled
Atlantic waters (maximum temperature 1.5 ◦C), which flow around the archipelagoes of
Spitsbergen and Franz Josef Land from the north [87]. In the southern part, there is an
outflow of water from the Barents Sea.

In terms of biogeography, the formation of different microbial populations can occur
through the action of two processes [88–90]. Firstly, it is an environmental selection driven
by environmental differences between basins or water masses [68–73]. Secondly, these are
historical processes that are caused by limiting the dispersal of microorganisms between
basins or water masses [91,92].

The analysis of environmental parameters shows that surface waters of the central and
southern parts of the strait up to a depth of 30–50 m have lower salinity than waters of the
northern part of the strait. This can be explained by a local freshening as a result of seasonal
ice melting. It should be noted that in two stations of the strait, an ice cover (1–2/10) was
detected, although not in the places of sampling for biological studies. The analysis of the
ice chart also shows that two weeks before the survey (30 May 2021), there was an ice con-
centration up to 9–10/10 in the center of the strait (Supplementary Figure S4). Nevertheless,
the hypothesis about the separation of two clusters due to the action of environmental
factors meets two objections. Firstly, we did not find a statistically significant correlation
between environmental parameters, such as depth, water temperature, transparency and
salinity, and community composition. Secondly, the composition of prokaryotic communi-
ties in surface water and deeper, more saline horizons did not show significant differences.
It should be taken into account that the water density analysis showed the presence of
stratification in the strait, and the similarity of the microbiome between the surface and
deeper layer could not be explained by active water mixing (Supplementary Figure S5).
Water transparency data also indicate that a seasonal bloom may have begun at station #12.
Nevertheless, the compositions of communities at this station and the neighboring ones are
similar to each other, which also does not explain the difference between the two clusters
of prokaryotic communities.

The second hypothesis considers the emergence of divergent clusters in terms of the
origin of water masses. Recent studies show that this factor plays an important role in the
biogeography of plankton at both global and regional scales [32,88,92,93]. The presence of
cluster 1 communities in the northern part of the strait can be explained by the inflow of
water from the Atlantic Ocean, with the current passing around Spitsbergen and Franz Josef
Land. A second explanation could be the high level of similarity between the prokaryotic
communities of the Barents Sea and the Nansen Basin, from where Arctic water enters the
Barents Sea. It has recently been shown by Aalto and coauthors that the most common
microeukaryotic and prokaryotic taxa were shared across the sampling locations in the
Nansen Basin and the Barents Sea [27].

In the southern part of the strait, there is an outflow of waters that are formed in the
central part of the Barents Sea. Therefore, cluster 2 can be hypothetically related to these waters.
According to modern concepts, the formation of the Barents Sea-type waters takes place
mainly in shallow areas, including the Central Bank area. The Central Bank is an elevation
in the central part of the Barents Sea, over which a dome-shaped structure is formed
with water of increased density [35,94]. This structure is supported by an anticyclonic
baroclinic vortex around the slope, which divides the Atlantic water flow into two branches
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surrounding the dome-shaped structure. During the winter, more dense and cold waters
are located over the Central Bank, which can lead to the formation of a specific microbial
community in this area. In spring, stable stratification is established, and dense cold water
flows into the bottom horizons and is carried into the deep waters of the Arctic Ocean
between Franz Josef Land and Novaya Zemlya with BSW outflow (Figure 1) [95]. These
waters could have been sampled by us during the 2021 survey.

This hypothesis also raises questions. First, out of six samples belonging to cluster 2,
only four samples were collected in waters with Barents Sea origin, whereas two samples,
also belonging to cluster 2, were collected in the area of presumed Atlantic waters. Secondly,
it is unknown to what extent the selected samples could preserve patterns of biodiversity
formed in the central part of the Barents Sea. According to current velocity modeling in the
Barents Sea, the current velocity between the Central Bank and the section between Novaya
Zemlya and Franz Josef Land varies from 2 to 20 cm/s, depending on depth and specific
location [96,97]. Assuming an average velocity of 11 cm/s and a distance between the Central
Bank area and the section equal to about 750 km, we find that the waters can reach the
section after about 79 days from the moment of the waters cascading near the Central Bank.
The growth rates of heterotrophic bacteria vary considerably, yet the average heterotrophic
bacterial community growth rate in the Arctic Ocean is quite low [98]. Kirchman and
coauthors estimate it to be 0.038 ± 0.047 d−1, which is about a 25-day generation time [99].
Taking into account the current velocity and relatively low-growth rates, it can be assumed
that hypothetically, differences in taxonomic composition may have remained during
the time of water transport. However, verification of this hypothesis requires research
conducted directly at the Central Bank inwinter and spring.

5. Conclusions

We found two types of prokaryotic plankton communities in the Barents Sea. The
formation of these communities can be explained by the influence of environmental factors
or by the different origins of water masses. Nevertheless, both hypotheses have their short-
comings. This highlights the significance of conducting a more comprehensive examination
of biogeographic patterns at the Barents Sea scale and across a broader range of North
Atlantic and Arctic seas, in order to gain a better understanding of the interconnections
of polar and near-polar plankton communities with other areas and the biogeographic
processes that shape them.
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