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Simple Summary: Understanding the relationships between sets of regions across the brain is
critical to understanding of cognitive function. The application of graph theoretical analyses to
brain-wide immediate early gene expression density provides a means of studying these relationships
in freely behaving animal models. Here, we provide overviews of the steps required to apply these
techniques and acknowledge critical considerations which should be kept in mind when designing
and conducting these experiments.

Abstract: Studying how spatially discrete neuroanatomical regions across the brain interact is critical
to advancing our understanding of the brain. Traditional neuroimaging techniques have led to
many important discoveries about the nature of these interactions, termed functional connectivity.
However, in animal models these traditional neuroimaging techniques have generally been limited
to anesthetized or head-fixed setups or examination of small subsets of neuroanatomical regions.
Using the brain-wide expression density of immediate early genes (IEG), we can assess brain-wide
functional connectivity underlying a wide variety of behavioural tasks in freely behaving animal
models. Here, we provide an overview of the necessary steps required to perform IEG-based
analyses of functional connectivity. We also outline important considerations when designing such
experiments and demonstrate the implications of these considerations using an IEG-based network
dataset generated for the purpose of this review.

Keywords: immediate early genes; functional connectivity; animal behaviour; systems neuroscience;
brain-wide activity

1. Introduction

The brain is a complex and dynamic system across which the activities of many neu-
roanatomical regions fluctuate. These fluctuations form distinct patterns of coactivation,
otherwise known as functional connectivity [1]. These analyses most often use techniques
such as functional magnetic resonance imaging to infer regional activity throughout the
brain in real time [2–4]. While functional connectivity is commonly measured in humans it
has been less common to do so in animal models. However, similar imaging techniques
have been applied in animals but typically require anaesthesia or head fixation [5,6]. More
recently, advances in imaging of in vivo calcium or voltage sensors have been recognized as
another approach for assessing functional connectivity in awake animal models. Significant
advances have been made with these techniques, which can now image thousands of
neurons and large volumes of cortex in freely-behaving rodents [7,8]. While these advance-
ments enable exciting new ways to study neuronal population dynamics in vivo, these
approaches still do not permit imaging of the entire brain [9–11]. The temporal resolution
of these imaging techniques allows for assessments which can be time-locked to specific
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cognitive and behavioural states and has shed light on many aspects of brain-wide dynam-
ics [12–14]. However, due to limitations of anaesthesia head-fixation, or reduced field of
view during freely behaving tasks, many questions of brain-wide functional connectivity
have remained unanswered.

These limitations considerably restrict the tasks during which functional connectivity
could be studied in animal models. However, there are other markers of neuronal activity
which can be used to determine patterns of functional coactivation across a much broader
variety of tasks. IEGs are genes which are rapidly transcribed following neuronal activation.
While limited in their temporal resolution, several IEGs (such as c-Fos, zif268/Erg-1, and
arc) have had the time-course of their expression extensively studied with peak expression
occurring at specific temporal delays. Regional expression of IEGs can be used as a
post hoc histological assessment of the neuronal activity underlying a wide variety of
cognitive tasks [15–17].

By cross correlating regional IEG expression across a group of animals, as real time
imaging techniques would correlate across a timeseries, the extent to which fluctuations
in the activity of one neuroanatomical region are correlated with the fluctuations in the
activity of another region can be assessed. In assessing the correlated activity of all possible
pairs of brain regions, coactivation matrices can be generated [18,19]. These coactivation
matrices, also known as functional connectivity matrices, form the bases of IEG-based
functional connectivity analyses.

Since its first application on a brain-wide scale [17], the use of IEG-based functional
connectivity networks as a means of studying global patterns of coactivation has become
increasingly prevalent. In recent years, this approach has been used to map functional
connectivity underlying a wide variety of behavioural tasks [17,20–47] (See Supplemental
Table S1 for examples). Many of these behavioural tasks rely heavily on the movement of
the animal, with this readout often being the primary output of the task. We otherwise
would not have been able to access these networks using in vivo neuroimaging techniques,
such as functional magnetic resonance imaging.

IEG-based functional connectivity networks provide unique and important advance-
ment by ushering otherwise inaccessible animal cognitive behavioural tasks into the realm
of network neuroscience. In this review, we will discuss technical and analytical consid-
erations which should be kept in mind when designing an experiment using IEG-based
functional connectivity networks. Additionally, we will provide examples of the impli-
cations of these considerations using an IEG-based network which was generated for
this review.

2. How to Run the Analysis
2.1. Behavioural Tasks

Due to the insight that they are able to provide on the dynamics of brain-wide activity
in freely moving animals, IEG-based functional connectivity networks have been used to
study systems and circuits underlying many behavioural paradigms (See Supplemental
Table S1 for distribution of publications across various behavioural tasks and Figure 1
for an example workflow of the procedure). These investigations have yielded insight
into many cognitive processes, including the organization of memory storage, circuits
underlying prosociality, and the changes in the functional connectome which arise with
alcohol dependence [17,30,36].



Biology 2023, 12, 34 3 of 21
Biology 2023, 12, 34  3  of  21 
 

 

 

Figure 1. The generation and analysis of functional connectivity datasets from freely behaving ani‐

mal models with immediate early gene labelling. Following a behavioural task, animals are perfused 

at a temporal delay corresponding to the peak expression of the IEG of interest. (A) In cleared or 

sectioned tissue, IEGs are labelled and (B) imaged across the entire brain. Once images have been 

collected,  (C)  labelled IEGs are segmented  from background.  (D) Segmented IEG  labels are  then 

mapped across  the brain by registering  the  tissue  to a standardized brain atlas.  (E) The regional 

expression density of  IEG  labels  is  then cross correlated across a group of animals  to generate a 

correlated activity matrix. (F) In applying thresholds to the correlated activity matrix, binary func‐

tional connectivity networks can be  identified and  (G) network  topology can be analyzed using 

graph theory. 

2.2. Histology   

When designing an IEG‐based functional connectivity experiment, it is important to 

consider the benefits and limitations of different IEGs. Notable considerations of the ac‐

tivity proxies commonly used for the purpose of generating functional connectivity net‐

works have been highlighted below (see Supplemental Table S1 for distribution of publi‐

cations by IEG, and Supplemental Table S2 for an overview of some of the key technical 

considerations of several commonly used IEGs and other markers of cellular activity). Im‐

munohistochemistry (IHC) or in situ hybridization (ISH) can be performed, although for 

technical reasons it is much easier to perform IHC labeling especially for brain wide data 

sets. 

c‐Fos: This IEG was one of the first transcription factors whose induction was shown 

to be activity‐dependent and is expressed through the activation of the CREB/CRE com‐

plex. Primarily expressed in the nucleus, the c‐Fos protein is evenly distributed through‐

out the brain and its expression peaks at a temporal delay of 90 min after neuronal activity 

[48,49]. This  temporal delay coincides with a considerably wide tagging window, with 

detectable protein expression as early as 30 minutes after induction and remains elevated 

above baseline until 2 h after neuronal activity [50]. A wide tagging window can be bene‐

ficial in that the activity from an entire testing session can be captured, a feature which 

helped c‐Fos become the most studied IEG for IEG‐based functional connectivity analyses 

[51–55]. However, because of this wide tagging window, care must be taken to ensure that 

experimenters limit the extent to which they cause erroneous neuronal activity. 

zif268/Erg1: Like c‐Fos, the zif268/Erg1 family of IEGs serves as a ubiquitous, rapid, 

and  transient marker of cellular activity with nuclear expression. Additionally, several 

Figure 1. The generation and analysis of functional connectivity datasets from freely behaving animal
models with immediate early gene labelling. Following a behavioural task, animals are perfused at a
temporal delay corresponding to the peak expression of the IEG of interest. (A) In cleared or sectioned
tissue, IEGs are labelled and (B) imaged across the entire brain. Once images have been collected,
(C) labelled IEGs are segmented from background. (D) Segmented IEG labels are then mapped across
the brain by registering the tissue to a standardized brain atlas. (E) The regional expression density of
IEG labels is then cross correlated across a group of animals to generate a correlated activity matrix.
(F) In applying thresholds to the correlated activity matrix, binary functional connectivity networks
can be identified and (G) network topology can be analyzed using graph theory.

2.2. Histology

When designing an IEG-based functional connectivity experiment, it is important
to consider the benefits and limitations of different IEGs. Notable considerations of the
activity proxies commonly used for the purpose of generating functional connectivity
networks have been highlighted below (see Supplemental Table S1 for distribution of
publications by IEG, and Supplemental Table S2 for an overview of some of the key
technical considerations of several commonly used IEGs and other markers of cellular
activity). Immunohistochemistry (IHC) or in situ hybridization (ISH) can be performed,
although for technical reasons it is much easier to perform IHC labeling especially for brain
wide data sets.

c-Fos: This IEG was one of the first transcription factors whose induction was shown to
be activity-dependent and is expressed through the activation of the CREB/CRE complex.
Primarily expressed in the nucleus, the c-Fos protein is evenly distributed throughout the
brain and its expression peaks at a temporal delay of 90 min after neuronal activity [48,49].
This temporal delay coincides with a considerably wide tagging window, with detectable
protein expression as early as 30 min after induction and remains elevated above baseline
until 2 h after neuronal activity [50]. A wide tagging window can be beneficial in that the
activity from an entire testing session can be captured, a feature which helped c-Fos become
the most studied IEG for IEG-based functional connectivity analyses [51–55]. However,
because of this wide tagging window, care must be taken to ensure that experimenters limit
the extent to which they cause erroneous neuronal activity.
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zif268/Erg1: Like c-Fos, the zif268/Erg1 family of IEGs serves as a ubiquitous, rapid,
and transient marker of cellular activity with nuclear expression. Additionally, several
previously published manuscripts have used this marker for IEG-based functional connec-
tivity analyses [56,57]. However, these similarities aside, there are several key differences
between these zif268/Erg1 and c-Fos. Primarily, these two IEGs have similar protein ex-
pression and decay rates, but different mRNA temporal expression profiles [50]. Compared
to c-Fos, zif268/Erg1 expression density is also much more labile over time, decreasing
significantly in some regions with age while remaining stable in others [58]. Furthermore,
while present ubiquitously throughout the brain, the density of zif268/Erg1 receptors
varies considerably more from region to region than their c-Fos counterparts [59]. However,
zif268/Erg1 may provide a unique perspective when applied to network analyses due to
its ability to be both up- and down-regulated and the additional dynamic range that this
can provide to its expression [60,61].

Arc: Activity-regulated cytoskeleton-associated protein, or arc, accumulates at the
sites of synaptic activity. As is the case with many IEGs, arc expression varies across the
brain [62]. Arc protein regulates the density of AMPA-type glutamate receptors on the
surfaces of synapses, to the extent that its expression is tightly associated with the strength
of excitatory synapses [63,64]. Thus, this IEG has been the subject of much curiosity in
the learning and memory field [65–67]. Expression of the arc protein initially peaks at
90 min but can be detected as early as 30 min after neuronal activity, with expression levels
remaining elevated from baseline for 4 h after initial expression [68–70]. Additionally, a
second peak in arc protein expression has been observed at 12 h after neuronal activity [71].

Homer1a: Encoding a scaffolding protein within the postsynaptic density, the tran-
scription of the Homer1 gene undergoes a shift following neuronal activation [72]. This
activity-dependent shift results in the preferential expression of the short isoform of this
mRNA [72]. As such, the expression of short Homer1a protein may be used as a proxy of
neuronal activity. Homer1a has been implicated in enabling the necessary plastic changes
at the post-synapse during learning and memory processes [73,74]. Homer1a transcripts
are detectable within minutes of the onset of neuronal activity, with peak mRNA expression
occurring within the nucleus approximately 30 min after neuronal activity, before shifting
to cytoplasmic expression by 60 min [75–77]. The protein expression time course of this
IEG is relatively delayed, with variable reports of peak expression occurring between
2 and 3 h after neuronal activation [78,79]. This is accompanied by a slow decay rate, with
Homer1a protein levels remaining elevated above baseline until 8–12 h after neuronal
activation [80,81].

NPAS4: Neuronal PAS domain protein 4 is a calcium-dependent transcription factor
which contributes to the regulation of synapse development in glutamatergic and GABAer-
gic circuits [82]. As such, NPAS4 plays a critical role in regulating the excitatory-inhibitory
balance of neural circuits [83]. The expression profile of NPAS4 also varies between exci-
tatory and inhibitory neuron populations, with elevated levels of the transcription factor
being detectable for 7.5 h after neuronal activity in excitatory cells, but only for 3 h in in-
hibitory neuron populations [82,84]. In both cases, elevated NPAS4 can initially be detected
one hour after the onset of neuronal activity [82].

2.3. Imaging

Major technological advancement which may be contributing to the rise in popularity
of brain-wide IEG-based network analyses comes in the form of high-throughput imag-
ing techniques. These techniques, such as high-throughput slide scanning microscopes,
light sheet microscopy of cleared tissues, and serial two-photon tomography, have made
the imaging of whole-brain tissue sets increasingly efficient and accessible. Using these
techniques, we are now able to efficiently process histological markers of neuronal activity
across large tissue sets [85–87].
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2.4. Label Segmentation

Label segmentation is the process through which labels of interest are identified within
imaging datasets. While it is certainly possible to perform label segmentation manually,
the large-scale nature of the quantification required across many brain regions makes
this approach prohibitively time consuming. As such, an automated approach is greatly
preferred to facilitate consistent segmentation. There are several open-source options, such
as Ilastik, Cell Profiler, and 3DCellSeg, which serve as interactive and user-friendly tools for
the user-guided segmentation and classification of labels of interest [88–90].

2.5. Image Registration

Registration of histological images to neuroanatomical datasets on a brain-wide scale
can be a very time-intensive and complex task. Commercially available tools (e.g., Neu-
roInfo [91]) have been developed to facilitate the mapping of labels of interest throughout
histological samples. In recent years, open-source atlas registration tools, such as ClearMap,
Whole Brain, FASTMAP, DeepSlice, QuickNII, SHARCQ, CUBIC-Cloud, and BrainGlobe, have
also emerged as inexpensive and accessible options to further facilitate the registration
of biological images to neuroanatomical atlases [92–99] (See Supplemental Table S3 for
examples of open-source and commercially available tools for label segmentation and
atlas registration).

Many of these registration techniques enable atlas registration across multiple hi-
erarchical organizations. For example, many tools for registering mouse brains do so
based on the Allen Mouse Brain Atlas [100,101]. This hierarchically organized atlas has over
500 regions at its most detailed level; however, it also provides 10 other levels of regional
organizations which cover these regional subdivisions in increasingly broad organizations.
For example, at its most detailed level, the Allen Mouse Brain Atlas subdivides the primary
motor cortex into cortical layers (MOp1, MOp2/3, MOp5, MOp6a, MOp6b). As we move
up in the levels of organizational hierarchy, these layers become grouped together as the
primary motor area (MOp), then join a group to form the somatomotor areas (MO). Regions
can be organized even more broadly still, as isocortex, then cerebral cortex, then cerebrum.
Using this hierarchical organization, experimenters can determine which specific regional
organizations best address their experimental questions. The level of registration used
in these analyses should be granular enough to address the specific experimental ques-
tion while still being distinguishable by the experimenter based on the counterstain used
during registration.

2.6. Network Analyses

With regional IEG expression density across multiple animals, brain-wide functional
connectivity can now be assessed. In such analyses, functional connectivity reflects the
correlated activity of neuroanatomical regions across the brain. When the activity of a
pair of regions is highly correlated, they are determined to be functionally connected. In
such cases, regions are denoted as nodes and the functional connection that exists between
them is considered a vertex. Therefore, functional connectivity matrices can be generated
by cross-correlating regional IEG expression density across a group of animals [17]. It is
important to consider that while the relationship between regions with highly correlated
activity is functional, it does not imply direct structural connections between any pair
of regions [102].

The primary means of analyzing and comparing IEG-based functional connectivity
networks is through a branch of mathematics termed ‘graph theory’. Graph theoretical
analyses serve to elucidate the relationships between pairs of nodes, which in the case of
IEG-based functional connectivity networks are neuroanatomical regions. Measures of
network density and global efficiency can be calculated to assess the nature of network-wide
information flow; while measures of clustering coefficients and local efficiency examine
the extent to which information processing in localized to specialized subpopulations
within networks [103–105].
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Global network parameters allow for us to assess characteristics about the overall
organization of functional connectivity across the brain. They also allow for general
comparisons to random models to demonstrate the small-world-like network topology
which is characteristic of biological systems such as the brain [103,104,106–108].

On the level of individual regions, it is common to assess the number of functional
connections that each region is involved in, or its degree, as well as measures indicating its
relative importance to the maintenance of efficient informational flow across the network,
such as its centrality [105,109,110].

Open-source analysis packages have been developed for the study of each of these
metrics, and their relevance to neurobiological systems has been reviewed in great detail.
Readers are directed to these comprehensive reviews to explore analysis options for the
data generated from a brain-wide IEG activations study [105,111–113].

3. Critical Considerations
3.1. Behavioural Tasks

Many of the behavioural tasks which have been used for IEG-based functional con-
nectivity analyses are centered around a salient cue which yields a reliable behavioural
response with minimal drift in strategy, such as a tone during a cued fear conditioning
task [22]. There are benefits to selecting a task like this, as reduced variability in cognitive
strategy may yield reduced variability in underlying IEG expression patterns [114]. Fur-
thermore, the behavioural responses elicited by these cues are generally sustained for long
enough to induce considerable neuronal activity [115].

However, that is not to say that this technique cannot be used to examine behaviours
which shift over time or tasks which may evoke a wide variety of responses or strategies.
By comparing activity markers which reach their maximum express at different temporal
delays following the induction of neuronal activity, multiple networks can be generated
from the same behavioural task. For example, in tasks with delays between repeated
trials, trials could be planned around peaks in the expression profiles of different activity
markers. For example, neuronal activity underlying performance of a training trial and a
subsequent test trial in a forced alternation Y-maze task could be differentiated using in situ
hybridization. With a 30 min intertrial interval, a perfusion 30 min after the test trial would
align the training trial with the expected peak in cytosolic Homer1a expression (60 min post-
activity), and the test trial with the expected peak in nuclear Homer1a expression (30 min
post-activity). Furthermore, when assessing behaviours with very precise onset and offset
times, the activity underlying which could be washed-out using IEG Immunolabeling, can
be accessed using fluorescent in situ hybridization [116]. Facilitating both precise temporal
tagging and the assessment of activity across multiple timepoints, techniques such as
cellular analysis of temporal activity by fluorescence in situ hybridization (catFISH) could
provide even greater temporal control over network generation, allowing for comparisons
between network activity underlying distinct behavioural states within animals [117].

Another means of dealing with variability in behavioural response is to incorporate it
into the design of the networks. In tasks with a reliable distribution of cognitive strategies
upon which group sizes can be estimated in advance, animals can be assigned to groups
based on the strategies that they exhibit during the behavioural task. For example, it had
been reported that during a retrieval trial following contextual fear conditioning, 40% of
female rats may display a darting response [118,119]. Differences in memory expression
between rats exhibiting darting behaviour and those who displayed an increased rate
of freezing may coincide with differences in brain wide functional connectivity [114].
Therefore, grouping these animals together may result in a network topology that is not
representative of the functional connectivity underlying either darting or non-darting
responses. However, if group sizes are calculated with an a priori understanding of this
variability in behavioral strategy, it can be appreciated as part of the question, rather than
an uncontrolled confound.



Biology 2023, 12, 34 7 of 21

While these techniques provide new and exciting means of studying global brain
dynamics across a wide variety of tasks, it is important to be mindful of non-task specific
sources of activation. Animals from all groups should be habituated to experimenters
through repeated handling sessions and to transport between housing and testing facilities.
Factors such as time of day and recency of previous cage change should also be controlled
for across groups [120,121]. Furthermore, animals across all groups should be treated as
similarly as possible during the IEG tagging window to limit the influence of potential
confounding variables on the functional connectivity networks being compared. Being
cognizant of these potential sources of neuronal activation unrelated to the behavioural
task can help to ensure that the functional connectivity networks being studied are robust,
reproducible, and representative of the cognitive state being assessed in the task.

3.2. Histology

Consistent tissue sampling from across the entire range of the regions to be included
is critical to the generation of IEG-based functional connectivity networks. One of the inno-
vations in histological processing which has enabled this process thoroughly across intact
tissue is tissue clearing [122–125]. Tissue clearing techniques change the optical density of the
tissue sample to allow for brain-wide imaging of intact samples. Using this technique, we can
eliminate the risk of samples being damaged by sectioning and slide mounting artefacts. Many
of these techniques are amenable to immunostaining [86,126–128] and have already been used
for the generation of IEG-based functional connectivity networks [30,51,52]. Furthermore,
with the development of several transgenic IEG reporter lines [129–131], even tissue clearing
techniques which do not allow for immunolabelling can still be used to image brain wide
IEG expression [132].

While tissue clearing presents exciting possibilities in the generation of IEG-based
functional connectivity networks, it is important to consider that tissue clearing can be
a time-consuming process and requires special imaging platforms. It is important to
note however, that these requirements should not serve as a barrier to entry in the use
of IEG-based functional connectivity analyses. High quality networks can be generated
using serial tissue sectioning combined with standard immunostaining, and microscopy
techniques. Regardless of the tissue processing modality, high quality tissue processing is
critical in ensuring consistent and clear imaging, as both these will impact all subsequent
segmentation and registration efforts.

3.3. Imaging

Any analyses based on image analysis are highly sensitive to the parameters used
during image collection. This is particularly true for IEG-based functional connectivity
analyses, as imaging parameters will affect both the ability to segment labels of interest as
well as the ability to register these images to an atlas.

Brain-wide imaging will often represent a bottleneck in the analysis pipeline. As a
result of this it can be tempting to capture lower magnification images which decrease
acquisition times as well as data storage demands. It is important to consider the potential
limitations associated with the trade-off between image resolution and acquisition speed.
It is important to ensure that we are not limiting our ability to accurately segment our
labels during image collection. By selecting an imaging magnification which allows for
clear identification of labels based on morphological characteristics, we are able to restrict
our segmentation to only true cells expressing IEG labels. Furthermore, it is important
to maintain a wide dynamic range in the exposure of IEG labels, so as to avoid blurring
morphological features of interest.

Imaging magnification is also an important consideration for atlas registration, as it
will impact the ability to visually discern the bounds of neuroanatomical regions of interest.
In many cases, the differences in cell densities which denote the bounds between these
regions are quite subtle and may not be visually apparent at low magnifications. In such
instances, the magnification used during image collection will then limit number of regions
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which can be accurately delineated, thus restricting the regions which can be included in
analyses. Additionally, it is important to consider the sampling fraction used during image
collection. The majority of open-source and commercially available registration tools use
reference atlases composed to serial atlas plates from across a brain [93,133]. These plates
exist as sequential 2D planes, rather than as a 3D volume and thus occur over intervals
(e.g., 100 µm spacing between plates in the 2011 Allen Mouse Brain Atlas). For optimal
atlas registration, images should be gathered from the same 2D places as the target atlas.

3.4. Label Segmentation

Label segmentation is a critical step in any brain-wide analysis and as such, there are
several key considerations which should be kept in mind when establishing a segmentation
protocol for an experiment. One such consideration is the extent to which autofluorescence
may be influencing segmentation. Across many microscopy techniques, background
autofluorescence is highly variable from region to region. This can be influenced by
many factors, including regional differences in lipid densities, vascularization, and cell
densities [134–136]. As such, the segmentation of cells based on intensity relative to a
global background may result in poor segmentation in areas of high local autofluorescence.
Comparatively, segmentation techniques which detect objects based on local intensity are
better able to adapt to regional differences in background autofluorescence [137]. For this
reason, the segmentation of cells expressing the IEG label of interest simply based on a
global intensity threshold may be sufficient for individual regions but is rarely preferable
to segmentation based on local intensity thresholds on a brain-wide level.

Another important factor to consider is the fluorescent intensity range of IEG ex-
pression. Given the wide temporal expression profile of IEGs, there exists a wide range
of fluorescent intensities in the distribution of IEG+ cells. It is important that the range
of fluorescent intensities that the experimenter deems to be indicative of an IEG+ cell
remains consistent across all images. Doing so manually presents ample opportunity for
experimenter drift, which could drastically impact the results of the experiment.

Thirdly, segmentation can often be further complicated by the presence of artefacts
from histological processing. In such cases, nonspecific staining, bubbles, folds, tears and
debris may introduce noise to images. If not carefully considered, these artefacts can often
fall within the intensity range of the segmentation protocol. Therefore, it is important that
such protocols are able to consider the morphology of segmented object to classify objects
as a true IEG label or noise.

These factors combined; the use of semi-automated segmentation tools can improve
the consistency of this process within an IEG-based network analysis experiment. With tools
for identifying labels of interest based on local intensity values, the ability to consistently
examine labels within strict intensity bands, and the capability to differentiate true signal
from noise based on label morphology; semi-automated segmentation tools can greatly
facilitate the consistent segmentation and classification of IEGs throughout the whole brain.

3.5. Image Registration

The crux of the generation of IEG-based functional connectivity networks is in the
registration of labeled tissue to a neuroanatomical atlas. While in many cases, these
atlases represent either the ideal representative brain or a average brain derived from
many imaging datasets, it is important to consider than not all brains are identical. This is
particularly true after histological processing, which can impact the shape and size of the
brain. Accordingly, considerable care and attention must be taken during this process, both
in terms of node selection and the accuracy of the registration itself.

While standard neuroanatomical atlases often contain hundreds of regions, it is impor-
tant to consider how many of these regions can be realistically delineated manually without
an abundance of region-specific counterstains. There exists a delicate interplay between the
level of detail which can be registered using a single counterstain and the reproducibility of
atlas registration. Hierarchical atlas organization can assist users in selecting a list of nodes
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which is both all-encompassing and at a level which is feasible for accurate and reliable
delineation based on the counterstain being used.

Another important consideration while performing atlas registration is the suitability
of the registration technique for the images being registered. With a wide variety of atlas
registration techniques ranging from semi-automatic to largely automatic, the choice of
technique can significantly impact the ability to accurately register images. While often
significantly faster, many largely automatic registration techniques provide only minimal
opportunity for user intervention. With certain pairings of histological protocols and
registration tools, such as iDISCO and ClearMap, this works very well and greatly facilitates
the registration process [92]. However, many histological protocols have processes with
effects which cause tissue shrinkage [138–141]. This shrinkage is often uneven, and as a
result, tissue will no longer align properly with a superimposed neuroanatomical atlas [133].
Furthermore, even when using complimentary histological protocols and registration
techniques, atlases are often developed using specific strains, sexes, and ages; and deviating
from the standards used during development may result in slight variations in regional
boundaries [142]. Taken together, in most cases it is optimal to have some form of user
intervention in the form of a semi-automated image registration pipeline. In many such
pipelines, there is an initial atlas transform based on the gross morphology of the target
image followed by free-form or correspondence point-based morphing of the atlas to
align with the target image [93,94]. While slower than a fully automatic registration
protocol, semi-automated registration allows the experimenter to manually account for
tissue abnormalities and ensure to the best of their ability that regions of interest are
accurately delineated.

3.6. Network Analyses
3.6.1. Group Size

It is important to consider the effect of group size in this analysis. As the IEG-based
functional connectivity analyses are based on the correlation of IEG expression density
within a group, group sizes should be sufficient to yield robust correlations without effects
being driven by outliers. Correlation analyses produced from small group sizes are vulner-
able to outliers that can drastically change the strength, significance or even direction of the
relationship between variables [143–146]. It is critical to have sufficiently large group sizes
to minimize spurious correlations as this will fundamentally change the topography of the
network that is generated. To illustrate the consequences of performing this analysis with
insufficient group sizes, we analyzed a functional connectivity network using subsets of the
total sample size. We first generated pairwise correlation matrices by cross-correlating c-Fos
expression density in 60 neuroanatomical regions across a group of 12 mice following con-
textual memory recall. As expected, c-Fos expression density was found to be significantly
correlated between some pairs of regions (basolateral amygdala —basomedial amygdala;
Figure 2A), but not significantly correlated between others (basolateral amygdala—ventral
pallidum; Figure 2C). Using this dataset, we then produced subsets of mice to examine the
impact of sample size on this correlation matrix. Mice were systematically removed from
the analysis and correlation matrices were recalculated to obtain networks of all possible
combinations of mice for group sizes between n = 3 to n = 12. As group size decreased,
correlations which had been statistically significant across larger samples sizes showed
increased occurrence of statistically nonsignificant correlations, or “false negative” results
(Figure 2B). Furthermore, when examining a correlation which had previously been not
statistically significant, there was an increased rate of occurrence of statistically significant,
or “false positive”, correlations (Figure 2D). The variance of the p value distribution was
calculated for each pair of regions across same-sized networks. As group sizes increased,
the mean variability of the p values decreased, indicating that the statistical predictability
of each correlation became more consistent with increased group size (Figure 2E). This
variability was further reflected in the distribution of the connections within the network.
When comparing the regional degree, we see fundamental differences in the organization
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of the network between the full network (n = 12) and the network with the median p value
variance at a smaller group size (n = 5; Figure 2F). These differences in organization would
have considerable impact on the interpretations that can be formed from these networks.
Therefore, it is crucial that small group sizes are avoided when designing such experiments.
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Figure 2. The influence of group size on IEG-based functional connectivity analyses. Regional c-Fos
expression density was cross-correlated across 60 neuroanatomical regions (See Supplemental Table
S4 for full list of region names and abbreviations) in a group of n = 12 mice. The activity of the
BLA was significantly correlated with the activity of the BMA (A; Pearson r = 0.6193; p = 0.0318)
but did not correlate with the activity of the PALv (C; Pearson r = 0.2539; p = 0.4258). (B,D) The
statistical significance of these correlations was assessed across all possible combinations of these
12 mice in groups of n = 3 to n = 11. (E) The variance of these distributions was plotted for every
possible correlation across the entire dataset of 60 neuroanatomical regions. (F) The network with the
median variance in p value of all possible combinations of 5 mice displayed drastically altered global
degree distribution compared to the the network constructed from the group of 12 mice. All data is
presented as (A,C) linear regression line ± 95%CI, (B,D) mean ± 95%CI, and (E) median ± quartile
ranges. See Supplemental Table S5 for data used to generate these figures.
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3.6.2. Network Thresholding

When conducting graph theoretical analyses, coactivation matrices can either be
analyzed as weighted networks or binary, unweighted networks [147]. In the field of
IEG-based functional connectivity networks, weighted network analyses—wherein each
correlation retains its weight in the form of the magnitude of the correlation coefficient—are
rarely applied quantitatively. Most studies using this approach to assess network properties
within this domain will filter their matrices by statistical significance but refrain from
binarizing these plots. From these networks, it is common to see descriptive comparisons
of trends in the correlation magnitudes between pairs of regions across conditions [42].

More commonly, regional coactivation matrices are binarized for unweighted network
analyses. It is not uncommon to consult a critical values table and filter by the Pearson’s
correlation coefficient corresponding to an alpha value of 0.05 for a particular group size [17];
however, it is important to demonstrate that the results described in subsequent network
analyses are not being influenced by the thresholding parameters. As demonstrated in
Figure 3, many of the pertinent features of network topology remain consistent across
various thresholding parameters. However, measures of global density and efficiency are
sensitive to these thresholds and between group differences may not consistently hold true.
Therefore, it is critical that findings are assessed at multiple thresholds to ensure that results
are robust and not subject to experimenter bias.
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Figure 3. The influence of network threshold on binary network topology. (A) Unweighted pairwise
correlation matrix denoting the correlated activity between all pairs of neuroanatomical regions in a
cohort of n = 12 mice. Each row and column represent a distinct neuroanatomical region, with the
intersection of each row and column representing the magnitude of the correlated c-Fos expression
density between regions. Thresholds of α ≤ 0.05 (B,E), α ≤ 0.005 (C,F), and α ≤ 0.0005 (D,G), were
applied to binarize the correlation matrix. Binarized matrices are represented as adjacency matrices
(B–D) and as circle plots (E–G). See Supplemental Table S4 for full list of regions. See Supplemental
Table S5 for data used to generate these figures.

Positive and Negative correlations: When considering network thresholding, it is also
important to consider that statistically significant correlations can occur in both positive
and negative directions. Often, anticorrelations are excluded from analyses or their absolute
value is studied; however, there is considerable debate about the justification behind these
exclusions or adjustments [148–151]. While present in much lower proportions relative
to the density of positive correlations in functional connectivity networks [17,20], their
presence is still part of a biological network and thus their exclusion or modification thus
obscures the interpretations which can be gleamed from such analyses. One potential
interpretation of anticorrelations in functional connectivity is that these relationships might
indicated shifting between network states, such as the transition from the classical patterns
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of brain activity during rest versus brain activity while engaged in focused cognitive
processes [150]. Future studies would benefit from further consideration of the relationships
being represented in anticorrelated datasets.

4. Future Directions

In its current state, brain-wide IEG-based functional connectivity mapping has many
benefits, but it is important to acknowledge the means through which it can be improved
upon. Many IHC-based approaches are limited by wide protein expression time courses,
drastically reducing the temporal specificity of the approach. However, the temporal
resolution of ISH is much narrower and in some scenarios may be a better choice. While
ISH may be more complicated to apply to a large brain-wide scale than IHC techniques,
several recent advances in the technique have made this application more feasible [152,153].

Additionally, several transgenic activity reporter lines are now available that leverage
IEG promoters to fluorescently tag active neurons [130,154–161]. For more information on
these approaches, the use of these genetic manipulations for accessing activated neurons
has been reviewed extensively by DeNardo and Luo [162]. These transgenic lines may be
useful for brain wide activity mapping studies, but care should be taken to ensure that the
labeling is specific to the cell type of interest and widespread in the sense that it is able
to be expressed in all regions of interest. This requires careful validation of expression
throughout each of the regions of interest.

Finally, bringing awareness to the careful considerations which should be made
while planning and conducting these analyses will contribute to the advancement of this
technique. With improved awareness of the benefits and limitations of this technique, there
is hope that it will be responsibly applied to appropriately designed studies to provide
interesting new theories and developments in the neurosciences.

5. Conclusions

Underlying cognitive processes are brain-wide patterns of activity. Traditional ap-
proaches to measuring this functional connectivity have established many analysis tech-
niques and have opened many paths towards the goal of better understanding the brain.
However, technical limitations often restrict the ability of these approaches to be applied to
certain behavioural tasks in animal models. IEG-based functional connectivity networks
provide a powerful approach to assess these otherwise unanswerable questions.

While the ability to gleam insight into functional connectivity in freely behaving animal
models fosters the assessment of brain-wide dynamics across a wide range of otherwise
inaccessible questions, it is important to acknowledge the caveats of this approach. In
correlating across a group, rather than across a timeseries as is typical of other neuroimaging
techniques, functional connectivity is assessed at a group level rather than at the level
of the individual. Therefore, this technique will yield network analyses that are only as
homogenous as the patterns of brain wide activity of the members of the groups being
analyzed. Due to this caveat, we propose that IEG-based functional connectivity analyses
should not be viewed as a replacement to other neuroimaging techniques, but rather as
a complementary approach which expands our ability to infer functional connectivity
during behavioural episodes and can identify regions for other, more temporally dynamic,
techniques to explore.

Furthermore, it is important to consider the limitations of the interpretations which can
be made developed from these analyses. In the absence of a targeted stimulation to initiate
activity at a seed region, IEG-based functional connectivity networks should not be used
to interpret causal relationships between pairs of regions. Rather, these analyses provide
the ability to parse functional relationships between pairs of regions on a brain-wide scale,
providing insight into the distribution of activity and highlighting key regions. The benefit
of such an approach may be in identifying relationships between distant pairs of target
regions for future investigation.
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In the present review, we have presented several critical considerations which should
be kept in mind when conducting IEG-based functional connectivity analyses. We have
also presented examples of the implications of these considerations. We hope that these
points will help to guide the statistically responsible and reproducible use of this technique
moving forward and as a guide for anyone who wishes to incorporate these techniques in
their quest to better understand the brain.

6. Methods
6.1. Mice

8-week-old C57BL/6J mice (JAX) were used for all experiments. Mice (n = 12) were
housed in standard cages with three to five mice per cage and free access to food and
water. The room lighting was maintained on a 12 h/12 h light/dark cycle (light on
8:00–20:00). Behavioural testing was conducted during the light cycle phase. Experiments
were conducted in accordance with the policies and guidelines of the Canadian Council on
Animal Care and were approved by the University of Calgary Animal Care Committee.

6.2. Contextual Fear Conditioning

Mice were trained in contextual fear conditioning. Training was conducted in sound-
attenuated chambers with grated floors through which shocks (0.5 mA; 2 s) were delivered
(Ugo Basile, Germonio, Italy). Mice were allowed 5 min to acclimate to the chamber
before receiving their first shock. In total, 5 shocks were delivered over the course of a
single 20 min training session. 48 h after training, mice were returned to the conditioning
chambers for an 8 min retention test. During this test, no shocks were administered and
behavioural was monitored via and overhead, infrared camera in conjunction with an
automated tracking software (ANY-maze, Stoelting, Wood Dale, IL, USA). The chambered
was cleaned using 70% ethanol and allowed to dry before and after each trial.

6.3. Perfusions and Histology

Mice were transcardially perfused with 0.1 M phosphate-buffered saline (PBS) fol-
lowed by 4% formaldehyde 90 min after retention testing. Brains were then extracted
and postfixed in 4% formaldehyde for 24 h before cryoprotection in 30% w/v sucrose
solution at 4 ◦C until no longer buoyant. Serial sagittal sections were cut on a cryostat
(Leica Biosystems, Concord, ON, Canada) at 40 µm and stored in 12 series at −20 ◦C in
antifreeze solution.

Immunohistochemistry: Tissue sections were washed 3 times (10 min per wash) in
0.1 M PBS before being incubated in a primary antibody solution of 1:2000 rabbit anti-c-Fos
(RPCA-c-FOS; EnCor Biotechnology, Gainesville, FL, USA), 3% normal goat serum, and
0.3% Triton-X100 for 48 h at room temperature on a tissue shaker. Tissue sections were
washed 3 times in 0.1 M PBS before 24 h incubation in 1:500 goat anti-rabbit Alexa Fluor 647
(111-605-003; Jackson Immuno, West Grove, PA, USA) in 0.1 M PBS. Sections were DAPI
stained (1:1000, 15 min) before being washed 3 times and mounted to glass slides. Slides
were coverslipped with PVA-DABCO mounting medium.

6.4. Brain-Wide c-Fos Quantification

All slides were imaged as a single batch using an Olympus VS120-L100-W slide
scanning microscope (Richmond Hill, ON, Canada). Images were collected using a
10× objective with a numerical aperture of 0.40 and a Hamamatsu ORCA-Flash4.0 camera.
Labelled c-Fos was imaged using a CY5 filter cube and a 9.00 V lamp at an exposure time
of 70 ms. DAPI staining was imaged under the same conditions, but with a DAPI filter
cube and an exposure time of 12 ms. Cells expressing a c-Fos label were segmented using
the machine learning-based pixel and object classification program, Ilastik [88]. Images
were further preprocessed using a custom ImageJ macro script to yield binary images of
segmented c-Fos labels and a mask of evenly spaced grid-points (22 µm spacing) arranged
as a mask for each tissue section. Registration of these images based on the DAPI channel to
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the Allen Mouse Brain Atlas using the R-based Whole Brain software [93] provided regional
counts of c-Fos and grid points. Using a Cavalieri-based point counting approach, regional
grid points were used to calculate the area of each region and facilitated the assessment of
regional c-Fos expression density [29].

6.5. Functional Connectivity Network Generation and Analysis

Functional connectivity analyses were focused to a collection of 60 regions based on
our ability to reliably delineate these regions using a DAPI stained images as reference (see
Supplementary Data S1 for list of regions). The density of regional c-Fos expression was
cross-correlated within each group to generate pairwise correlation matrices. Correlations
were filtered by statistical significance and a false discovery rate of 5% [163,164]. All
network analyses were conducted on binary adjacency matrices. Correlation matrices
were binarized using several pairings of correlation coefficient and alpha value thresholds.
The stringency of these thresholds was varied to demonstrate the potential influence of
thresholding parameters on subsequent network analyses. From each binary matrix, the
neuroanatomical regions were plotted as nodes and connections were drawn between
nodes whereby correlations surpassed thresholding parameters.

6.6. Statistical Analyses

All analyses of functional connectivity networks were conducted using custom MAT-
LAB analyses. Figures were generated using GraphPad Prism (GraphPad Software, San
Diego, CA, USA), MATLAB R2020a (The MathWorks Inc., Natick, MA, USA),
Cytoscape [165], and Adobe Illustrator 2020.
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https://www.mdpi.com/article/10.3390/biology12010034/s1, Table S1: Publications using IEG-
based functional connectivity analyses; Table S2: Immediate Early Genes; Table S3: Registra-
tion and Segmentation Tools; Table S4: Region list for the present IEG-based functional connec-
tivity analyses; Table S5: Data used for the generation of all figures in the present manuscript.
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