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Simple Summary: The future of plant biology, particularly rapidly advancing precision horticulture
and predictive breeding, will require the transformation of huge volumes of multi-omics data into
structured information and valuable knowledge, representing a key challenge. This review aims
to delve into the transformative potential of integrating multi-omics data and artificial intelligence
(AI) for a more comprehensive, high-throughput approach to plant phenotyping in horticultural
research. We argue that the union of these advanced techniques can provide a robust analytical
framework that can handle the complexity of plant biology, thus surmounting the limitations of
traditional phenotyping methods. Our discussion also acknowledges the technical and non-technical
challenges associated with this integration, critically evaluating their advantages and limitations,
proposing potential solutions, and outlining promising future prospects.

Abstract: This review discusses the transformative potential of integrating multi-omics data and
artificial intelligence (AI) in advancing horticultural research, specifically plant phenotyping. The
traditional methods of plant phenotyping, while valuable, are limited in their ability to capture the
complexity of plant biology. The advent of (meta-)genomics, (meta-)transcriptomics, proteomics, and
metabolomics has provided an opportunity for a more comprehensive analysis. AI and machine
learning (ML) techniques can effectively handle the complexity and volume of multi-omics data,
providing meaningful interpretations and predictions. Reflecting the multidisciplinary nature of this
area of research, in this review, readers will find a collection of state-of-the-art solutions that are key
to the integration of multi-omics data and AI for phenotyping experiments in horticulture, including
experimental design considerations with several technical and non-technical challenges, which are
discussed along with potential solutions. The future prospects of this integration include precision
horticulture, predictive breeding, improved disease and stress response management, sustainable
crop management, and exploration of plant biodiversity. The integration of multi-omics and AI holds
immense promise for revolutionizing horticultural research and applications, heralding a new era in
plant phenotyping.

Keywords: multi-omics; artificial intelligence; machine learning; plant phenotyping; data integration;
precision horticulture
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1. Introduction
1.1. Background of Horticulture and Plant Phenotyping

Horticulture, one of the most integral sectors within the broader sphere of agricul-
ture, has played a pivotal role in human civilization. It has facilitated our transition
from nomadic hunter–gatherers to settled agricultural societies. As a field, horticulture
encompasses the science, technology, and art involved in the cultivation, propagation,
processing, and marketing of ornamental plants, flowers, fruits, vegetables, nuts, seeds,
and herbs [1,2]. At the core of horticulture lies the concept of plant phenotyping, the
comprehensive assessment of complex plant traits such as growth, development, tolerance,
resistance, architecture, physiology, ecology, and yield quality and quantity under a range
of environmental conditions. The intricate relationship between a plant’s phenotype and
its environment is modulated by its genotype, forming the basis for plant phenomics [3–5].

Over the years, plant phenotyping has been paramount in assessing plant charac-
teristics, enabling the development of improved crop varieties, and paving the way for
increased agricultural and horticultural productivity and resilience. However, the tradi-
tional methods of plant phenotyping, often manual, time-consuming, and subject to human
error, have been unable to keep pace with the rapid advancements in high-throughput
genotyping technologies [6,7]. The demand for food is expected to grow substantially
in the next decades. To meet the challenges of this global growth in a context of climate
change, a better understanding of genotype–phenotype relationships is crucial to improve
production capacities. Plant research is witnessing an unprecedented revolution in the
acquisition of various data such as phenotypic and multi-omic data, which generates ter-
abytes of data associated with the results of large-scale phenotypic experiments carried
out in environments with different conditions. The disparity between genotyping and
phenotyping capabilities has become a critical bottleneck in our quest to ensure global food
security and sustainable agriculture. As such, the need for innovative and advanced plant
phenotyping techniques has never been more pressing [8,9].

To address these challenges, we stand at the brink of integrating cutting-edge tech-
nologies such as multi-omics approaches and artificial intelligence into horticulture. By
leveraging these technologies, we seek to establish a more holistic and nuanced understand-
ing of plant biology. This, in turn, promises unprecedented insights into plant phenotypes
and the ability to breed more resilient and productive crops [10–12].

In the following sections, we will delve into the significance of multi-omics and AI
in the contemporary horticulture landscape and propose an integrated framework that
harnesses these technologies for advanced plant phenotyping.

1.2. Need for Advanced Techniques in Plant Phenotyping

The last few decades have witnessed a significant shift in the realm of plant phenotyp-
ing, primarily driven by the advent of advanced high-throughput genotyping technologies.
These technologies have enabled the generation of vast genomic datasets, prompting a
newfound appreciation for the genetic complexity underpinning plant phenotypes [13,14].
However, this rapid proliferation of genotypic data has not been matched by compara-
ble strides in phenotypic data acquisition, leading to a notable phenotyping bottleneck.
This disparity has underscored the need for more advanced and high-throughput plant
phenotyping techniques [15,16].

Traditional phenotyping methods are often labor-intensive, subjective, and suffer from
low throughput, making it challenging to capture the dynamic nature of plant traits across
different growth stages and environmental conditions (Figure 1 and Table 1). Furthermore,
these methods generally focus on observable traits, overlooking subcellular processes and
interactions that contribute significantly to the overall plant phenotype [6,7,17]. Conse-
quently, it has become evident that the next frontier in plant phenotyping necessitates
a paradigm shift towards more precise, objective, and high-throughput methodologies.
This shift should be equipped to capture the complexity and dynamics of plant pheno-
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types at different scales, from cellular processes to whole-plant traits, and under varying
environmental conditions [18–20].
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Advanced techniques such as imaging technologies, sensor-based measurements,
and high-throughput screening platforms are increasingly being incorporated into plant
phenotyping, paving the way towards more efficient and precise data collection (Figure 1
and Table 1). However, these techniques invariably generate vast and complex datasets,
necessitating robust data analysis strategies [21–23]. Multi-omics methodologies promise
a holistic view of the plant system by integrating genomic, transcriptomic, proteomic,
and metabolomic data, among others. Meanwhile, artificial intelligence and machine
learning offer powerful tools for deciphering complex patterns within these large datasets,
enabling more insightful and predictive models of plant phenotypes [24–26]. Thus, the
integration of these advanced techniques within plant phenotyping not only holds the
potential to break the phenotyping bottleneck, but also promises to usher in a new era of
precision horticulture.
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Table 1. Comparison of traditional and advanced phenotyping methods.

Method Description Advantages Limitations

Traditional Phenotyping

Traditional phenotyping in
horticulture primarily relies
on visual assessment and
manual measurements of
plant traits, such as plant
height, flower color, fruit size,
and disease symptoms [5].

1. Simple and cost-effective [6]. 1. Time-consuming and
labor-intensive [7].

2. Easy to conduct without
requiring specialized training or
tools [7].

2. Limited in scope and depth,
typically only capturing
superficial traits [6].
3. Subjective, with potential
for inconsistency and error [5].

Advanced Phenotyping
(Multi-Omics)

Advanced phenotyping
involves comprehensive
molecular profiling of the
plant, using techniques such
as genomics, transcriptomics,
proteomics, and
metabolomics [26].

1. Provides in-depth understanding
of plant biology at the molecular
level [25].

1. Requires specialized
equipment and training [27].

2. Can reveal information about
complex traits and processes [27].

2. Data analysis can be
complex, given the volume
and complexity of
multi-omics data [25].

Advanced Phenotyping
(AI/ML)

AI/ML-based phenotyping
involves the use of machine
learning algorithms to analyze
and interpret complex plant
data, such as images, spectral
data, or multi-omics data [10].

1. Can handle large volumes of
complex data [28].

1. Requires substantial
computational resources and
expertise [28].

2. Provides objective and consistent
analyses [29,30].

2. Model selection and
interpretation can be
challenging [29].

3. Can uncover patterns and
relationships that are not evident to
humans [30].

3. ‘Black box’ nature of some
ML algorithms can lead to
transparency and trust
issues [30].

1.3. Brief Overview of Multi-Omics and AI Techniques

Multi-omics and artificial intelligence (AI) represent two technological advancements
that hold significant potential to revolutionize horticulture and plant phenotyping. These
approaches, when combined, have the potential to offer unprecedented insights into the
complexities of plant systems and enable the development of highly accurate and predictive
models of plant phenotypes [27–29].

The term ‘multi-omics’ refers to the integrative study of various ‘omic’ disciplines,
which individually focus on a particular biological system. These include genomics, tran-
scriptomics, proteomics, metabolomics, and others [30,31]. Each of these omics layers offers
a unique perspective on the functional components of a biological system. However, by
considering these layers separately, the holistic picture of how these components interact
and contribute to the overall phenotype is lost. This is why multi-omics represents an
advance [17,32]. Multi-omics approaches aim to integrate data from various omics layers to
uncover the complex interactions and regulatory mechanisms that underlie the observable
characteristics or phenotypes of an organism. In the context of plant phenotyping, multi-
omics can provide comprehensive insights into the dynamic interplay between genetic
makeup, environmental influence, and plant phenotype [33,34].

Artificial intelligence (AI) refers to the simulation of human intelligence processes by
machines, especially computer systems. This involves learning (acquiring information and
rules), reasoning (using rules to reach conclusions), and self-correction. Machine learning
(ML), a subset of AI, involves the development of algorithms that allow computers to learn
from and make decisions based on data [35,36].

In horticultural research, AI and ML techniques hold the potential to transform the
analysis of large and complex multi-omics datasets. They can uncover hidden patterns
within the data, generate new hypotheses, and predict future outcomes with high accu-
racy. Techniques such as deep learning, a subfield of ML that imitates the functioning
of the human brain in processing data, are being increasingly employed to decipher the
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complex patterns within multi-omics data [37–39]. The application of AI and ML in plant
phenotyping can facilitate the identification of key features associated with important
traits, thus aiding in the development of improved plant varieties. When coupled with
multi-omics data, these techniques provide a powerful tool to comprehensively understand
and accurately predict plant phenotypes [40,41].

In summary, the combination of multi-omics approaches and AI techniques represents
a promising pathway to address the current limitations in plant phenotyping and heralds a
new era in horticultural research.

2. Advancements in Plant Phenotyping
2.1. Traditional Methods of Plant Phenotyping in Horticulture

Plant phenotyping has always been a cornerstone of horticultural research and breed-
ing programs. Traditionally, phenotypic data were obtained through manual measurements
and visual inspections, techniques that are rooted in centuries of agricultural practice [42].

These traditional phenotyping methods encompass a broad array of approaches, each
of which focuses on a specific plant characteristic or trait. Here, we outline some of the
most prevalent traditional phenotyping techniques:

• Visual inspection: This is perhaps the most common and straightforward method of
plant phenotyping. Researchers visually inspect plants for specific traits, such as color,
shape, size, and disease symptoms. This method is cost-effective and straightforward
but is also highly subjective and can lead to inconsistencies due to variability in human
judgment [43];

• Manual measurements: A host of plant traits, such as plant height, leaf area, and
fruit size are often measured manually using instruments such as rulers, calipers, or
leaf area meters. While this method is more objective than visual inspection, it is
time-consuming, labor-intensive, and may cause physical damage to the plant, thereby
limiting its applicability for large-scale studies [6];

• Destructive sampling: Certain plant traits, particularly those related to plant physiol-
ogy or internal structures, necessitate destructive sampling. This involves harvesting
parts or whole plants to carry out measurements. Examples include determining
the dry weight, nutrient content, or internal fruit quality. Although this method can
provide highly accurate measurements, it is not suitable for longitudinal studies as it
prevents the further assessment of the same plant [4];

• Greenhouse and field trials: For assessing plant performance under different environ-
mental conditions or treatments, greenhouse or field trials are often conducted. These
trials involve growing plants under controlled or real-world conditions, respectively,
and recording various phenotypic traits. Although valuable for assessing real-world
plant performance, these trials can be resource-intensive and subject to environmental
variability [44].

Despite their extensive usage, traditional plant phenotyping methods have several
limitations, particularly in the context of large-scale studies and high-throughput screening.
These constraints have necessitated the development of more advanced, efficient, and
high-throughput phenotyping techniques, which are discussed in the next section.

2.2. Limitations of Traditional Methods

While traditional methods have played an indispensable role in our understanding
of plant phenotypes, they are not without their limitations. As we move towards an era
of large-scale genomics and high-throughput screening, these limitations are becoming
increasingly apparent:

• Labor-intensive and time-consuming: One of the most significant drawbacks of tradi-
tional plant phenotyping methods is that they are often manual and therefore labor-
intensive and time-consuming. This makes them unsuitable for large-scale studies
where thousands of plants may need to be phenotyped [45];
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• Subjectivity and inconsistencies: Methods such as visual inspection are subjective
and can result in significant inconsistencies due to variability in human judgment.
Furthermore, manual measurements are prone to errors, which can compromise the
accuracy of the phenotypic data [46];

• Low throughput: Traditional phenotyping methods generally have a low throughput,
meaning that they can only phenotype a limited number of plants within a given time-
frame. This is a significant constraint in modern horticultural research and breeding
programs where large plant populations often need to be phenotyped [6,17];

• Destructive nature: Some traditional phenotyping methods, such as destructive sam-
pling, prevent the further assessment of the same plant and are therefore not suitable
for longitudinal studies where the same plant needs to be assessed at different time
points [4];

• Inability to capture subcellular processes: Traditional methods generally focus on
observable traits and are unable to capture subcellular processes and interactions that
significantly contribute to the overall plant phenotype [4,46];

• Environmental variability: Greenhouse and field trials are subject to environmental
variability, which can introduce a significant amount of noise into the phenotypic data
and complicate the interpretation of the results [43,47].

As such, there is an increasing recognition within the horticultural community of
the need to overcome these limitations through the application of more advanced and
high-throughput plant phenotyping techniques. These techniques, combined with the
power of multi-omics and AI, have the potential to revolutionize our understanding
of plant phenotypes and facilitate the development of more resilient and productive
crop varieties.

2.3. Advancements and Their Potential

The past decade has witnessed a surge in innovative plant phenotyping techniques that
promise to address the limitations of traditional methods. These advancements leverage
cutting-edge technologies to enable more efficient, precise, and high-throughput phenotyping.
Here, we outline some of these techniques and their potential impact on horticultural research:

• High-throughput phenotyping platforms: High-throughput phenotyping (HTP) plat-
forms, both in the greenhouse and field, employ automated systems to non-invasively
measure multiple plant traits simultaneously. These platforms utilize a combination
of imaging technologies, sensor-based measurements, and robotics to phenotype large
plant populations in a relatively short time. HTP platforms significantly reduce manual
labor and improve the objectivity and consistency of phenotypic measurements [48,49].

• Imaging technologies: Innovations in imaging technologies have revolutionized plant
phenotyping. These technologies provide non-invasive, objective, and high-resolution
measurements of a wide range of plant traits. Techniques such as RGB imaging,
hyperspectral imaging, thermal imaging, 3D imaging, and fluorescence imaging can
capture various aspects of plant physiology, morphology, and health. For example,
RGB imaging can be used to assess plant color and size, while hyperspectral imaging
can provide insights into plant nutrient status and disease resistance [50,51].

• Sensor-based measurements: The advent of various sensor technologies has facilitated
the capture of precise and continuous phenotypic data. These include sensors for
measuring soil moisture, leaf temperature, light intensity, and plant water status,
among others. Sensor-based measurements provide real-time insights into plant
responses to environmental changes, allowing for more nuanced understanding of
plant–environment interactions [52,53].

• Drones and remote sensing: Drones equipped with advanced imaging systems and
sensors provide a powerful tool for large-scale field phenotyping. They can capture
high-resolution, multi-dimensional images of entire fields, enabling the assessment
of spatial variability in plant traits across large areas. Similarly, remote sensing tech-
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nologies allow for large-scale monitoring of crop health, yield, and environmental
conditions [54,55].

• Integration of multi-omics and AI: The integration of multi-omics approaches with
advanced phenotyping techniques can provide a holistic view of the plant system,
uncovering the complex interactions and regulatory mechanisms that underlie observ-
able plant traits. Moreover, AI and machine learning techniques can be leveraged to
analyze the large and complex datasets generated by these methods, revealing hidden
patterns and predictive models of plant phenotypes [56–58]. These advancements
have the potential to revolutionize plant phenotyping, breaking the existing bottleneck
and paving the way for more insightful and predictive horticultural research. Through
these advancements, we can expect to see significant strides in our understanding of
plant biology and the development of more productive and resilient crop varieties.

3. Introduction to Multi-Omics
3.1. Overview of Genomics, Transcriptomics, Proteomics, and Metabolomics

The ‘omics’ disciplines represent a comprehensive approach to studying various
biological systems in a holistic and integrative manner. These disciplines, when combined
under the umbrella of ‘multi-omics’, allow us to understand the complex interplay between
different layers of biological information. Here, we provide an overview of the key omics
disciplines: genomics, transcriptomics, proteomics, and metabolomics (Table 2).

Genomics refers to the study of an organism’s entire genome or the complete set of
DNA, including all its genes. It involves understanding the structure, function, evolution,
and mapping of genomes. Genomics allows researchers to study complex genetic traits
and understand how multiple genes can influence these traits. In the context of plant
phenotyping, genomics can provide insights into the genetic determinants of various
plant traits and aid in the development of marker-assisted selection strategies [59,60].
Whole-genome sequencing (WGS) provides an in-depth, comprehensive view of the plant
genome, and can help discover novel genes and regulatory elements that were previously
uncharacterized. Genotyping-by-sequencing, on the other hand, is a cost-effective method
for identifying single nucleotide polymorphisms (SNPs) and small insertions and deletions
(INDELs) [61–63]. This method is particularly valuable for genetic mapping, marker-
assisted breeding, and population genetic studies. SNPs and other genetic variations are
the basis of genetic diversity and can influence various traits of interest in horticulture,
such as fruit size, color, flavor, and resistance to diseases or pests. For example, an SNP
in a particular gene may cause a change in a protein’s function, leading to a change in a
plant’s phenotype [64–66]. Overall, genomics, powered by NGS technologies, has opened
up vast opportunities for understanding the complex genetic architecture of plants and
accelerating genetic improvement in horticulture [67–69].

Transcriptomics (RNA-seq) involves the study of the transcriptome, the complete set
of RNA transcripts produced by the genome under specific circumstances or in a specific
cell. Transcriptomics provides insights into gene expression patterns, allowing researchers
to understand which genes are turned ‘on’ or ‘off’ during different developmental stages
or under different environmental conditions. This information can reveal how genetic
information is translated into functional outcomes, and it can also help identify genes
that play a critical role in specific plant traits [32,60,70]. For example, in horticultural
research, RNA-seq could be used to understand the transcriptomic changes that occur
during fruit ripening or in response to disease [71–73]. The high-resolution data generated
by transcriptomics not only provides a snapshot of gene activity at a specific moment, but
can also be used to understand the dynamic nature of gene expression. Such understanding
can lead to the identification of key molecular mechanisms and regulatory networks in
plants, which can significantly influence horticultural practices and crop improvement
strategies. Overall, transcriptomics serves as an essential bridge between the genome and
the phenotype, contributing significantly to the elucidation of the functional elements of
the genome and their roles in horticulture [74–76].
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Proteomics studies the entire set of proteins expressed by a genome, which includes
their interactions, modifications, localization, and functions. By studying the structures,
functions, and interactions of proteins, proteomics can provide valuable insights into the
cellular mechanisms underlying various plant traits. Proteomic analyses can also reveal
post-translational modifications, protein–protein interactions, and the impact of environ-
mental factors on protein function [32,34]. This ‘omics’ approach complements genomics
and transcriptomics, providing a more direct link to cellular function and phenotype since
proteins are the primary effectors of cellular processes. In horticulture, proteomics can be
used to identify key proteins involved in essential biological processes such as photosyn-
thesis, respiration, signaling pathways, and stress responses. For instance, a comparative
proteomic analysis between disease-resistant and susceptible plant varieties could reveal
proteins that contribute to disease resistance. Furthermore, protein–protein interaction
studies can shed light on the complex protein networks that regulate plant development
and responses to environmental cues. For example, understanding the protein interac-
tions involved in the fruit ripening process could help in the development of strategies to
enhance fruit quality and shelf life [77–79].

Metabolomics involves the systematic study of the unique chemical fingerprints that
specific cellular processes leave behind, i.e., the study of their small-molecule metabolite
profiles. Metabolomics can provide information about the physiological status of a plant
and its response to environmental conditions. By comparing the metabolomes of different
plants or the same plant under different conditions, researchers can identify changes in
metabolic pathways that may influence specific plant traits [32,80,81].

Table 2. Overview of multi-omics techniques.

Type of ‘Omics’ Definition Common Methods Used Applications in Horticulture

Genomics
The study of the complete set of
genes (the genome) in a species
and their functions [63].

Whole-genome sequencing
(WGS), genotyping by
sequencing (GBS) [68].

Pangenome analysis, plant
breeding, genetic diversity
analysis, disease resistance
research [69].

Transcriptomics

The study of the complete set of
RNA transcripts produced by the
genome under specific
circumstances [70].

RNA sequencing (RNA-seq),
single-cell RNA sequencing
(scRNA-seq), microarray
analysis [71].

Understanding plant response to
stress, gene expression studies,
identification of key regulatory
genes [72].

Proteomics
The study of the complete set of
proteins as expressions of genes
and their functions [73].

Two-dimensional gel
electrophoresis, mass
spectrometry [74].

Studying protein interaction
networks, protein expression
analysis, discovering disease
resistance proteins [75].

Metabolomics
The study of the complete set of
small-molecule chemicals found
within a biological sample [76].

Gas chromatography–mass
spectrometry (GC–MS), liquid
chromatography–mass
spectrometry (LC–MS) [77].

Profiling of plant-targeted and
untargeted metabolites,
understanding plant metabolic
pathways, flavor and fragrance
research [72].

Together, these omics disciplines provide a comprehensive view of the biological
system, from the genetic blueprint (genome) to its functional molecules (transcriptome,
proteome, and metabolome). The integration of these layers using a multi-omics approach
can reveal the complex networks and interactions that shape the observable characteris-
tics of a plant, thus providing a more holistic understanding of plant phenotypes at the
molecular level. Furthermore, it can help in identifying the molecular markers associ-
ated with desirable traits, which can be used for plant breeding and genetic improvement
in horticulture.
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3.2. Significance of Integrating Multi-Omics Data in Horticulture

The integration of multi-omics data is a powerful approach that can enhance our un-
derstanding of plant biology and significantly accelerate progress in horticultural research
and breeding programs. Here, we outline the significance of integrating multi-omics data
in horticulture:

• Comprehensive view of biological systems: A primary advantage of multi-omics inte-
gration is the comprehensive and holistic perspective it provides of biological systems.
By combining genomics, transcriptomics, proteomics, and metabolomics, researchers
can explore multiple layers of biological information simultaneously. This approach
can reveal how genetic variants influence gene expression, protein production, and
metabolite levels, and consequently, observable plant traits [82–84].

• Uncovers complex interactions and regulatory mechanisms: Integration of multi-omics
data can uncover the complex interactions and regulatory mechanisms that underlie
plant phenotypes. For instance, by correlating genomic data with transcriptomic,
proteomic, or metabolomic data, researchers can identify how changes in the DNA
sequence impact gene expression, protein production, and metabolite levels. This in-
formation can illuminate the mechanisms through which genetic variations contribute
to observable traits [84–86].

• Enhances predictive power: The integration of multi-omics data can enhance the
predictive power of models used to forecast plant traits. By incorporating data from
multiple omics layers, these models can account for the interplay between different
biological processes, leading to more accurate predictions [85,87].

• Facilitates precision breeding: Multi-omics integration can facilitate precision breeding
by identifying molecular markers associated with desirable plant traits across multiple
biological layers. This allows breeders to select for these traits with greater precision,
leading to the development of improved plant varieties [88,89].

• Improves understanding of plant–environment interactions: Through the integration
of multi-omics data, researchers can gain a deeper understanding of how plants
interact with their environment. This can reveal how various environmental factors
influence gene expression, protein production, and metabolic pathways, thereby
affecting plant growth, development, and response to stress [90,91].

• Aids in disease diagnosis and management: By providing a comprehensive view of
plant biology, multi-omics integration can aid in the diagnosis and management of
plant diseases. For example, it can help identify molecular markers associated with
disease resistance, guide the development of disease-resistant plant varieties, and
inform disease management strategies [78,92].

3.3. Exploring Specific Molecular Pathways in Horticulture

The application of multi-omics and AI technologies in horticulture enables in-depth
exploration and understanding of complex molecular pathways integral to plant growth,
disease resistance, and stress responses.

3.3.1. Plant Growth and Development

Plant growth and development are orchestrated by a complex network of genes and
their interactions. Through multi-omics techniques, we can gain a deeper understanding of
these molecular mechanisms and the key players involved:

• Genomic insights: Genomics offers a comprehensive view of a plant’s genetic makeup,
shedding light on crucial genes involved in growth and development. For instance,
genes in the auxin signaling pathway, a critical regulator of plant cell elongation and or-
gan shape, can be identified and their sequences analyzed. Genomic variations such as
single nucleotide polymorphisms (SNPs) or insertions and deletions (INDELs) within
these genes can be linked to phenotypic variations, contributing to our understanding
of plant morphology and development [93–95].
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• Transcriptomic profiling: Transcriptomics takes this a step further by studying the
expression patterns of these genes. It can provide insights into when and where
specific genes are turned on or off during a plant’s life cycle, adding another layer
of complexity to our understanding of plant development. For example, RNA-seq
technology can be used to monitor gene expression changes in the auxin pathway
throughout different developmental stages or in response to external stimuli [96–98].

• Metabolomic analysis: Metabolomics complements these genetic and transcriptional
studies by investigating the metabolic changes that accompany plant growth and
development. It can identify and quantify the multitude of metabolites in a plant,
revealing the biochemical pathways that are active at various stages of development.
For instance, metabolomic studies can show how the auxin hormone and other related
metabolites fluctuate during plant development, providing more tangible measures of
plant physiological changes [99–101].

• Role of AI and ML: The integration and analysis of this high-dimensional multi-omics
data can be challenging. This is where AI and ML come into play. Advanced AI
and ML techniques can be used to recognize patterns within this complex data, fa-
cilitating the prediction of gene function or plant phenotypic traits. For instance, AI
algorithms could predict how changes in the expression of genes in the auxin path-
way could impact plant growth or morphology, which could then be experimentally
validated [102–104].

3.3.2. Disease Resistance Pathways

Plants have evolved a variety of disease resistance pathways to protect themselves
against a diverse range of pathogens. These pathways are complex and involve many
different genes, proteins, and metabolites. Multi-omics approaches provide an invaluable
toolset for understanding these processes on a molecular level:

• Genomic studies: One of the key components in disease resistance pathways is re-
sistance (R) genes. Genomics allows us to analyze genetic variations, such as SNPs
and INDELs, within these R genes, which can provide information about a plant’s
potential to resist specific diseases [105–107];

• Transcriptomic analysis: To understand when and how R genes function in response
to pathogen attacks, transcriptomics can be employed. For example, RNA-seq analysis
can be used to monitor R gene expression levels upon exposure to different pathogens.
This allows us to observe the activation of the disease resistance pathways and to
identify the pathogens against which these pathways are effective [108–110];

• Proteomic insights: Proteomics can help in understanding the post-transcriptional
and post-translational modifications that R proteins undergo during pathogen attacks.
These modifications can influence the function and activity of R proteins. By identify-
ing the modified proteins and their modifications, proteomics can provide insights
into the mechanisms by which R proteins confer disease resistance [111–113];

• Metabolomic studies: Plants respond to pathogen attacks by producing various
metabolites that help combat the invaders. Metabolomics can identify and quantify
these defensive metabolites, such as phytoalexins, which are synthesized in response to
microbial infection. Metabolomic profiles can provide a snapshot of a plant’s metabolic
state under pathogen attack, contributing to our understanding of the biochemical
aspects of plant defense mechanisms [114–116];

• AI/ML in disease resistance studies: Each ‘omics’ layer adds a piece to the puzzle of
plant disease resistance. However, integrating and interpreting this vast and complex
multi-omics data can be challenging. AI/ML models offer powerful tools to decipher
these complexities, enabling the prediction of disease resistance based on multi-omics
profiles. For instance, ML algorithms can be trained on genomic, transcriptomic, pro-
teomic, and metabolomic data to predict a plant’s resistance to a specific disease. These
predictions can be tested and validated experimentally, allowing for the continuous
refinement and improvement of the models [117–119].
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3.3.3. Stress Response Pathways

Plants, as sessile organisms, are exposed to a myriad of environmental stresses, includ-
ing drought, salinity, and extreme temperatures. Understanding how plants respond
to these stresses at a molecular level is crucial for improving crop resilience. Multi-
omics approaches provide a comprehensive toolset for unraveling these complex stress
response pathways:

• Genomic studies: Genomics offers the ability to identify genes implicated in stress
responses. For instance, several drought, salinity, and temperature-responsive genes
have been identified in various plant species. These genes often include those encoding
transcription factors, which play a pivotal role in regulating the expression of other
stress-responsive genes. Analyzing the sequence and structural variations within
these genes can help predict a plant’s potential to withstand different environmental
stresses [120–122];

• Transcriptomic analysis: Transcriptomic studies can track the expression of stress-
responsive genes during exposure to different stress conditions. For instance, RNA-seq
analysis can reveal up-regulation or down-regulation of specific genes in response
to drought, salinity, or temperature stress. This provides a dynamic view of how a
plant’s transcriptome changes in response to environmental stressors [123–125];

• Proteomic insights: Proteomics complements these genomic and transcriptomic stud-
ies by providing insights into stress-responsive proteins. For instance, certain proteins
might be upregulated during stress conditions to protect plant cells from damage.
Proteomics can identify these proteins and monitor their abundance during different
stress conditions, thereby providing insights into a plant’s proteomic response to
stress [68,126,127];

• Metabolomic studies: Metabolomics adds another layer of understanding by inves-
tigating the metabolic changes under stress conditions. Certain metabolites may
accumulate in response to stress as part of a plant’s defense mechanism. These could
include osmolytes for drought and salinity stress or heat-shock proteins for thermal
stress. Metabolomic profiling can reveal these stress-induced metabolic changes,
providing a holistic view of a plant’s biochemical response to stress [101,128,129];

• Role of AI/ML in studying stress responses: The integration of multi-omics data
gives a comprehensive picture of a plant’s response to stress. However, this data is
high-dimensional and complex, presenting a challenge for traditional data analysis
methods. AI/ML techniques offer robust tools for managing this complexity. They
can identify key molecular players in stress responses by detecting patterns across the
multi-omics datasets. Furthermore, AI/ML models can be trained to predict a plant’s
stress response based on its multi-omics profile [119,130,131];

Through the integration of multi-omics data and AI/ML analyses, we can achieve
a deeper understanding of plant stress responses. This knowledge is vital for breeding
more resilient crops and for developing more effective strategies for stress management
in horticulture.

4. Introduction to Artificial Intelligence and Machine Learning
4.1. Overview of AI and Machine Learning

Artificial intelligence (AI) and machine learning (ML) are interdisciplinary fields of
computer science that have seen tremendous growth and interest in recent years, offering
a myriad of applications across various domains, including horticulture. AI refers to the
simulation of human intelligence processes by machines, especially computer systems.
These processes include learning (the acquisition of information and rules for using the
information), reasoning (using the rules to reach approximate or definite conclusions), and
self-correction. AI is a broad field that encompasses many subdomains, one of which is
machine learning [132,133]. AI systems can be categorized into two types:
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• Narrow AI, which is designed to perform a narrow task (e.g., facial recognition or
internet searches) and is what we currently have, and

• General AI, which refers to systems that possess the ability to perform any intellectual
task that a human being can do; this are still a largely theoretical concept [134,135].

Machine learning is a subfield of AI that focuses on the development of algorithms
and statistical models that enable computers to perform tasks without explicit instructions,
but rather through patterns and inference. In other words, it’s a type of AI that allows a
system to learn from data [136]. ML techniques differ from those of classical programming,
which take input data and create a code to produce output data, and instead provide both
inputs and outputs to generate algorithms (Figure 2). There are four main types of machine
learning (Figure 3):

• Supervised learning: Involves learning a function that maps an input to an output
based on example input–output pairs. It infers a function from labeled training data
consisting of a set of training examples [137];

• Unsupervised learning: A type of machine learning that looks for previously unde-
tected patterns in a data set with no pre-existing labels and with a minimum of human
supervision [138];

• Semi-supervised learning: Combines supervised and unsupervised learning techniques;
• Reinforcement learning: An area of machine learning concerned with how software

agents ought to take actions in an environment in order to maximize some notion of
cumulative reward [139].
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AI and ML have been increasingly used in horticultural research due to their ability
to deal with complex data, extract patterns, and make predictions. They have found
applications in a variety of areas, including plant phenotyping, disease detection, yield
prediction, and stress identification, among others. In combination with multi-omics data,
AI and machine learning can offer profound insights into plant biology, thus revolutionizing
horticultural research and practice [28,140].
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4.2. Importance of AI and Machine Learning in Data Analysis

The advent of AI and machine learning (ML) has significantly transformed the methods
of analyzing data, particularly in the context of big data that is characteristic of many fields,
including horticulture. Here, we outline the importance of AI and ML in data analysis:

• Handling high-dimensional data: One of the major challenges in modern horticulture
research is dealing with high-dimensional data, often generated by high-throughput
phenotyping and multi-omics technologies. AI and ML algorithms are particularly
well-suited to handle such data, as they can process vast amounts of information
efficiently, uncovering complex patterns and relationships that would be otherwise
difficult to discern [141,142].

• Pattern recognition and feature extraction: ML algorithms excel at recognizing patterns
within data. This is especially useful when dealing with complex biological data, where
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patterns may not be immediately obvious. ML can also be used for feature extraction,
identifying the most informative variables within a dataset, which can greatly simplify
data analysis and improve the accuracy of predictive models [98–100].

• Predictive modeling: AI and ML are powerful tools for predictive modeling. By learn-
ing from existing data, these algorithms can make accurate predictions about unseen
data. This is especially important in horticulture, where predictive models can be used
for various purposes, such as forecasting yield, predicting disease, or estimating the
impact of environmental changes on plant growth and development [143–147].

• Dealing with noisy data: Real-world data often contains noise, which can complicate
analysis and lead to erroneous conclusions. ML algorithms can effectively handle
noisy data, extracting meaningful patterns while minimizing the impact of noise. This
is particularly important in horticulture research, where data collected from field
experiments can be influenced by a range of uncontrollable factors [148,149].

• Automating data analysis: AI and ML can automate many aspects of data analysis,
making the process more efficient and less prone to human error. This can be especially
beneficial when dealing with large datasets, where manual analysis would be time-
consuming and impractical [150].

• Uncovering complex interactions: Biological data is often characterized by complex
interactions and non-linear relationships. AI and ML algorithms, especially those
based on deep learning, can model these complex interactions, providing a more
accurate and holistic representation of biological systems [151,152].

• Integrating diverse data types: AI and ML provide a framework for integrating
diverse types of data, such as genomic, transcriptomic, proteomic, metabolomic, and
phenotypic data. This can facilitate a more comprehensive analysis and enable the
extraction of more meaningful insights from the data [153,154].

The above techniques play a crucial role in modern data analysis, providing the tools
necessary to extract meaningful insights from complex and high-dimensional data. As
such, they have become an integral part of horticultural research, offering the potential to
accelerate discoveries and improve our understanding of plant biology.

4.3. Potential of AI and Machine Learning in Horticulture Research

Artificial intelligence (AI) and machine learning (ML) have shown immense poten-
tial to transform horticulture research (Table 3). Here, we discuss some of the potential
applications and implications of AI and ML in this field:

• High-throughput phenotyping: AI and ML are particularly promising for high-
throughput phenotyping, helping to accurately analyze large volumes of data collected
through imaging and sensor-based technologies. Automated image analysis, enabled
by ML, can identify and quantify plant traits from these images, facilitating more
precise and objective phenotypic measurements [155,156];

• Disease detection and diagnosis: AI and ML can aid in early disease detection and
diagnosis by identifying patterns and anomalies in plant images or sensor data. This
could help in monitoring plant health, predicting disease, and informing targeted
interventions, thus minimizing losses due to diseases [157,158];

• Stress identification and quantification: ML models can help identify and quantify
various biotic and abiotic stress factors, such as pests, diseases, drought, or nutrient
deficiency, based on plant images, sensor data, or multi-omics data. This can contribute
to a better understanding of plant responses to stress and the development of more
resilient plant varieties [159,160];

• Yield prediction: AI and ML models can predict crop yields based on variables such
as weather data, soil properties, and plant phenotypic data. Accurate yield prediction
can assist in strategic decision-making and planning for growers and agricultural
stakeholders [161,162];

• Genomic selection and breeding: AI and ML can assist in genomic selection and
breeding by identifying genomic markers associated with desirable traits. This can
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accelerate the breeding process, enabling the development of improved plant varieties
in shorter time frames [163,164];

• Integration with multi-omics data: AI and ML can be used to integrate and analyze
multi-omics data, uncovering complex interactions and regulatory mechanisms that
underlie plant traits. This can lead to a more comprehensive understanding of plant
biology, informing both basic research and practical applications [57,165];

• Environmental monitoring and crop management: ML models can analyze data from
various environmental sensors to monitor crop environments in real time and inform
precision agriculture practices. This can help optimize resource use and maximize
crop productivity and quality [19,20,166].

Table 3. AI and ML techniques used in horticulture.

AI/ML Technique Description Examples of Use in Horticulture

Supervised Learning

This is a type of machine learning where
an AI is trained using labeled data. The
AI then uses this training to predict the
labels of new, unseen data [94].

Plant disease identification from images [122],
yield prediction [116], fruit size and quality
prediction [123], and weeding [124].
Estimation of microclimatic parameters in
greenhouse cultivation [125].

Unsupervised Learning

This involves training an AI using data
that has not been labeled. The AI
identifies patterns and structures in the
data itself [94].

Clustering of plant genotypes or
phenotypes [126], identifying patterns in
multi-omics data [127].

Reinforcement Learning

This is a type of machine learning where
an AI learns to make decisions by
performing actions and receiving
feedback in the form of rewards or
punishments [95].

Optimization of microclimatic conditions, such
as lighting and irrigation and regulating the
level of humidity in greenhouse
crops [128,129].

Deep Learning

This is a subset of machine learning that
uses artificial neural networks with many
layers (hence the term “deep”). Deep
learning can model complex, non-linear
relationships [130].

Plant stress detection from hyperspectral
imaging data [131], automated plant
phenotyping from image data, disease
prediction from multi-omics data [26].

Convolutional Neural Networks
(CNNs)

These are deep learning models that are
especially good at processing grid-like
data, such as images [132].

Leaf disease detection from images, plant
species identification from leaf images [133].
Detection of surface defects and early stages of
fruit pathogen infection based on images [134].

In conclusion, AI and ML hold significant potential to revolutionize horticulture
research, contributing to advancements in plant phenotyping, disease diagnosis, stress
identification, yield prediction, genomic selection, and precision agriculture. As these
technologies continue to evolve, they are likely to provide increasingly powerful tools for
addressing the complex challenges of modern horticulture.

4.4. A Machine Learning-Based Approach Using Multi-Omics Data: Preliminary Case Study

Multi-omics datasets are large and complex datasets which are generated from high-
throughput technologies. Many integrated approaches are being sought out to aid in their
analysis and visualization. Machine learning has been extensively used to analyze and
integrate different types of data due to the increased accessibility of high computing power.
These integrative approaches are continuously evolving to provide accurate insights from
the data that is received through experimentation on various biological systems. This
chapter describes the steps required for the ML–multi-omics integration methods that are
applied to biological datasets for their analysis. We present the recommended algorithms
used for integration and data analysis for supervised or unsupervised ML models.

If the data can be concatenated at an early stage:
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• Unsupervised ML: Check if the multi-omics dataset is overlapping. If there is a partial
overlap, MOFA2 (multi-omics factor analysis) [167] can be used. If the overlap is
complete, check if there is a large dataset after integration. If yes, moCluster [168]
and iClusterBayes [169] can be used; if no, iCluster [170] can be used. Next, check
if the dataset has different distribution; if yes, JIVE (Joint and Individual Variation
Explained) [171] and the JBF (joint Bayes factor) [172] can be used; if the dataset
has similar distribution, NMF (non-negative matrix factorization) random forests
(sklearn.decomposition.NMF) can be used.

• Supervised ML: Check if a large dataset is produced after integration. If yes, ei-
ther ensemble methods such as the LASSO (Least Absolute Shrinkage and Selection
Operator) [173] can be used. If we obtain a reduced dataset, it can be further solved
using tools such as decision trees, the Naive Bayes model, SVMs (support vector ma-
chines), KNNs (k-nearest machines) [174], K-Star [175], boosted regression trees [176],
SVR (support vector regression), ANNs (artificial neural networks), and DNNs (deep
neural networks).

If the data can be concatenated at a later stage:

• Unsupervised ML: Tools such as FCA (formal concept analysis) consensus clustering [177],
BCC (Bayesian consensus clustering) [178], and SNF (similarity network fusion) [179] can
be used;

• Supervised ML: Tools such as hierarchical classifiers [180], ensemble-based classifiers
(XGBoost and KNN), and autoencoder-based classifiers can be used.

If the dataset can be integrated as a transformation:

• Unsupervised: Check if the multi-omics datasets are overlapping. If the overlap is
partial, NEMO (neighborhood-based multi-omics clustering) [181] can be used. If
overlap is complete, Meta-SVM [182] can be used.

• Supervised: If it is a kernel-based transformation, tools such as SDP-SVM (semi-
definite programming) [183], the RVM (Relevance Vector Machine) [184], and the
AdaBoost RVM can be used. If it is a graph-based transformation, tools such as SSL
(semi-supervised learning) [185], graph sharpening [186], and Bayesian networks, can
be used.

Most ML workflows can be implemented on a standard Unix workstation in standard
configuration. It can also be equipped with a graphics processing unit (GPU) to train ML
models. The exact specifications of the machine would vary depending on the size of
the dataset and model architecture. In addition to a CUDA-capable GPU and its suitable
drivers, CUDA (https://developer.nvidia.com/cuda-toolkit; accessed on 14 September
2023) is an underlying parallel computing platform, which must be separately installed
for training ML models. Additionally, multiple ML frameworks are available with active
development and extensive community support, and are implemented in the Python
programming language:

• Scikit-Learn: It is designed to work with Python’s NumPy and SciPy numerical
and scientific libraries, and it includes support vector machines, random forests,
gradient boosting, k-means, and DBSCAN, among other classification, regression, and
clustering algorithms. To include Scikit-learn, import sklearn:

sklearn.cluster # All inbuilt clustering algorithms and functions are here
sklearn.datasets # All inbuilt datasets are here
sklearn.linear_model # All inbuilt linear models and functions are here
sklearn.naive_bayes # To use the Naive Bayes model
sklearn.neighbors # To use the nearest neighbors model
sklearn.neural_network # To use neural network models
sklearn.svm # To use the support vector machine model
sklearn.tree # To use the decision tree model
sklearn.preprocessing # To use preprocessing and normalization techniques
sklearn.ensemble # To use ensemble methods

https://developer.nvidia.com/cuda-toolkit
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• TensorFlow. It is designed to operate with tf.Tensor objects, which are multidimen-
sional arrays or tensors, and makes ML faster and easier by utilizing Python for
numerical calculation and data flow. To include TensorFlow, import tensorflow as tf:

tf.transpose(data) # Transpose given data elements
tf.concat([data_1, data_2, data_3], axis = value) # Concatenate data elements
tf.Variable([0.0, 0.0, 0.0]) # To store models
tf.keras # To bring the Keras functionalities
tf.examples.tutorials.mnist.input_data # To use the MNIST dataset

• Pytorch: It is production ready, with cloud support, a robust ecosystem, and dispersed
training. To include Pytorch, import torch:

torch.Tensor([value]) # Define a tensor
torch.randn(value_1, value_2. . .) # Define a matrix with random values
torch.autograd # For automatic differentiation
torch.optim # Implement optimization algorithms
torch.nn # Neural network layer (sequential, linear, etc.)

It is generally recommended that all the required packages be installed in a virtual
environment. This can be easily managed by any environment manager, such as Conda
(https://docs.conda.io/en/latest/; accessed on 14 September 2023).

5. Current Applications of Multi-Omics and AI in Plant Phenotyping
5.1. Detailed Review of Existing Studies Employing These Techniques

In recent years, the integration of multi-omics data and AI/ML has gained momentum
in plant phenotyping. Many studies have successfully employed these techniques to un-
derstand plant biology more comprehensively, enhance predictive modeling, and improve
breeding strategies. Below, we review some of these key studies:

• Genomic selection and phenotypic prediction: Several studies have employed AI
and ML techniques alongside genomics data for genomic selection and prediction
of complex phenotypic traits. Montesinos-Lopez et al. (2018) [187] developed a
deep learning algorithm for genomic-enabled prediction of complex traits in maize,
wheat, and other crops. Their method significantly outperformed traditional genomic
selection methods, demonstrating the power of ML in this context.

• High-throughput phenotyping: High-throughput phenotyping platforms generate vast
amounts of data that can be analyzed using ML algorithms. Pound et al. (2017) [188]
developed an ML-based root phenotyping system called “Deep Root”. This system
uses convolutional neural networks (CNNs) to analyze images from X-ray computed
tomography scans of plant roots, accurately quantifying root architecture traits.

• Disease detection: AI and ML, coupled with image analysis, have shown great poten-
tial in early detection and diagnosis of plant diseases. Barbedo (2018) [189] successfully
employed deep learning models to identify plant diseases based on leaf images. This
approach allows for the early detection of diseases, facilitating rapid and targeted
responses to mitigate damage.

• Integration of multi-omics data: The integration of multi-omics data using AI and
ML is an emerging area of research. Argueso et al. (2019) [190] utilized AI and ML to
integrate genomic, transcriptomic, and epigenomic data in Arabidopsis thaliana. Their
integrative approach revealed complex relationships between these different types of
data and provided insights into the mechanisms underlying plant stress responses.

• Stress identification: AI and ML have also been used for the identification and quantifi-
cation of plant stress. Singh et al. (2018) [191] applied ML algorithms to hyperspectral
images of plants for the identification and classification of various biotic and abiotic
stress conditions.

These studies collectively demonstrate the potential of integrating multi-omics data
and AI in plant phenotyping. As our understanding of these tools deepens and technol-
ogy continues to advance, we anticipate that their application will become increasingly

https://docs.conda.io/en/latest/
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commonplace and powerful, driving forward our understanding of plant biology and
improving horticultural practices.

5.2. Success Stories and Limitations Encountered

While the integration of multi-omics data and AI/ML techniques in plant phenotyping
has shown promising results, it has also encountered several limitations and challenges. In
this section, we will present some of the success stories that have marked this field, such as:

• Predicting yield and quality traits: A significant success story involves using AI and
ML for predicting yield and quality traits in crops. Machine learning models trained
on genomic and phenotypic data have been successful in predicting complex traits in
several crops, enhancing selective breeding programs. For example, a study by Zhou
et al. (2021) [192] used AI models to accurately predict rice yield and quality traits,
enabling faster and more precise selection in rice breeding programs;

• Disease identification and prediction: AI and ML have been successfully used for
early disease detection and prediction in plants. Ferentinos (2018) [193] developed
a deep learning model that accurately identified and classified plant diseases based
on leaf images. This model facilitated early intervention, minimizing crop loss due
to diseases.

Despite these successes, several limitations and challenges have been encountered in
the integration of multi-omics data and AI/ML in plant phenotyping, such as:

• Data quantity and quality: A major challenge in the application of AI/ML techniques
in plant phenotyping is the requirement for large quantities of high-quality data.
The predictive performance of AI and ML models generally improves with larger
training datasets. However, collecting large quantities of high-quality phenotypic and
multi-omics data can be time-consuming and costly [194,195];

• Data integration: Integrating data from different omics layers is a complex task due
to the differences in data types, scales, and structures. Furthermore, the biological
interpretation of integrated multi-omics data can be challenging due to the complex
and often non-linear relationships between different biological layers [166,196];

• Interpretability model: While AI and ML models can make accurate predictions,
they are often seen as “black boxes” due to their complexity, making it difficult to
interpret their predictions. This lack of interpretability can be a significant limitation,
particularly in a scientific context where understanding the underlying biological
mechanisms is crucial [197,198];

• Overfitting: AI and ML models, particularly more complex models, such as deep
learning models, can be prone to overfitting, where they perform well on the training
data but poorly on unseen data. This can limit the generalizability and predictive
accuracy of these models [199,200].

While there have been notable success stories in the application of multi-omics data
and AI/ML in plant phenotyping, several limitations and challenges need to be addressed
to fully realize their potential. Continued research and development in these areas, along
with the refinement of data collection and analysis techniques, are crucial for the future
advancement of this field.

6. Integrated Multi-Omics and AI Framework
6.1. Description of the Proposed Framework

The proposed framework aims to integrate multi-omics data and artificial intelligence
(AI)/machine learning (ML) techniques in order to gain deeper insights into plant pheno-
types and to enhance predictive modeling capabilities in horticulture research. Here, we
describe the key components and steps involved in this integrated framework:

1. Data collection: The framework begins with comprehensive data collection, en-
compassing multiple ‘omics’ layers—genomics, transcriptomics, proteomics, and
metabolomics. Simultaneously, phenotypic data is collected using high-throughput
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phenotyping techniques. This may involve, for example, imaging technologies, envi-
ronmental sensors, or manual trait measurements [201,202];

2. Data pre-processing and normalization: The collected data is pre-processed and nor-
malized to ensure comparability and to minimize technical biases. This step may
involve quality control, normalization, feature extraction, and other data transforma-
tion procedures [48,203];

3. Data integration: After pre-processing, data from different ‘omics’ layers is integrated.
This integration can be done at various levels, for example, at the level of features
(genes, transcripts, proteins, metabolites), samples, or phenotypes. Various data inte-
gration techniques, such as multivariate statistical methods, data fusion techniques,
or network-based methods, can be used depending on the specific research question
and data characteristics [201,204,205];

4. Machine learning modeling: Once the data is integrated, ML algorithms are employed
to build predictive models or to extract meaningful patterns from the data. This may
involve supervised learning methods for prediction tasks, unsupervised learning
methods for data exploration, or reinforcement learning methods for decision-making
tasks [201,206,207];

5. Model evaluation and interpretation: After the ML models are built, they are evaluated
using suitable metrics and validation strategies. The interpretation of model results
is also a crucial step, allowing for biological insights to be derived from the model’s
predictions or patterns [208,209];

6. Application to horticulture research and practice: The final step involves applying
the insights derived from the integrated multi-omics and AI/ML framework to horti-
culture research and practice. This could involve, for example, informing breeding
strategies, enhancing disease detection and intervention methods, improving resource
management, or predicting crop yields and quality [210,211].

6.2. How AI and ML Can Help in Integrating and Analyzing of Multi-Omics Data

Artificial intelligence (AI) and machine learning (ML) technologies offer transformative
potential for the integration and analysis of multi-omics data. Below are several ways these
technologies can facilitate this process:

1. Data integration: One of the major challenges in multi-omics research is the integra-
tion of diverse types of data, ranging from genomics to metabolomics. These data
types often differ significantly in their structure, complexity, and size, making their
integration a non-trivial task. AI and ML algorithms, such as matrix factorization,
deep learning, and network-based methods, can be used to integrate these heteroge-
neous data types in a coherent way, enabling a more comprehensive view of biological
systems [212–214];

2. Feature selection and extraction: AI and ML methods can help identify the most
relevant features across different ‘omics’ layers. Techniques such as the LASSO,
ridge regression, random forests, or deep learning can be employed to perform
feature selection or extraction, helping to reduce dimensionality and to identify key
genes, proteins, metabolites, or other features that are predictive of the phenotype of
interest [215–217];

3. Pattern recognition: AI and ML excel in recognizing complex patterns in large and
high-dimensional data, a task that is common in multi-omics research. Unsuper-
vised learning methods, such as clustering, principal component analysis (PCA), or
deep learning-based methods, can be used to detect patterns, correlations, or latent
structures in multi-omics data, providing insights into the underlying biological
mechanisms [134,218,219];

4. Predictive modeling: AI and ML techniques are powerful tools for building predictive
models based on multi-omics data. Given the high-dimensional nature of multi-omics
data, these techniques can be particularly useful for this task. For example, support
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vector machines, neural networks, or gradient boosting models can be used to predict
phenotypes based on multi-omics data [146,220,221];

5. Network construction and analysis: AI and ML can also assist in the construction and
analysis of biological networks based on multi-omics data. For instance, network-
based methods can be used to infer gene regulatory networks, protein–protein in-
teraction networks, or metabolic networks. These networks can provide valuable
insights into the interactions and regulatory relationships between different biological
entities [222–224].

In conclusion, AI and ML provide valuable tools for the integration and analysis
of multi-omics data. By enabling data integration, feature selection, pattern recognition,
predictive modeling, and network analysis, these technologies can greatly enhance our
ability to understand and interpret multi-omics data, thereby contributing to advances in
horticultural research.

6.3. Expected Benefits of the Proposed Framework

The integrated multi-omics and AI/ML framework offers significant benefits and is
poised to significantly advance our proposed understanding and practices in horticultural
research. Here are some of the anticipated benefits:

1. Enhanced understanding of plant biology: The framework’s ability to incorporate
multi-omics data will allow for a more comprehensive understanding of plant biology,
spanning from genes to metabolites. This in-depth view can reveal new insights into
the complex mechanisms that govern plant growth, development, and responses to
environmental conditions [130,225];

2. Improved predictive modeling: By leveraging the power of AI and ML, the proposed
framework will enhance our capacity for predictive modeling. These advanced
algorithms can manage the complexity and high dimensionality of multi-omics data,
enabling more accurate predictions of plant traits and behaviors [226,227];

3. Accelerated breeding programs: The integration of multi-omics data and AI can
expedite plant breeding programs. By accurately predicting desirable traits, breeders
can make more informed selections earlier in the breeding cycle, thus reducing the
time and resources required for breeding new varieties [228,229];

4. Optimized resource management: By predicting plant responses to different environ-
mental conditions and management practices, the framework can guide decisions
about resource allocation. This can lead to more sustainable and efficient use of
resources such as water, fertilizers, and energy [230,231];

5. Enhanced disease diagnosis and intervention: The proposed framework can also
improve disease detection and intervention strategies. AI and ML models can be
trained to recognize early signs of disease based on multi-omics data, enabling early
and targeted interventions that minimize crop damage [232];

6. Facilitating personalized horticulture: In the long term, the proposed framework could
contribute to the development of ‘personalized horticulture’, where management
strategies are tailored to the specific genetic makeup and environmental conditions of
each plant or crop. This could lead to significant improvements in crop productivity,
quality, and sustainability [233,234].

7. Challenges and Future Perspectives
7.1. Technical and Non-Technical Challenges in Implementing the Framework

The integrated multi-omics and AI/ML framework holds significant potential for
advancing horticultural research and practice. However, its implementation also poses
several technical and non-technical challenges that must be acknowledged and addressed
(Table 4).
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Table 4. AI and ML techniques used in horticulture.

Type of Challenge Description of Challenge Potential Solutions

Technical Managing the volume and
complexity of multi-omics data [210].

Using advanced computational
infrastructure, application of
efficient data compression,
normalization, and storage
techniques [212].

Technical
Developing robust and transparent
AI/ML models for complex biological
data [214]

Application of interpretable
machine learning algorithms, use
of proper validation techniques,
collaboration between data
scientists and biologists [209].

Non-Technical
Need for multidisciplinary expertise
(biology, bioinformatics, data science)
in a single project [219]

Formation of multidisciplinary
teams, collaboration between
research institutions and
universities, training programs
for researchers [218]

Non-Technical
Ethical, legal, and social implications
of using AI and multi-omics data in
horticulture [216]

Development and enforcement of
ethical guidelines, legislation,
informed consent processes for
data use, public engagement, and
education [217].

1. Technical Challenges:

• Data acquisition and quality control: Collecting comprehensive multi-omics data
is a complex and time-consuming task that requires specialized techniques and
equipment. Ensuring the quality and consistency of this data across different
‘omics’ layers and samples is also a significant challenge [235,236];

• Data integration: Integrating data from different ‘omics’ layers can be complex
due to the differences in data types, scales, and structures. This task requires so-
phisticated methods and a deep understanding of both the data and the biological
systems being studied [237,238];

• Algorithm selection and implementation: Choosing and implementing the ap-
propriate AI and ML algorithms for a given task can be challenging, partic-
ularly given the rapid pace of advancement in these fields. The chosen al-
gorithms must be carefully validated and their assumptions and limitations
understood [239,240];

• Model interpretability: AI and ML models, particularly complex models, such
as neural networks, can be difficult to interpret. This ‘black box’ nature can be a
significant challenge in a scientific context where understanding the underlying
mechanisms is crucial [241,242].

2. Non-Technical Challenges:

• Ethical and legal considerations: The use of AI and ML in horticulture, like in
many other fields, raises several ethical and legal considerations. These include
issues related to data privacy and ownership, the transparency and fairness of
AI/ML algorithms, and the potential impacts on labor markets [243,244];

• Education and training: Implementing this framework requires a high level of
expertise in various fields, including genomics, bioinformatics, AI and ML, and
horticulture. Providing the necessary education and training can be a significant
challenge [245,246];

• Collaboration and communication: The interdisciplinary nature of this frame-
work necessitates close collaboration and effective communication between ex-
perts in different fields. Overcoming disciplinary boundaries and fostering a
collaborative culture can be a challenge [247,248].
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Future research should focus on addressing these challenges and exploring potential
solutions. By doing so, it will be possible to realize the full potential of the proposed
framework and to drive significant advancements in horticultural research and practice.

7.2. Potential Solutions to These Challenges

Addressing the challenges associated with the implementation of the proposed multi-
omics and AI/ML framework will require concerted efforts across several dimensions.
Here are some potential solutions.

1. Solutions to Technical Challenges:

• Standardization of data acquisition and quality control: Standardizing proto-
cols for data acquisition and quality control can help ensure the comparability
and consistency of multi-omics data. The development and adoption of uni-
versal standards and best practices across laboratories can be a key part of this
process [249,250];

• Development of sophisticated integration techniques: Continued research and
development in the field of data integration can help overcome the challenges
associated with integrating diverse ‘omics’ data. This includes not only statistical
methods but also computational tools that can handle the complexity and size of
multi-omics data [57,251];

• Transparent and reproducible machine learning practices: Promoting trans-
parency and reproducibility in AI and ML can help address the challenge of
algorithm selection and implementation. This involves clearly documenting the
choices made at each step of the ML process, making code and data available
for others to reproduce results, and thoroughly validating and benchmarking
algorithms [252,253];

• Explainable AI: To tackle the ‘black box’ issue, efforts should be directed towards
the development and application of explainable AI techniques. These methods
aim to make the decision-making process of AI and ML models more transparent
and interpretable [254,255].

2. Solutions to Non-Technical Challenges

• Ethical and legal guidelines: To address the ethical and legal considerations
associated with AI and ML, comprehensive guidelines and regulations should
be developed and enforced. This should involve a wide range of stakeholders,
including researchers, ethicists, legal experts, and policymakers [256,257];

• Interdisciplinary education and training: The challenge of education and training
can be addressed by promoting interdisciplinary education programs that pro-
vide a comprehensive understanding of both the biological and computational
aspects of this field. This also includes continued professional development
opportunities for researchers in this field [258,259];

• Promoting collaboration and communication: Encouraging a culture of collabora-
tion and communication can help overcome disciplinary boundaries. This can be
facilitated by interdisciplinary conferences, workshops, and research projects, as
well as tools and platforms that facilitate collaboration and data sharing [258,260].

By implementing these solutions, we can mitigate the challenges associated with the
proposed framework, paving the way for the successful integration of multi-omics and
AI/ML in horticultural research and practice.

8. Future Prospects of Integrating Multi-Omics and AI in Plant Phenotyping

The integration of multi-omics and AI in plant phenotyping promises a transformative
future for horticultural research and practice. Here are some of the exciting prospects:

1. Precision horticulture: As we advance our ability to analyze and interpret complex
multi-omics data using AI, precision horticulture becomes a promising reality. In this
scenario, every decision, from planting to harvesting, can be tailored to the specific
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genetic makeup and environmental conditions of each plant, optimizing productivity,
sustainability, and quality [55,261];

2. Predictive breeding: The combination of multi-omics and AI can vastly improve
plant breeding processes. Breeders will be able to make informed decisions based
on predictive models that take into account a comprehensive range of genetic and
phenotypic data, significantly accelerating the breeding process and enhancing the
resulting crop varieties [26,262];

3. Enhanced disease and stress response management: By integrating multi-omics and
AI, we can achieve an unprecedented understanding of plant disease and stress
responses. This could lead to the development of sophisticated early warning sys-
tems for disease and stress detection, as well as novel strategies for managing these
challenges [26,261];

4. Sustainable crop management: With the combined power of multi-omics and AI, we
can build robust models that account for the complex interactions between plants,
soils, and climates. These models can inform sustainable management practices,
leading to reductions in resource use and environmental impact [55,255];

5. Exploration of plant biodiversity: The proposed integrated framework allows for
a deeper exploration of plant biodiversity. This can enhance our understanding of
the rich variety of plant species and their adaptations, potentially uncovering new
resources for breeding and conservation efforts [33,263];

6. Universal access to horticulture research: With the development of user-friendly AI
tools and platforms for multi-omics data analysis, there’s potential for dissemination
of horticulture research. This means that advanced plant phenotyping methods could
become accessible to a broader range of researchers and practitioners, facilitating
global advancements in this field [33,264].

9. Conclusions

The traditional methods of plant phenotyping, while foundational, have their limita-
tions, particularly in their inability to capture the intricacy of plant biology. The emergence
of genomics, transcriptomics, proteomics, and metabolomics, collectively known as multi-
omics, enables a more comprehensive analysis. When coupled with the power of AI and
machine learning, we have a potential toolset that can navigate the complexity and volume
of multi-omics data effectively, providing meaningful interpretations and predictions that
can revolutionize horticultural research and applications. However, the implementation
of this integrated framework is not without challenges, both technical and non-technical.
From data acquisition and integration to the application of suitable AI algorithms and
their interpretation, there are still many technical obstacles around. In addition, ethical,
legal, and educational considerations must be taken into account. We discussed potential
solutions to these challenges, emphasizing the importance of standardization, the develop-
ment of explainable AI techniques, the creation of comprehensive guidelines for ethical
and legal considerations, interdisciplinary education, and fostering a culture of collabora-
tion and communication. Looking ahead, the prospects of this integration are inspiring,
encompassing precision horticulture, predictive breeding, improved disease and stress
response management, sustainable crop management, exploration of plant biodiversity,
and commercialization of horticulture research.
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