
Citation: Guan, Y.-J.; Yu, C.-Q.; Qiao,

Y.; Li, L.-P.; You, Z.-H.; Ren, Z.-H.; Li,

Y.-C.; Pan, J. MFIDMA: A Multiple

Information Integration Model for

the Prediction of Drug–miRNA

Associations. Biology 2023, 12, 41.

https://doi.org/10.3390/

biology12010041

Academic Editor: Armando

Varela-Ramirez

Received: 20 November 2022

Revised: 19 December 2022

Accepted: 22 December 2022

Published: 26 December 2022

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

MFIDMA: A Multiple Information Integration Model for the
Prediction of Drug–miRNA Associations
Yong-Jian Guan 1, Chang-Qing Yu 1,*, Yan Qiao 2,*, Li-Ping Li 1, Zhu-Hong You 3 , Zhong-Hao Ren 1,
Yue-Chao Li 1 and Jie Pan 4

1 School of Electronic Information, Xijing University, Xi’an 710129, China
2 College of Agriculture and Forestry, Longdong University, Qingyang 745000, China
3 School of Computer Science, Northwestern Polytechnical University, Xi’an 710129, China
4 Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of

Life Science, Northwest University, Xi’an 710129, China
* Correspondence: yuchangqing@xijing.edu.cn (C.-Q.Y.); yanqiao@ldxy.edu.cn (Y.Q.)

Simple Summary: Predicting the possible associations between drugs and miRNAs would provide
new perspectives on miRNA therapeutics research and drug discovery. However, considering the
time investment and expensive cost of wet experiments, there is an urgent need for a computational
approach that would allow researchers to identify potential associations between drugs and miRNAs
for further research. In this paper, we present a computational method in this field named MFIDMA
for simplifying the screening process. We also collect high-quality datasets from the current database.
We conduct experiments on the collected datasets to prove the excellent performance of the proposed
model. The MFIDMA is intended to be useful for the prediction of associations between drugs and
miRNAs, and to be effective for the development and research of miRNA-targeted drugs.

Abstract: Abnormal microRNA (miRNA) functions play significant roles in various pathological
processes. Thus, predicting drug–miRNA associations (DMA) may hold great promise for identifying
the potential targets of drugs. However, discovering the associations between drugs and miRNAs
through wet experiments is time-consuming and laborious. Therefore, it is significant to develop
computational prediction methods to improve the efficiency of identifying DMA on a large scale. In
this paper, a multiple features integration model (MFIDMA) is proposed to predict drug–miRNA
association. Specifically, we first formulated known DMA as a bipartite graph and utilized structural
deep network embedding (SDNE) to learn the topological features from the graph. Second, the
Word2vec algorithm was utilized to construct the attribute features of the miRNAs and drugs. Third,
two kinds of features were entered into the convolution neural network (CNN) and deep neural
network (DNN) to integrate features and predict potential target miRNAs for the drugs. To evaluate
the MFIDMA model, it was implemented on three different datasets under a five-fold cross-validation
and achieved average AUCs of 0.9407, 0.9444 and 0.8919. In addition, the MFIDMA model showed
reliable results in the case studies of Verapamil and hsa-let-7c-5p, confirming that the proposed model
can also predict DMA in real-world situations. The model was effective in analyzing the neighbors
and topological features of the drug–miRNA network by SDNE. The experimental results indicated
that the MFIDMA is an accurate and robust model for predicting potential DMA, which is significant
for miRNA therapeutics research and drug discovery.

Keywords: drug–miRNA association; SDNE; Word2vec; SMILES; deep neural network; convolution
neural network

1. Introduction

As the demand for medical care increases, the cost of drug development is growing and
unacceptable [1]. The main reason for the relatively low productivity in the pharmaceutical

Biology 2023, 12, 41. https://doi.org/10.3390/biology12010041 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12010041
https://doi.org/10.3390/biology12010041
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0003-1266-2696
https://orcid.org/0000-0002-9912-0648
https://doi.org/10.3390/biology12010041
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12010041?type=check_update&version=1


Biology 2023, 12, 41 2 of 20

industry is attributed to the high cost of searching for new drug targets. However, finding
appropriate drug targets from the numerous and disorderly informatics is one of the
important purposes of bioinformatics. For a long period, many studies on therapeutic
targets have focused on protein and have spent much time and effort exploring the drug
response of proteins. However, about 80% of approved drugs target protein and 99% of
them target only specific proteins [2]. This means that there are still vast proteins that are
“undruggable”. Therefore, some researchers have shifted their focus in target selection to
other biological entities such as microRNA (miRNA).

MicroRNA is a kind of endogenous non-coding RNA with a length of about 20 nu-
cleotides, existing in humans, plants, animals and viruses [3]. To date, about 2600 human
mature miRNAs have been discovered [4]. A considerable amount of literature has been
published on miRNAs regarding their biogenesis, mechanic of action and function [5–7].
Research in this area has shown that the abnormal expression of miRNAs is involved in
plenty of diseases including cancer, neurologic disorders, autoimmune diseases and cardio-
vascular diseases [8–12]. Furthermore, from post-transcriptional regulation, miRNAs can
affect the gene to produce specific proteins, including the aforementioned “undruggable”
proteins. Thus, miRNAs are considered to be potential high-value therapeutic targets
and identifying the underlying drug–miRNA associations has major implications for the
pharmaceutical industry [13,14].

Many researchers believe that miRNA pharmacogenomics would promote the de-
velopment of personalized medicine [15,16]. However, there are two main challenges for
miRNA-target therapeutics: the effective means of delivering the therapeutic agents to
the target tissues and the safety evaluation of the potential drug response [17]. In the first
challenge, the problem of poor cell permeability and pharmacokinetics can be solved by
Lipinski’s Rule of Five [18]. In the other challenge, it is inevitable to study the situation
of the association between drugs and miRNAs. For most drugs, it is relatively difficult
to completely identify their association with different miRNA profiling through wet ex-
periments because it is an intricate problem concerning a series of factors, and it is also
labor-intensive and time-consuming work. [19,20]. Even though much effort has been
invested in identifying DMA by wet experiment, the existing knowledge about drugs
and miRNAs is not sufficient for guiding miRNA-targeted drug research. For improving
the research and development of miRNA-target therapeutics, we need to accelerate the
identification of DMA for future research. Compared with wet experiments, the compu-
tational method is the better choice for completing this mission, since it is lower in cost
and higher in efficiency [21]. In particular, machine learning has made great contributions
in the field of bioinformatics [22–25]. In molecular biology research, novel datasets and
innovated concepts are being generated [26–29]. Thus, it is important to adopt techniques
that can handle these data efficiently. Machine learning can process the vast amount of
data generated by new high-throughput devices to extract undiscovered relationships that
exist and are imperceptible to experts [30–33].

After years of efforts, several computational methods for predicting DMA have
emerged. One category of these methods was based on the self-similarity network and the
association network. For example, Lv et al. developed a model based on the drug–miRNA
network to identify DMA. They constructed the drug–miRNA integrated network and
applied a random walk with restart (RWR) algorithm to predict the underlying miRNA
targets of drugs. This model can predict related miRNAs for drugs in the absence of
known drug–miRNA associations, but it is sophisticated and contains too many adjusted
parameters [34]. Furthermore, Qu et al. presented an in silico method for DMA prediction
called HSDMA, which was also based on the drug–miRNA similarity network. [35]. They
introduced the path-based relevance measurement method of HeteSim. In the HeteSim
method, considering different search paths between the miRNAs and drugs is the most
predominant issue, because the path in the heterogeneous network has semantics [36]. It
can predict potential DMA by calculating the association score of each drug–miRNA pair
based on the given search path, but the function for integrating different patterns of the
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search path is relatively simple. Moreover, Guan et al. proposed a prediction model called
GIDMA. Inspired by the concept of graphlet interactions, they defined 28 types of graphlet
interaction isomers that contained 1 to 4 vertexes and various connection patterns for
describing the different relationships between 2 nodes [37]. Thereafter, the association score
between the drugs and miRNAs was calculated based on the number of each isomer on the
self-similarity network [38]. Furthermore, Wang et al. designed an DMA prediction model
called RFDMA. This model combined the integrated similarity of miRNA and the drugs,
and predicted DMA using the random forest algorithm [39]. Qu et al. presented a new
method called TLHNDMA based on a triple-layer heterogeneous network. This network
not only used data on drug self-similarity and miRNA self-similarity but also considered
disease similarity. An iterative updating algorithm was also developed to propagate in-
formation in the network and complete the prediction task [40]. Additionally, Zhan et al.
proposed a model called SNMFDMA, which did not directly use the similarity matrixes of
drugs and miRNAs. They first used symmetric non-negative matrix factorization to process
the similarity matrixes to generate new similarity matrixes. The Kronecker product of the
new similarities matrixes was then regarded as the similarity of the drugs and miRNAs.
Finally, regularized least squares were implemented to predict the potential associations
between drugs and miRNAs [41].

Another category of prediction methods leverages other features to represent the
drugs and miRNAs instead of self-similarity. An example of this is the study carried out by
Huang et al. in which they constructed an end-to-end model named GCMDR to discover
associations between miRNA and drug resistance. These authors combined the side
information such as the miRNA expression profile, drug substructure fingerprints, gene
ontology and disease ontology as attribute features of the miRNAs and drugs. This model
used GCN to learn low-dimensional embedding vectors for each biological entity and
predicted the association between the drugs and miRNAs [42]. Yu et al. built a web server
for predicting the effects of drugs on miRNAs. They utilize k-mer, sequence information
and the MACCS fingerprints to represent the miRNAs and drugs. The regulation of the
miRNA expression of the drugs was then predicted using random forests [43].

In our paper, we propose a novel multiple features integration method based on the
integration of multiple features, named MFIDMA. First, a bipartite network was established
to represent the relationship between drugs and miRNAs. Second, the structural deep
network embedding (SDNE) algorithm was implemented to extract topology information
and generate the embedding vectors of each node in the network. Third, the miRNAs
were directly represented using sequences and the drugs were indicated by simplified
molecular input line entry specification (SMILES). The Word2vec algorithm was then
adopted to extract attribute features. Finally, two kinds of features were separately entered
into the convolutional neural network (CNN) and the deep neural network (DNN) for
deep learning feature extraction and classification. Figure 1 provides the flowchart of the
MFIDMA model.

In experiments, the known drug–miRNA pairs were collected from three databases
including ncDR [44], RNAInter [45] and SM2miR [46]. It is worth noting that the SM2miR
database was divided into three datasets according to its versions. After preprocessing
these databases, there were three datasets available: ncDR, RNAInter and SM2miR. For
evaluating the prediction ability of the MFIDMA, we implemented the proposed model
on those three datasets and obtained average accuracies of 86.46%, 87.56% and 82.16%
under a five-fold cross-validation. The average AUC values achieved 0.9407, 0.9444 and
0.8919 on ncDR, RNAInter and SM2miR, respectively. In addition, serval experiments
were conducted for performance comparisons with respect to the choices of features and
prediction methods. Furthermore, we carried out case studies using hsa-let-7c-5p and
Verapamil to prove the prediction ability of the proposed method. There are 9 of the top
15 predicted drugs and 10 of the top 15 predicted miRNAs confirmed by the PubMed
database, respectively. The results of the cross-validations and case studies demonstrated
that the MFIDMA model could predict DMA accurately and robustly. This study may
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be helpful for predicting drug response and overcoming drug resistance for subsequent
treatment and improving the situation for drug-target discovery.
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2. Materials and Methods
2.1. Dataset

In previous studies, a large number of drug–miRNA interaction associations have
been accumulated. We collected datasets from three databases including RNAInter, ncDR
and SM2miR. Before preprocessing, we collected a total of 19,310 miRNA drug interaction
samples from the ncDR, RNAInterer and SM2miR database websites. For clarity, there are
three versions of SM2miR because they were updated on 10 June 2012, 28 August 2013 and
27 April 2015. To distinguish them from different versions, we named them SM2miR v1.0,
SM2miR v2.0 and SM2miR v3.0. We also adopted the latest SM2miR v3.0 and refer to it as
SM2miR in this paper. To improve our work, we only selected associations that related to the
“Homo sapiens” type in the three datasets. By doing this, we collected a total of 12,323 DMA
as the positive dataset, which included 470 different types of drugs and 1623 different
types of miRNAs. Then, we constructed the negative dataset by randomly selecting the
same number of negative samples as the positive samples from the unlabeled data. The
distribution of the individual datasets is illustrated in Table 1. These positive samples can
be represented as an adjacent edge list and then turned into a drug–miRNA association
bipartite graph. The miRNA name and sequence recording in miRBase represent the
information from each miRNA node. Similarly, the drug information is uniquely identified
using the CID and SMILES from PubChem.

The PubChem database is a comprehensive substance and compound database, in-
cluding data sources and contents and data organization. It not only provides the chemical
structures and properties but also provides pharmacology and biochemistry informa-
tion [47–49]. In the database, the chemical structure of the drug is represented by SMILES,
which is an extensively used chemical notation system. It can encode chemical molecules
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through ASCII codes and is extensively used in chemical computer applications [50,51]. We
collected a total of 492 different drugs and their corresponding SMILES from the PubChem
database.

Table 1. The statistics of miRNAs, SMs and SM–miRNA association in three datasets.

Databases ncDR RNAInter SM2miR

Drug 95 283 138
miRNA 624 1009 580

Associations 4457 5740 2126

The MiRBase database is a central online repository for nomenclature and sequences of
miRNAs [52–54]. We obtained the sequences of 1788 miRNAs from the miRBase database.
All miRNA sequences were identified on miRBase.

2.2. Representation of miRNAs and Drugs with Word Embedding

Deep learning is currently the focus of machine learning in the field of computer vision
and natural language processing. One reason for the sharp rise in the use of deep learning
algorithms is because these algorithms are a powerful method for processing gigantic
amounts of unsupervised data for downstream tasks [55]. The sequences of biomolecules
and the structure of chemical compounds are intrinsic properties of miRNAs and drugs.
Inspired by Buchan et al., miRNA sequences and drug SMILES could be presumed as
“sentences”, while nucleotides and atoms are naturally “words” [56]. Therefore, the DMA
datasets can be the text corpus for the learning representation vectors by Word2vec. The
Word2vec model is a famous machine learning technique in the text processing field in
recent years. It is a kind of distributed representation method and aims to connect different
dimensions by coding [57]. If the words are similar in the context, the representation
vectors are similar, either semantically or grammatically. Word2vec contains two important
models, Skip-gram and CBOW. In this study, the CBOW model is implemented to generate
embedding vectors by predicting the central word according to context. Instead of the
traditional neural net language model, the model is constructed using an input layer, an
output layer and projection layers. The framework of CBOW is illustrated in Figure 2.
As shown in Figure 2, the vocabulary size is denoted as V and the size of the projection
layer is represented as N. In the input layer, vt−2, vt−1, vt+1 and vt+2 represent the context
of vt and initial words are expressed as one-hot codes. The weights matrix between the
input layer and the projection layer is represented by a V × N matrix M. The M′ is not the
transpose of M, but a N ×V weights matrix between the projection layer and the output
layer. The projection vectors vp are obtained using the weighted average of word vectors of
context through the projection layer, following:

vp =
1
4

M
(

vT
t−2 + vT

t−1 + vT
t+1 + vT

t+2

)
(1)

where M represents the weight matrix, vc−2, vc−1, vc+1, vc+2 represents context one-hot
vectors of the c-th central word and vp represents the output of the projection layer. In
the output layer, the probabilities that denote the appropriate center word are calculated
through weight matrix W ′ and projection vectors. To predict an appropriate center word
by minimizing the loss function:

E = − log
T
∑

c=1
P(vt|vt−2, vt−1, vt+1, vt+2)

= − log
T
∑

t=1

exp[uT
t (vt−2+vt−1+vt+1+vt+2)]

∑j∈V exp[uT
j (vt−2+vt−1+vt+1+vt+2)]

(2)

where uc represents the c-th row of weight matrix W ′. In this paper, we utilized the
Word2vec algorithm to learn a fixed-length vector for representing the sequences. The
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Word2vec algorithm is implemented on a Python package named Gensim. Gensim
Word2vec is practical for transforming each letter in the sequences into a vector. It is
applied to process drug SMILES and miRNA sequences in this study. We set the parameters
“vector size” to 64 and “minimum step size” to 1 for containing all of the letters in the
sequences. Other parameters are default. Thereafter, each letter in the sequences will be
represented as a vector with dimension 64.
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2.3. Representing the Association between Drugs and miRNA with Graph Embedding

Network-based features are well proven to perform well in the link prediction tasks of
heterogeneous graphs [58,59]. The topological feature represents the global structure of
the bipartite graph. In contrast to previous studies, which extracted topology information
from the network degree and clustering coefficient, the network embedding methods learn
low-dimensional representations of nodes in the network [60]. To gain the highly non-linear
structure from the bipartite graph, the graph embedding model SDNE is applied to for-
mulate topological features [61]. The deep neural network in SDNE is more effective than
shallow models to capture non-linear structures in the network. The SDNE has good per-
formance in sparse networks since it combines first-order and second-order proximity for
preserving the structure information in the network. Structural deep network embedding is
an expansion of LINE [62], in which the definition of first-order and second-order proximity
is identical to LINE. In the framework of SDNE, an unsupervised autoencoder is designed
to extract the global structure of the network by preserving the second-order proximity. The
similarities of pairwise nodes in the network are defined as the first-order proximities. A
supervised component according to the Laplace matrix is designed to mine the information
in the latent space by the first-order proximity. Finally, SDNE utilizes the deep autoencoder
with multiple non-linear layers to represent the node as a low-dimensional vector. The
structure chart is shown in Figure 3.
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Given a network G = (V, E) and an adjacency matrix A with nodes before we learn
the node embedding representations, we suppose there are n nodes xi in the adjacency
matrix A, thus we can define the adjacency matrix A as:

xi,j =

{
1, xi linked with xj

0, else
, i, j = 1, 2, . . . n (3)

A =

x1,1 · · · x1,n
...

. . .
...

xn,1 · · · xn,n

 (4)

The second-order proximity is used to indicate the similarity between two neighbor
nodes in the network. In particular, the second-order proximity lets nodes with similar
neighborhood structures have more similar embedding. Because of the sparsity of networks,
it is important that more penalties are imposed on the reconstruction error of the non-zero
elements. The second-order loss function is given by:

L2nd = ∑n
i=1 ‖(x̂i − xi)� bi‖2

2 = ‖
(
X̂− X

)
� B‖2

F (5)

where � indicates the Hadamard product. B is a n× n matrix. bji = 1, else bi,j = β > 1.
xi represents the input vector of ith node and x̂ represents the reconstructed vector of the
node. For preserving the local network structure, the first-order proximity is regarded as
the supervised information to restrain the similarity of unrevealed representations between
two nodes. The first-order loss function is given by:

L1st =
n

∑
i,j=1

Ai,j‖yi − yj‖2
2 (6)
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The SDNE loss function combines first-order proximity, second-order proximity and
minimizes the following objective function:

Lmix = L2nd + αL1st + νLreg (7)

Significantly, Lreg is a L2− norm regularization term for preventing overfitting. As-
sume k is the number of hidden layers, W(k) and Ŵ(k) are the kth − layer weight matrices
and defined as follows:

Lreg =
1
2

k

∑
k=1

(
‖W(k)‖2

F + ‖Ŵ(k)‖2
F

)
(8)

Furthermore, SDNE has been adopted to identify lncRNA–protein interactions, lncRNA–
disease associations, drug–target interactions and miRNA–disease associations [63–66]. Ac-
cording to the results of previous studies, SDNE is a high-precision and robust algorithm on a
large-scale network. Thus, we employed SDNE to predict underlying DMA in our thesis.

2.4. Feature Extraction and Fusion by a Deep Learning Model

CNN and DNN are often used to solve the problem of bioinformatics [67,68]. As
shown in Figure 1, CNN is utilized to extract high-level attribute features from the output
of word embedding. The CNN operation at layer t can be defined as:

Xt = £(Xt−1 ⊗Wt + bt) (9)

where Wt denotes the 4× 64 convolution kernel weight matrix, bt the offset vector and Xt the
attribute feature map. ⊗ represents a convolution operation and £() is the ReLU activation
function. To down-sample after convolution operation, we utilized the max-pooling to
process the output of the convolution layer. Similarly, we used DNN to further extract
topological features from the output of graph embedding. Then, the attribute features and
behavior features of miRNAs and drugs are spliced through a concatenate layer. Finally,
the output of the concatenate layer is entered into a dense layer. The probability between
the miRNA and drug is calculated by a dense layer with softmax activation function. The
probability between miRNA and drug can be defined as:

P = σ( fma ⊕ fmt ⊕ fda ⊕ fdt) (10)

where fma is the attribute feature of miRNA, fmt is the topological feature of miRNA, fda
is the attribute feature of drug and the fdt is the topological feature of drug. P represents
the prediction score, ⊕ denotes the concatenating operation and σ is the softmax activation
function. In this model, we selected the Adam algorithm as the optimizer and the binary
cross-entropy as the loss function.

3. Results
3.1. Performance Evaluation Strategy

To evaluate the performance of the proposed methods, several evaluation metrics were
implemented. A five-fold cross-validation was used to verify the proposed method. All of
the known samples in each dataset were divided into five subsets in equal measure; the five
subsets took turns to serve as the testing set and the other four subsets were used to train
the model. Furthermore, the extensively used evaluation criteria were used to evaluate
the proposed method, including accuracy (Acc.), sensitivity (Sen.), specificity (Spec.), also
precision (Prec.). The Matthews correlation coefficient (MCC) was defined as:

Acc. =
TN + TP

TN + TP + FN + FP
(11)
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Sen. =
TP

FP + FN
(12)

Spec. =
TN

TN + FP
(13)

Prec. =
TP

TP + FP
(14)

MCC =
TP× TN − FP× FN√

(TP + FP)(TP + FN)(TN + FP)(TN + FN)
(15)

where TP is the number of positive samples that are predicted correctly; FN is the number
of positive samples that are predicted as negative samples; FP is the number of negative
samples that are predicted as positive samples; TN is the number of negative samples that
are predicted correctly, respectively. To exhibit the performance of the proposed method,
the receiver operating characteristic (ROC) curves and precision-recall (PR) curves were
drawn. The area under the ROC curve (AUC) and area under the PR (AUPR) curve were
calculated as a numerical evaluation of model performance [69,70]. The value of the AUC
was generally in the range from 0.5 to 1, where 0.5 denoted a purely random prediction
and 1 denoted a perfect prediction.

3.2. Assessment of Prediction Ability

In this section, we evaluated the proposed method under a five-fold cross-validation
based on three datasets. Firstly, the known association pairs were regarded as positive
samples, and the same number of non-association pairs were chosen randomly as negative
samples. The whole dataset was then randomly divided into five parts of the same size.
When one subset was used as a test set, the other four subsets were used as training sets to
construct features and train the model.

To better evaluate the prediction ability of the proposed methods, we used evaluation
indicators such as accuracy (Acc.), sensitivity (Sen.), specificity (Spe.), precision (Prec.) and
MCC separately to ensure the comprehensiveness and fairness of the experiment. The
results of the five-fold cross-validation on each dataset are shown in Tables 2–4. The ROC
curves and PR curves of the three datasets can be seen in Figures 3–6. Our method achieved
average accuracy of 86.46%, 87.56% and 82.16% with standard deviations of 0.48%, 0.30%
and 1.14% on the three datasets, respectively (Tables 2–4). Figure 4 presents the average
AUC and AUPR values of the proposed model on the three datasets. Overall, these results
indicate that the MFIDMA model worked well in predictions of DMA.

Table 2. The performance of the proposed method in ncDR datasets.

Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%)

1 86.94 82.51 91.37 90.53 74.17
2 86.32 84.19 88.45 87.94 72.71
3 85.82 80.94 90.7 89.69 71.98
4 86.94 84.64 89.24 88.72 73.96
5 86.27 85.54 87.00 86.80 72.54

Average 86.46 ± 0.48 83.56 ± 1.83 89.35 ± 1.75 88.74 ± 1.46 73.07 ± 0.95

Table 3. The performance of the proposed method in RNAInter datasets.

Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%)

1 87.20 88.50 85.89 86.25 74.42
2 87.72 88.85 86.59 86.88 75.45
3 87.28 87.11 87.46 87.41 74.56
4 87.81 88.33 87.28 87.41 75.61
5 87.80 89.02 86.59 86.90 75.63

Average 87.56 ± 0.3 88.36 ± 0.75 86.76 ± 0.63 86.97 ± 0.48 75.13 ± 0.59
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Table 4. The performance of the proposed method in SM2miR datasets.

Fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%)

1 81.34 77.93 84.74 83.63 62.82
2 82.98 80.52 85.45 84.69 66.04
3 80.63 76.53 84.74 83.38 61.48
4 82.51 78387 86.15 85.06 65.20
5 83.33 80.75 85.92 85.15 66.76

Average 82.16 ± 1.14 78.92 ± 1.78 85.40 ± 0.65 84.38 ± 0.82 64.46 ± 2.23
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3.3. Comparison with Other Embedding Methods

The topological feature generated by SDNE is an important part of the MFIDMA model.
To demonstrate the efficiency of SDNE, we conducted an experiment to compare SDNE and
three popular graph embedding methods in different dimensions. Using the same approach
of constructing topological features, three other state-of-the-art graph embedding methods
(i.e., LINE, Node2vec [71] and Laplacian Eigenmaps (LE) [72]) were utilized to extract the
potential graph relationship information and were compared with the SDNE algorithm. The
LINE method considered two kinds of proximities, the 1st-order and 2nd-order proximities,
and a leverage asynchronous stochastic gradient algorithm (ASGD) [73] to integrate the
two kinds of proximities. The Node2vec method is an improved on the DeepWalk method.
It uses biased random walks to sample on the network. Laplacian Eigenmaps is a matrix
factorization-based method, which can keep two nodes closely embedded when they have
high similarity. We set the parameters of these graph embedding methods to their default
setting except for the embedding dimension of the output.

Herein, we discuss the impact of the different embedding dimensions on the model
performance, with a range from 32, 64, 128, 256 to 512. We implemented four kinds of
graph embedding methods on the RNAInter dataset to obtain the topological features
in different dimensions and combined them with the attributed features generated by
Word2vec to construct a similar MFIDMA model. The experimental results of all models
are illustrated in Figures 7 and 8. The y-axis denotes the average AUC values and AUPR
values obtained by the corresponding model under the five-fold cross-validation. The
x-axis denotes five types of embedding dimensions. It is apparent from Figures 7 and 8
that the model using SDNE yielded the best AUC values and AUPR values among the four
kinds of embedding methods in the different embedding dimensions. Furthermore, closer
inspection of Figures 7 and 8 shows that the prediction model using SDNE achieved the
best AUC of 0.9444 and the best AUPR of 0.9382. In conclusion, the SDNE algorithm can
learn topological features from a large and sparse network like a drug–miRNA association
network better than other graph embedding methods. In addition, the combination of the
autoencoder and Laplacian eigenmaps is another reason why the SDNE can effectively
extract relationship information from the graph.

Moreover, Figures 7 and 8 show that the best AUC and AUPR are obtained when the
embedding dimension is 64. Thus, we set the embedding dimension of SDNE to 64 in this
study.
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3.4. Comparison with Other Classifiers

In this study, we leveraged CNN and DNN to integrate the topological feature and
attributed feature and complete the potential DMA prediction task. To discuss the impact
of the classifier on the proposed model, we compared our model with different classical
classifier in machine learning. It should be noted that we maintained the same feature
construction method and changed the classification model. Random forest (RF), Naïve
Bayes (NB), support vector machine (SVM) and Logistic Regression (LR) were compared
with our model. We employed the grid search method to find the optimal of SVM and RF.
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There are two parameters of SVM that need to be optimized: c (penalty parameters) and
g (kernel function parameters). In the experiments on the SM2miR dataset, we set c to 1
and g to 0.2. We also carried out the grid search method to optimize the three parameters
of RF. We set the n_estimator to 100, min_samples_split to 80 and min_samples_leaf to 10.
In order to highlight the effect of the classifier model, we chose a relatively small dataset
to reduce the influence of features on the classifier. We fed the features generated on the
SM2miR dataset into each classifier. The results of the five-fold cross-validation are shown
in Table 5. For intuitive comparison, the ROC curve and PR curve of each classification
model are shown in Figure 9. As shown in Table 5, RF, NB, SVM and LR obtained average
accuracy of 76.88%, 71.95%, 79.81% and 80.40%, respectively. Our model achieved the
highest accuracy of 82.16%. Our model also achieved the best results in the ROC curves
and PR curves, with AUC values of 0.8944 and AUPR values of 0.8818. Based on the results,
the combination of CNN and DNN was an effective method to infer potential DMA.

Table 5. The performance of the proposed method in SM2miR datasets.

RF NB SVM LR Ours

Acc. (%) 76.88 ± 2.13 71.95 ± 1.96 79.81 ± 1.29 80.40 ± 1.94 82.16 ± 1.14
Sen. (%) 66.67 ± 1.56 52.35 ± 1.84 76.53 ± 1.94 77.00 ± 1.58 78.92 ± 1.78
Spec. (%) 87.09 ± 0.96 91.55 ± 1.03 83.10 ± 0.73 83.80 ± 0.96 85.40 ± 0.65
Prec. (%) 83.78 ± 1.95 86.10 ± 0.65 81.91 ± 0.96 82.62 ± 0.73 84.38 ± 0.82
MCC (%) 54.91 ± 2.65 47.72 ± 2.61 59.75 ± 2.01 60.94 ± 2.10 64.46 ± 2.23

Biology 2022, 12, x   14 of 21 
 

  
(a) (b) 

Figure 9. (a)The ROC curves of the result generated by different classifiers using the SM2miR da-
taset. (b) The PR curves of the result generated by different classifiers using the SM2miR dataset. 

3.5. Ablation Experiment 
To evaluate the role of different features in the proposed method, we explored two 

types of features. In this study, we constructed an attribute feature, a topological feature 
and a combined feature to train the computational model on the three datasets. Figures 
10–12 represent the results of the five-fold cross-validation generated using different mod-
els with different features on the three datasets. 

 
Figure 10. Result of ablation experiment on the ncDR dataset. 

Figure 9. (a) The ROC curves of the result generated by different classifiers using the SM2miR dataset.
(b) The PR curves of the result generated by different classifiers using the SM2miR dataset.

3.5. Ablation Experiment

To evaluate the role of different features in the proposed method, we explored two
types of features. In this study, we constructed an attribute feature, a topological feature and
a combined feature to train the computational model on the three datasets. Figures 10–12
represent the results of the five-fold cross-validation generated using different models with
different features on the three datasets.

Figures 10–12 show that the attribute feature performed better than topological features
on small datasets. Extracting the attribute feature only required the SMILES of drugs and
the sequence of miRNAs. It was difficult to extract information from the association
relationships since the limited number of association pairs in the small datasets. The
topological feature performed well on datasets that were large and dense. This indicated
that the topological features make use of the structural information of the known association
network to predict the potential association pairs. The deficiency of the proposed method
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was the cold start problem. When a new drug or miRNA was added to the network, the
prediction performance of the proposed method was not satisfactory because of no known
association for reference. The attribute features were more practical for representing new
samples. Overall, the gap between the two different features in predicting DMA was
limited. These results indicated that we should flexibly combine the two kinds of features
according to the scale of the datasets.
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3.6. Method Comparison Experiment

To further demonstrate the performance of this model, we compared the proposed
method with other existing link prediction methods based on the average AUC metric (i.e.,
Neighbor-based CF, mRNA-based CF, SVD-based MF, EPLMI, MDIPA and GCMDR) [42,74–76].
Neighbor-based CF, miRNA-based CF and drug-based CF required self-similarity calculated
by the Pearson correlation coefficient of the miRNA and drug and used the collaborative filter-
ing method to infer the potential DMA. The SVD-based MF predicted the DMA by factorizing
the adjacency matrix of the miRNAs and drugs. The EPLMI method is a tow-way diffusion
model based on the profile similarity, which is proposed to predict the lncRNA and miRNA
association. The MDIPA is a novel DMA prediction method based on the self-similarity matrix
and neighbor information. The GCMDR is an end-to-end model combining an autoencoder
and GCN for predicting DMA. All of the different methods were implemented for the pre-
diction of DMA on the ncDR dataset. The result of the five-fold cross-validation is shown
in Table 6. As the result, the MFIDMA model outperformed the second-ranked model with
0.0048 in AUC value. In conclusion, the results indicated that the proposed method with a
better performance than previous computational methods could be a reliable computational
approach for the prediction of DMA on a large scale.

Table 6. Comparison of the prediction performance based on ncDR datasets.

Methods Average AUC

Neighbor-based CF 0.8644 ± 0.0009
Drug-based CF 0.7313 ± 0.0008

miRNA-based CF 0.8235 ± 0.0015
SVD-based CF 0.6007 ± 0.0052

EPLMI 0.8971 ± 0.0009
MDIPA 0.9081 ± 0.0038

GCMDR 0.9359 ± 0.0006
MFIDMA 0.9407 ± 0.0019

4. Case Study

To further evaluate the prediction capability of the MFIDMA method, we selected the
miRNA hsa-let-7c-5p and the drug Verapamil as objects to implement the proposed method
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as case studies based on the SM2miR v1.0 database. For Verapamil, we removed 167 known
DMA related to Verapamil from the dataset; the remaining association were regarded as
positive samples. Negative samples were randomly selected from the non-association pairs
in the dataset and on the same scale as the positive samples. The combination of the positive
samples and negative samples was treated as the training set to train the model. We then
connected hsa-let-7c-5pl with the other drugs for validation. After sorting the results of the
prediction scores in descending order, 9 of the top 15 candidate drugs were verified by the
PubMed literature. The result of the validation is shown in Table 7, and some supporting
evidence was found. For example, the expression level of hsa-let-7c-5p reduced in cells
resistant to gemcitabine [77]. Through inactivating the IL-6/STAT3 pathway, transfection
of hsa-let-7c-5p recovered the sensitivity to cisplatin [78]. The sensitivity of 5-Fluorouracil
was influenced by Akt2, which declined due to the over-activating of hsa-let-7c-5p [79].
Fulvestrant regulated the expression of hsa-let-7c-5p to affect Gefitinib [80]. Moreover, the
same approach was implemented on Verapamil with 5573 positive samples. Table 8 shows
10 of the top 15 candidate miRNAs that were verified from the RNAInter database, and
we have evidence to support them. For example, hsa-miR-34a-5p was down-regulated in
Verapamil-resistant MCF-7 breast cancer cells [81]. Hsa-miR-21-5p and hsa-miR-15a-5p
played regulatory roles in MCF7/AdrVp [82]. The results of the case studies indicated that
the proposed method could predict the drug–miRNA association with high efficiency and
robustness.

Table 7. The top 15 predicted drugs interacting with the miRNA hsa-let-7c-5p.

Rank Drug PubChem ID miRNA Evidence

1 Gemcitabine 60750 hsa-let-7c-5p confirmed
2 5-Fluorouracil 3385 hsa-let-7c-5p confirmed
3 Cisplatin 2767 hsa-let-7c-5p confirmed
4 Eloxatine 5310940 hsa-let-7c-5p confirmed
5 Doxorubicin 31703 hsa-let-7c-5p confirmed
6 Paclitaxel 36314 hsa-let-7c-5p unconfirmed
7 Ginsenoside Rh2 119307 hsa-let-7c-5p confirmed
8 D-Glucose 5793 hsa-let-7c-5p unconfirmed
9 Sunitinib 5329102 hsa-let-7c-5p unconfirmed
10 Verapamil 2520 hsa-let-7c-5p unconfirmed
11 Vincristine 5978 hsa-let-7c-5p confirmed
12 Tamoxifen 2733526 hsa-let-7c-5p unconfirmed
13 Gefitinib 123631 hsa-let-7c-5p confirmed
14 Etoposide 36462 hsa-let-7c-5p unconfirmed
15 PLX-4720 24180719 hsa-let-7c-5p confirmed

Table 8. The top 15 predicted miRNAs interacting with the Verapamil.

Rank miRNA Drug PubChem ID Evidence

1 hsa-miR-34a-5p Verapamil 2520 confirmed
2 hsa-miR-16-5p Verapamil 2520 confirmed
3 hsa-miR-155-5p Verapamil 2520 confirmed
4 hsa-miR-221-3p Verapamil 2520 confirmed
5 hsa-miR-21-5p Verapamil 2520 confirmed
6 hsa-miR-200b-3p Verapamil 2520 unconfirmed
7 hsa-miR-203a-3p Verapamil 2520 unconfirmed
8 hsa-miR-500a-5p Verapamil 2520 unconfirmed
9 hsa-miR-146a-5p Verapamil 2520 confirmed
10 hsa-miR-24-3p Verapamil 2520 unconfirmed
11 hsa-miR-145-5p Verapamil 2520 confirmed
12 hsa-miR-200c-3p Verapamil 2520 confirmed
13 hsa-miR-629-5p Verapamil 2520 confirmed
14 hsa-miR-29a-3p Verapamil 2520 confirmed
15 hsa-miR-126-3p Verapamil 2520 unconfirmed
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5. Conclusions

In general, it seems that as the understanding of molecular mechanisms improve,
it is suggested that the abnormal expression level of miRNA is associated with diseases.
Micro-RNA also offers a new insight into drug-target selection. Discovering DMA is crucial
to developing miRNA therapeutics and miRNA-target drugs. Consequently, several studies
have investigated the computational model to identify DMA. Herein, our study has offered
a multiple feature integrated model, MFIDMA, to identify the potential association between
drugs and miRNAs. In MFIDMA, we formulated the drug–miRNA network and utilized
SDNE to obtain the topological features. The miRNA sequences and drug SMILES were
regarded as a biological sentence and generated attribute features using the Word2vec
algorithm. The DNN and CNN models were then used to extract deep learning information.
Finally, the predicted results of DMA were obtained using a full connection layer with
integrated features. To assess the MFIDMA model, this was implemented on three datasets
with a five-fold cross-validation. Our model achieved average AUC values of 0.9407, 0.9444
and 0.8919 on three of the datasets we collected. In addition, we carried out case studies
and comparative experiments with other existing methods. Comprehensively, the results
of the abovementioned experiments illustrated that the proposed model can predict DMA
precisely and robustly. Moreover, in MFIDMA, we used miRNA sequence information and
drug SMILES instead of self-similarity, which allowed our model to process new miRNAs
and drugs. Future research will attempt to use side information about miRNAs and drugs
such as miRNA family information, drug fingerprints and miRNA-gene information.
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