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Simple Summary: About 15% of people born with congenital heart disease (CHD) have a specific
genetic abnormality called a copy number variant. Most of their genetic tests, called chromosomal
microarrays (CMAs), are considered normal. However, we suspected that some very small genetic
deletions might be linked to CHD even though they were not reported in the test results. To
investigate this, we investigated genetic test data from 319 patients with CHD. Then, we focused on
genes in these small deletions that were somehow related to CHD, based on certain criteria like their
association with CHD, their expression level in fetal hearts, and the potential impact of losing these
genes. After analyzing the data, we found that these unreported small genetic deletions were slightly
more likely to involve genes known to be related to CHD and also genes that might be important
but were not recognized before. Our study suggests that “normal” genetic test data, which is readily
available, can be valuable for discovering new genetic links to CHD. Also, smaller genetic deletions
should be given more clinical attention for potential implications in CHD.

Abstract: About 15% of congenital heart disease (CHD) patients have a known pathogenic copy
number variant. The majority of their chromosomal microarray (CMA) tests are deemed normal.
Diagnostic interpretation typically ignores microdeletions smaller than 100 kb. We hypothesized
that unreported microdeletions are enriched for CHD genes. We analyzed “normal” CMAs of
1762 patients who were evaluated at a pediatric referral center, of which 319 (18%) had CHD. Us-
ing CMAs from monozygotic twins or replicates from the same individual, we established a size
threshold based on probe count for the reproducible detection of small microdeletions. Genes in
the microdeletions were sequentially filtered by their nominal association with a CHD diagnosis,
the expression level in the fetal heart, and the deleteriousness of a loss-of-function mutation. The
subsequent enrichment for CHD genes was assessed using the presence of known or potentially novel
genes implicated by a large whole-exome sequencing study of CHD. The unreported microdeletions
were modestly enriched for both known CHD genes and those of unknown significance identified
using their de novo mutation in CHD patients. Our results show that readily available “normal”
CMA data can be a fruitful resource for genetic discovery and that smaller deletions should receive
more attention in clinical evaluation.

Keywords: chromosome microarray; congenital heart disease; data mining; genetic diagnosis;
precision medicine; genetic testing; bioinformatics; functional genomics

1. Introduction

A chromosomal microarray (CMA) test can return a genetic diagnosis in a substantial
fraction of children who have a congenital malformation or neurodevelopmental disorder.
For example, the diagnostic yield was between 9 and 20% in a large cohort of non-syndromic
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and syndromic congenital heart disease (CHD) patients who were evaluated in a clinical
setting [1]. This means that most patients have normal CMA test results. While a negative
result is not diagnostic, the raw CMA data could still be useful for scientific discovery. A
pathogenic copy number variant (CNV) may go unrecognized because it is unknown or
smaller than the typical 50 kb to 250 kb threshold for a microdeletion to be considered.
The large amount of normal CMA data available at any major pediatric referral center
could thus be a valuable resource for gene discovery if unreported pathogenic CNVs are
sufficiently common.

Data mining offers appealing advantages over a prospective study but also certain
challenges. The foremost advantage is the savings on recruiting, phenotyping, and testing
patients. Pediatric specialists routinely evaluate patients, documenting their findings in
clinical notes and imaging reports. In addition, sample sizes even from a single center
could be quite large because only a fraction of eligible patients are ever recruited into a
prospective research study. On the other hand, a prospective study can recruit normal
controls for comparison. Depending upon the study design, the controls may be siblings,
parents, or unrelated but matched individuals. Given that healthy individuals have no
need for clinical evaluation, they would have no genomic data in an electronic medical
record. Alternative solutions for controls, such as children who undergo genomic testing
but do not have the disease in question, would be required.

There is a wealth of untapped scientific information stored in testing laboratories
and hospitals. Electronic medical records (EMRs) contain valuable material that is often
overlooked, and raw data from lab tests contain information with considerable value for
medical research and patient diagnosis. These data can be accessed inexpensively and
mined easily with the potential to generate new scientific knowledge or deliver patients
a long-awaited diagnosis. In this study, we use the largely overlooked and discarded
data from reportedly normal chromosomal microarrays (CMAs) to show that there is
value in these untapped data stores. Copy number variants are very common in the
human genome and are a significant cause of developmental delay, autism, epilepsy,
congenital malformations, and congenital heart disease. It is standard practice to perform
a chromosomal microarray analysis on patients with congenital heart disease. While the
raw chromosomal microarray data contain on average 500 copy number variants, most
laboratories only report deletions greater than 100 kb and duplications greater than 500 kb.
However, it is logical to think that these unreported small-copy number variants can
produce clinically significant phenotypes if they are in the region of a gene or a gene
promoter that has not been previously described to cause congenital heart disease. We
analyzed the raw data from previously collected chromosomal microarrays of patients
with congenital heart disease and identified new copy number variants that may cause
congenital heart disease.

2. Materials and Methods
2.1. Patient Population

To test the hypothesis that unreported microdeletions are enriched for known and
novel CHD genes, we obtained raw data on putatively normal CMAs from 1762 pediatric
patients who were evaluated at St. Louis Children’s Hospital between 1 January 2009 and
31 December 2014. The Washington University School of Medicine clinical cytogenomics
laboratory deems a CMA “normal” based on the absence of deletions greater than 200 kb
and duplications greater than 500 kb, with the exception of copy number variation in regions
commonly associated with benign copy number polymorphisms in multiple independent
studies. Deletions and duplications that are less than 1 Mb and do not involve known
genes are also not reported. This conforms loosely to the less restrictive American College
of Medical Genetics (ACMG) guidelines, which only state that a microarray analysis should
detect duplications and deletions larger than 400 kb but does not specifically give size-
based criteria for reporting [2] the laboratory-reported deletions greater than 200 kb and
duplications greater than 500 kb. From 2009 to 2011, tests were performed using the
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Affymetrix SNP6.0 platform (Affymetrix, Santa Clara, CA, USA). From 2012 to 2014, tests
were performed using the Affymetrix Cytoscan HD.

A pediatric cardiologist (H.H.N.) reviewed the medical records of all 1762 patients to
ascertain their cardiac diagnoses, i.e., either normal or CHD. CHD diagnoses were further
classified by 28 different cardiac phenotypes and groups. This review encompassed all
available ambulatory clinic notes by cardiologists and clinical geneticists, echocardiogram
and cardiac catheterization reports, and cardiac surgical operative notes. The demographic
information collected was limited to gender and race. Patient demographics and CHD
status are listed in Table 1. Table 2 lists phenotypes with the number of patients for each
phenotype. Of the 1762 patients, 319 patients (18%) had a congenital heart defect.

Table 1. Patient demographics. Between 1 January 2009 and 31 December 2014, 1782 patients evalu-
ated at St. Louis Children’s Hospital had a normal CMA test. The preponderance of males among the
non-CHD patients reflects the male predominance in autism, for which a CMA is commonly ordered.
The slightly higher fraction of males among CHD patients is consistent with epidemiological data [3].
The gender ratios between CHD and non-CHD groups are significantly different (p < 0.01, two-tailed
chi-squared test). The racial composition of CHD and non-CHD patients is similar and representative
of the region surrounding St. Louis Children’s Hospital, a major referral center.

CHD (Number) Non-CHD (Number)

18% 319 82% 1443

Gender
Female 48% 152 39% 569
Male 52% 167 61% 874

Race
White 75% 240 77% 1116
Black 14% 45 15% 218
Other 11% 34 8% 109

Table 2. Cardiac phenotypes with the number of patients affected. There is some overlap between
patients with phenotypes where a given patient may have exhibited more than one phenotype.

Phenotype Group Cardiac Phenotype No. of Patients

All Congenital Heart Disease 319

Conotruncal/Anterior Second Heart Field Defects 46

Tetralogy of Fallot 25

Truncus Arteriosus 3

AP Window 1

Interrupted Aortic Arch Type B 1

Left-Sided Obstructive Lesions 79

Hypoplastic Left Heart Syndrome 28

Coarctation of Aorta 34

Aortic Stenosis 4

Bicuspid Aortic Valve 22

Simple Septal Defects 125

All Atrial Septal Defects (Including
Resolved) 51

Repaired Atrial Septal Defect 29

Ventricular Septal Defect 89
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Table 2. Cont.

Phenotype Group Cardiac Phenotype No. of Patients

Other Heart Defects

Double Outlet Right Ventricle 27

Dextro-Transposition of the Great Arteries 23

Pulmonary Atresia 24

Heterotaxy 16

AV Canal 22

Tricuspid Atresia 14

Interrupted Aortic Arch 6

Double Inlet Left Ventricle 6

Ebstein’s Anomaly 4

Pulmonic Stenosis 4

Cardiomyopathy 10

TAPVR 8

Pulmonary Vein Stenosis 3

2.2. Evaluation of a Probe-Number Threshold for the Detection of Microdeletions

Raw CMA data were processed using Nexus Copy Number Software (Biodiscovery
Inc., El Segundo, CA, USA) to identify any deletion that was covered by at least three
consecutive probes. The sequences were aligned to the GRCh37/hg19 reference genome. To
determine the minimum number of probes necessary to detect a microdeletion reliably, we
compared the CMAs from two pairs of monozygotic twins and two singletons whose tests
were inadvertently performed twice. There were, in essence, four replicate pairs of CMAs.
Each twin pair was tested concurrently using either the SNP6.0 or Cytoscan HD platform.
Each singleton had two blood samples obtained 3–4 weeks apart, and the replicate test was
performed using the same SNP6.0 or Cytoscan HD platform. The fraction of reproducibly
detected microdeletions was calculated as a function of probe number. A microdeletion
was included for subsequent analysis based on a 20-probe size threshold, as explained in
the results.

2.3. Identification and Filtering for Enrichment of CHD Genes

We wrote an algorithm to count genes in microdeletions and to compare counts
between cases and controls. Both populations in this study had a clinical indication for
CMA testing, but the controls had no congenital heart defect. A gene deletion was counted
if at least one exon of the gene was within a microdeletion. Comparisons between cases
and controls were performed for each of the 28 cardiac phenotypes or phenotype groups
and 17,491 autosomal genes to calculate an odds ratio and nominal p-value using a Fisher’s
exact test (N = 489,748 comparisons). A nominally significant set of genes was defined
from the comparisons. To be included in the set, a gene had to have a deletion in at least
two cases and less than 5% of controls, and a deletion had to increase the risk of a CHD
phenotype with an odds ratio ≥ 1.5 and a nominal p-value < 0.05.

To enrich for CHD genes, the nominally significant gene set was sequentially filtered by
one or two bioinformatics criteria. First, we selected genes in the top quartile of expression
in the fetal mouse heart, as previously described by [4]. Genes that lacked expression
information were retained as well. Second, we filtered genes using their pLI or shet score,
two different quantitative estimates for the deleteriousness of a loss-of-function mutation
based on the Exome Aggregation Consortium (ExAC) data [5,6]. We selected genes with
pLI > 0.9 or shet > 0.1; the two thresholds are known to enrich for genes associated with
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diseases resulting from haploinsufficiency [5,6]. A graphical illustration of our filtering
process is shown in Figure 1.
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Figure 1. Gene filtering process.

We estimated the significance of CHD gene enrichment using a test of two proportions
with a two-tailed Z-test [7]. To curate the known CHD gene set, we searched the literature
published as of 31 December 2016 (Appendix A). A mutated gene was determined to cause
human CHD according to one of three requirements: (1) Mutations of the gene caused
a well-described syndrome that involves CHD, and at least one patient was shown to
have the mutation. (2) Mutations of the gene were established as a cause with significant
association in a family or unrelated cases. (3) A mutation was described in only one or two
cases, but a mutant animal model demonstrated a CHD phenotype.

To evaluate the potential of our approach to yield novel CHD genes, we quantified the
enrichment for genes associated with de novo mutation in a large whole-exome sequencing
study compared to the enrichment in controls used in that same study. The study performed
by Sifrim et al. identified several genes that met statistical criteria to conclude a pathogenic
role. The vast majority of the hundreds of genes identified in the Sifrim study that did
not achieve statistical significance were presumably enriched for novel CHD genes [8].
All the mutated genes were listed in the supplementary data as two datasets, de novo
variants found in syndromic cases of CHD (Supplementary Table S21 in ref. [8]) and
de novo variants found in non-syndromic cases of CHD (Supplementary Table S22 in
ref. [8]). The Sifrim study used de novo variants from two control populations without
CHD as controls. The first included de novo variants from a cohort of 900 trios with exome
sequencing from the Simons Foundation Autism Research Initiative Simplex Collection [9],
with each trio consisting of the unaffected parents and a sibling of a child with autism
spectrum disorder. The second set was derived from the Deciphering Developmental
Disorders Study, using cases from that study that did not have CHD [10]. For our study,
we excluded the controls derived from the Deciphering Developmental Disorders study
population due to the strong relationship between CHD and other developmental disorders,
particularly in the context of copy-number variation. The significance of novel CHD gene
enrichment was evaluated using a test of two proportions, as described above, using
the Sifrim syndromic and non-syndromic gene sets. For comparison, we evaluated the
enrichment in the control population of de novo mutations in unaffected siblings of children
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with autism spectrum disorder. Genes that overlapped between cases and controls were
excluded from the analyses.

3. Results
3.1. A CMA Probe-Number Threshold Reliably Detects Microdeletions Smaller than 200 kb

Studies of healthy individuals indicate that microdeletions <500 kb are largely be-
nign [11–13]. The empirical findings support the typical <200 kb threshold for reporting a
microdeletion in the diagnostic interpretation of a CMA. In contrast, the detection of a CNV
on an oligonucleotide microarray depends on the SNP probe coverage. Given that the den-
sity of SNP probes varies across the genome, a CMA-probe number threshold could enable
the detection of <200 kb microdeletions and the re-purposing of putatively normal CMA
data for gene discovery. We calculated the reproducibility of detecting microdeletions as
defined by probe number using four pairs of “replicate” CMAs. The CMAs were obtained
from two monozygotic twin pairs and two individuals who had two replicate tests. A
20-probe threshold has ~90% positive predictive value for microdeletion (Figure 2). Based
on this probe-number threshold, the average size of a microdeletion is 47 kb ± 244 kb
(S.D.), with a median size of 13 kb. Overall, 97% of the deletions were below the 200 kb
reporting threshold and 90% were below 50 kb, which was the lowest reporting threshold
of all the labs we assessed (Figure 3). Deletions greater than 200 kb are not reported when
they are present in areas of common variation where deletions are common and thought to
be benign or in regions where there are no known genes.
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Figure 2. The number of deletions that were reproducible between identical twins (n = 2) and between
independently replicated CMAs from the same patient (n = 2) and based on the minimum number of
probes used to call the deletion. A minimum probe threshold of 20 probes provides an approximately
90% positive predictive value for a deletion being reproducible.

3.2. Unreported Microdeletions in CHD Patients Are Enriched for Known CHD Genes

Unreported microdeletions may cause haploinsufficiency of a CHD gene. We quan-
tified the incidence of this possibility in the 319 CHD and 1400 control patients who had
putatively normal CMAs from 2009 to 2014 at our institution. We assessed case and control
populations for deletions of the 171 known human CHD genes as of 31 December 2016
(Appendix A) and found that 15% (48/319) of patients with CHD had haploinsufficiency
in at least one of these genes compared with 9.5% (168/1762) (p = 0.005) of patients with-
out CHD. Mutations that perturb the development of multiple organs, such as the heart
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and brain, likely contribute to the low incidence of CHD gene deletion in non-CHD pa-
tients [8,14].
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3.3. Sequential Filtering of Normal CMA Data Enriches for Known CHD Genes

Our list of known CHD genes represents less than 1% (0.937%) of the total genes in our
analysis. If we filter this complete list of genes by selecting only those genes where cases
(i.e., cardiac phenotype groups) had significantly more deletions than controls (p < 0.05),
we expected enrichment of CHD genes if these associations are meaningful. Because benign
CNVs far outnumber pathogenic ones, we expected that many of the genes detected in
our analysis were false positives and may even neighbor CHD genes in some deletions.
We thus sought to enhance the yield of mining normal CMA data by filtering genes using
a series of additional criteria to enhance the probability that we selected genes known
to cause CHD. With each additional filter, we assessed the enrichment for known CHD
genes using a comparison to the previously filtered set. Our filtering process is outlined in
Figure 1.

After applying the first filter selecting only genes that were deleted more frequently in
patients from any CHD phenotype group compared with controls, we yielded a significant,
2.33-fold enrichment (p < 0.0004) for known CHD genes (Figure 4).

The second filter selected genes that are highly expressed in the fetal mouse heart.
Zaidi et al. first applied the “high heart expression” (HHE) criterion to a large set of
de novo mutations found in CHD patients. The filter helped to hone in on the critical
role of epigenetic regulators in CHD [4]. When applied to the CMA-filtered gene set,
the HHE filter eliminated 60% of the non-CHD genes. Non-CHD genes appeared to be
selectively eliminated because the combination of CMA and HHE filters increased the
absolute enrichment for known CHD genes to 4.78% and the relative enrichment to 2.33%,
representing a (4.87)-fold compared to no filters (Figure 4).

The third filter selected genes for which the loss-of-function was predicted to be delete-
rious. We used two versions of the filter with either the pLI or shet score of a gene. The two
metrics derive from different statistical models that estimate deleteriousness from ExAC
data [5,6]. One-third of the 3230 genes that have a pLI score > 0.9 are associated with dis-
eases of haploinsufficiency. The other two-thirds have no known disease phenotype yet [5].
As expected, genes filtered by high heart expression and a pLI > 0.9 are enriched for CHD
genes compared with the baseline (3.39% versus 0.98%). Applying the CMA filter further
increases CHD-gene enrichment by nearly 3.5-fold (3.49). CMA, HHE, and pLI filtering
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resulted in a set of 72 genes; 16.66% are known CHD genes (Figure 4). Of the 2984 genes
that have shet score > 0.1, more than 20% are associated with the autosomal dominant
disease. CHD genes have relatively high shet scores, and genes for congenital disorders,
in general, are strongly associated with shet > 0.1 [6]. Also, as expected, genes that show
high heart expression and have shet > 0.1 are enriched for CHD genes compared with the
baseline, (3.53% versus 1%). Notably, the combination of CMA, HHE, and shet > 0.1 filters
yields the greatest enrichment for CHD genes. The resulting set includes 57 genes that
show a 21-fold enrichment for CHD genes relative to no filter. Known CHD genes comprise
21% of the set (Figure 4).
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Figure 4. Enrichment of CHD genes based on the filters applied (indicated with dots on the left).
Our CMA algorithm filter enriched for CHD genes in every combination with the highest amount of
enrichment when combined with filters for the heterozygous loss of function score and fetal heart
expression achieving a greater than 21-fold enrichment in CHD genes.

The correlation between pLI and shet scores is strong but not perfect, resulting in similar
but not identical gene sets [15]. Each set contains 26 and 11 unique genes, respectively, and
58 overlapping genes for a total of 95 genes (Appendix B). The two sets contain 12 CHD
genes that were known as of 31 December 2016. An additional gene, SKI, was missed in
our initial assessment of known CHD genes. Before publication, several authors moved
to different institutions, leading to a delay in the release of this study. Consequently, the
95 genes identified in the research were re-evaluated six years after the study’s conclusion
using a literature review to ascertain their relevance in the pathogenesis of CHD. Since the
completion of this study, mutations of ABL1, CELSR1, DST, PRPF8, CTBP1, ATP6V1E1, and
USP34 have been associated with human CHD, and PTEN has been implicated [16–18].
Thus, approximately 22% of the 95 genes that were identified using sequential filtering
of normal CMA data have well-documented or compelling evidence for their role in
human CHD.

3.4. Enrichment for Novel CHD Genes Using Sequential Filtering of Normal CMA Data

The enrichment for known CHD genes suggests the potential of using normal CMA
data for gene discovery. To estimate the yield of novel genes, we compared the overlap
between the two gene sets resulting from CMA, HHE, and pLI or shet filtering and the
genes found in a large whole-exome sequencing study by Sifrim and colleagues. This study
found that syndromic CHD cases are strongly associated with de novo, loss-of-function
mutations, as compared with unaffected controls or non-syndromic CHD cases. Sifrim
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et al. classified CHD cases by syndromic CHD (S-CHD) or non-syndromic CHD (NS-CHD)
status. They identified de novo mutations of 754 and 1060 genes in 409 syndromic and
561 non-syndromic cases. Despite the large sample size, fewer than 2% of the genes in the
Sifrim study achieved the statistical significance necessary to conclude a pathogenic role. It
is likely, however, that the remaining 98% that did not achieve statistical significance are
enriched for novel CHD genes. We therefore quantified the overlap between our filtered
gene sets and the Sifrim dataset. A greater-than-expected overlap was considered to be
consistent with an enrichment for novel CHD genes.

When we evaluated our dataset for the enrichment of genes with de novo mutations
from the Sifrim study, we achieved significant enrichment of genes in the S-CHD patients
from the Sifrim dataset using both pLI filters (p < 10−8) and shet (p < 10−8), as shown
in Figure 5a,b. There was no significant enrichment in the NS-CHD patients using the
pLI filter, but there was significant enrichment using the shet filter (p = 0.03) (Figure 5a);
however, this was not as significant as the enrichment for S-CHD patients. Genes within
the control patient population who had de novo variants but no CHD did not show any
enrichment in our study, further validating our results. These findings are consistent with
previously published studies on the genetics of CHD. The genetic etiology of NS-CHD has
been very hard to determine. We expected that our model would show more enrichment
with S-CHD as deletions more often cause S-CHD.

Biology 2023, 12, x FOR PEER REVIEW 10 of 14 
 

 

 

Figure 5. The two graphs show the enrichment of genes with de novo mutations in exome studies 

of CHD patients and controls using different filtering methods (Shet (a) versus pLI (b)). 

Our two models produced a combined list of 95 genes. In total, 12 of these genes 

represented known CHD genes from our list. A list of these genes is included in Appendix 

B. 

4. Discussion 

Our two models produced a combined list of 95 genes (Appendix B). In total, 13 of 

these genes represented known CHD genes. Although variants in these genes are known 

to cause CHD, it is notable that deletions have not been described as causing CHD in most 

of these genes. Seven genes from our list, ABL1, CELSR1, DST, PRPF8, CTBP1, ATP6V1E1, 

and USP34, were described to cause CHD since our initial review and analysis. Excluding 

the known and recently discovered genes, we identified 82 novel candidate genes for 

CHD. Thirteen of these genes are deleted in combination with another candidate gene in 

the list. For example, DAZAP1, RPS15, and MBD3 all lie on chromosome 19 and are de-

leted together in most cases. DAZAP1 and MBD3 do not currently show any evidence for 

their involvement in CHD; however, a missense mutation in RPS15 has been described as 

a possible causal candidate in a patient with complex CHD as part of Diamond Blackfan 

anemia [19]. Two of the candidate genes were determined to be passenger genes, in that 

they were deleted in combination with a known CHD gene. SEPT5 and UBE2I were pas-

sengers of known CHD genes TBX1 and IFT140, respectively. Neither of these known 

genes showed up in our final list because they did not meet the filtering threshold. TBX1 

Figure 5. The two graphs show the enrichment of genes with de novo mutations in exome studies of
CHD patients and controls using different filtering methods (Shet (a) versus pLI (b)).



Biology 2023, 12, 1290 10 of 14

Our two models produced a combined list of 95 genes. In total, 12 of these genes
represented known CHD genes from our list. A list of these genes is included in Appendix B.

4. Discussion

Our two models produced a combined list of 95 genes (Appendix B). In total, 13 of
these genes represented known CHD genes. Although variants in these genes are known
to cause CHD, it is notable that deletions have not been described as causing CHD in most
of these genes. Seven genes from our list, ABL1, CELSR1, DST, PRPF8, CTBP1, ATP6V1E1,
and USP34, were described to cause CHD since our initial review and analysis. Excluding
the known and recently discovered genes, we identified 82 novel candidate genes for CHD.
Thirteen of these genes are deleted in combination with another candidate gene in the
list. For example, DAZAP1, RPS15, and MBD3 all lie on chromosome 19 and are deleted
together in most cases. DAZAP1 and MBD3 do not currently show any evidence for their
involvement in CHD; however, a missense mutation in RPS15 has been described as a
possible causal candidate in a patient with complex CHD as part of Diamond Blackfan
anemia [19]. Two of the candidate genes were determined to be passenger genes, in that
they were deleted in combination with a known CHD gene. SEPT5 and UBE2I were
passengers of known CHD genes TBX1 and IFT140, respectively. Neither of these known
genes showed up in our final list because they did not meet the filtering threshold. TBX1
did not meet the filtering threshold for fetal heart expression and IFT140 did not meet
the threshold for HHE, shet , or pLI score. None of the passenger genes were found to
overlap with genes with variants found in CHD exome studies, whereas five out of the
seven genes that were discovered to be CHD genes after our review were also found in
CHD exome studies. In total, 25 (~30%) of our candidate genes are genes that were found
to have de novo mutations in CHD exome studies. Five of these have since been described
to cause CHD and another five were shown to cause CHD in animal models. As 40% of the
overlapping genes show significant evidence supporting their role in CHD, we consider
the remaining 15 overlapping genes to be high-probability candidates that merit further
study (Table 3).

Table 3. Candidate genes overlapping between this study and genes with de novo variants in the
Sifrim et al. and Homsy et al. exome studies. Genes CTBP1 [20] and ATP6V1E1 [21] were also found
to cause CHD but did not overlap with the exome studies.

Recently
Discovered

Evidence in
Animal Models High Probability Candidate Genes

ABL1 [16,22] ARHGDIA [23] AGPAT3 CEP170B SEMA4D

CELSR1 [24,25] ERBB2 [26–28] AHDC1 CYFIP1 SMG6

DST [29] IGF2R [30] ARCN1 PAFAH1B1 SYMPK

PRPF8 [31] SMARCC1 [32] BIRC6 PTPRD SYNGAP1

USP34 [17] TNS1 [33] BRD4 PUM1 WSB1

TBX1 is perhaps the most well-known gene where a deletion is known to cause CHD.
TBX1 did not show up in our final filter because it did not meet the threshold for fetal heart
expression (12 vs. min 75). Despite this, the gene has a high pLI of 0.98, a high shet score
of 0.231, and with the phenotype of VSD, reached the level of statistical significance even
after Bonferroni correction (odds ratio 4.12, p-value 9.82 × 10−14). Using a sliding scale, we
can adjust these values and perhaps pick up more candidate genes for CHD. The fact that
this common cause of CHD shows up with such high significance in our study suggests
that we are missing known deletions that cause disease and underscores the importance of
reconsidering our methodology for calling CNVs from CMA, as these are all CMAs that
were reported as “normal”. Other methodologies, that are able to detect smaller CNVs may
be important for further diagnostic workup of CHD.
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Our analysis showed that there is valuable information in unreported chromosome
microarrays that we believe may have implications for scientific research and clinical care of
patients. First, there is currently an abyss between CMA results and exome analysis, where
deletions smaller than 100 kb are often overlooked. Providing better testing coverage for
these smaller copy number variants could provide a diagnosis for a considerable number of
patients. This could be addressed by reducing the threshold we use to call CNVs on CMA or
by improving sequencing platforms to call CNVs with more accuracy from exome or whole
genome data. Notably, there have been significant improvements in probe density on CMA
platforms without significant changes in our threshold for calling CNVs. Large patient
cohorts with available CMA data likely contain significant numbers of “knock-out” humans
whose gene deletions combined with clinical phenotype data could provide substantial
information about gene function and human disease. From a research perspective, this
work shows the potential for largely unused data that sit in our laboratories to be mined for
gene discovery. Filtering resulting gene sets from analyses of this information using data
from various gene function studies has the potential to produce high-probability candidate
genes for further study in animal models or to be further assessed for testing in humans.

5. Limitations

Our study was constrained by the limited number of chromosome microarrays avail-
able, and this limitation was further compounded by the subset of those patients diagnosed
with CHD. Despite the modest sample size, we believe that we showcased significant
value even within this restricted dataset. We also recognize the limited number of samples
utilized to establish the probe number threshold for detecting deletions. This constraint
arose from the few patients with duplicate microarrays. Nonetheless, we deemed this
metric preferable to seemingly arbitrary thresholds identified in other studies.

6. Conclusion

In summary, we conclude that patients with “normal” CMAs may have overlooked
clinically relevant pathogenic deletions. Raw CMA data combined with phenotypic infor-
mation can be mined for gene discovery. Other forms of “normal” genomic data can be
similarly mined for gene discovery by combining other gene information such as pLI score,
gene expression, and shet to help find candidate genes in the face of difficulty in obtaining
genome-wide significance. Small deletions are an overlooked and major cause of human
genetic disease that need more attention in the clinical space.
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Appendix A. Known CHD Genes

Known CHD Genes

ACTB CCDC151 DNAAF3 FGFR1 KANSL1 MYH7 PKD1L1 SEMA3E TBX1

ACTC1 CCDC39 DNAH5 FIG4 KAT6B NEK1 PRKD1 SETBP1 TBX20

ACVR2B CCDC40 DNAI1 FOXC1 KCNJ2 NEK8 PTPN11 SF3B4 TBX3

ADAMTS10 CDC45 DNAI2 FOXC2 KMT2D NF1 PUF60 SH3PXD2B TBX5

ADNP CDK13 DNAL1 FOXF1 KRAS NIPBL RAB23 SHH TCOF1

AFF4 CDKN1C DOCK6 FOXH1 LEFTY2 NKX2-5 RAD21 SHOC2 TDGF1

ANKRD11 CEP57 DYNC2H1 G6PC3 LMBRD1 NKX2-6 RAF1 SMAD3 TEK

ANKS6 CFC1 DYX1C1 GATA4 LTBP2 NME8 RARB SMAD4 TFAP2B

ARHGAP31 CHD4 ECE1 GATA6 LTBP4 NODAL RBM8A SMAD6 TKT

ARID1A CHD7 EFTUD2 GBA MAP2K1 NOTCH1 RIT1 SMARCA2 TLL1

ARMC4 CHST14 EHMT1 GDF1 MAP2K2 NOTCH2 ROR2 SMARCA4 TRAP1

B3GAT3 CITED2 ELN GJA1 MED13L NPHP3 RPL11 SMARCB1 TRIM32

BBS10 CREBBP EOGT HOXA1 MEGF8 NPHP4 RPL35A SMARCE1 TTC37

BBS2 CRELD1 EP300 HRAS MEIS2 NR2F2 RPL5 SMC3 TTC8

BRAF DDX11 ERBB3 IFT140 MGP NRAS RPS19 SMG9 WDPCP

CACNA1C DHCR7 ESCO2 IFT172 MKKS NSD1 RPS24 SNRPB WDR35

CBL DLL4 EVC INVS MKS1 PDGFRA RSPH4A SOS1 ZEB2

CCDC103 DNAAF1 EVC2 IRX5 MMP21 PIGL SALL1 STRA6 ZFP57

CCDC114 DNAAF2 FGF8 JAG1 MYH6 PITX2 SALL4 TAB2 ZFPM2

Appendix B. Filtered Gene List

Combined Genes from Filters

ABL1 BIRC6 DCTN2 HNRNPR OGDH PTPRD SKI TOPORS

AGPAT3 BRD4 DST IGF2R OR13C5 PUM1 SMARCA4 UBAP2

AHDC1 CAPN15 EDF1 IL17REL P4HB RABL6 SMARCC1 UBE2I

ALYREF CELSR1 EHMT1 KANSL1 PAFAH1B1 RAF1 SMC3 UBE3A

ANAPC2 CEP170B EP300 KANSL2 PDIA3 RAI1 SMG6 UBQLN1

ANKFY1 CHD7 ERBB2 KCNH2 PGP RAPGEF1 SUMO2 USP34

APC COPS3 FASN MBD3 PIP4K2B RBM8A SYMPK WDR18

ARCN1 CRTC1 FBXO11 NAP1L4 PRPF8 RNPS1 SYNGAP1 WSB1

ARHGDIA CTBP1 FGFR1 NF2 PSMB2 RPS15 TFAP2B YWHAE

ARNT CUX1 GSK3A NOTCH1 PTBP1 SEMA4D TFG ZC3H18

ATP6V1E1 CYFIP1 GTPBP1 NPLOC4 PTEN SEPT5 TM9SF4 ZMIZ2

ATXN2 DAZAP1 HERC2 NUP85 PTPN11 SET TNS1

(Bolded genes are known CHD genes).
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