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Simple Summary: Protein–protein interactions (PPIs) are the basis for understanding cellular events
in biological systems. Experimental biochemical, molecular, and genetic methods have been used to
identify protein–protein associations. However, they are time-consuming and expensive. Machine
learning techniques have been used to characterize PPIs, optimizing time and resources. This study
aimed to generate a relevant protein sequence with partial knowledge of interactions by conducting
a scale-free and fractal analysis. The outcome of these analyses is then used to fine-tune the fractal
method for the vital protein extraction of PPI networks. The results show that several PPI networks
are self-similar or fractal, but not both of them. The generated protein sequences by the deep learning
network contains an important number of proteins of the original sequence. Moreover, most of the
PPIs of generated sequences appear in the original set. This information can help researchers guide
experimental design and find key points for new therapeutics.

Abstract: Protein–protein interactions (PPIs) are the basis for understanding most cellular events in
biological systems. Several experimental methods, e.g., biochemical, molecular, and genetic methods,
have been used to identify protein–protein associations. However, some of them, such as mass spec-
trometry, are time-consuming and expensive. Machine learning (ML) techniques have been widely
used to characterize PPIs, increasing the number of proteins analyzed simultaneously and optimizing
time and resources for identifying and predicting protein–protein functional linkages. Previous ML
approaches have focused on well-known networks or specific targets but not on identifying relevant
proteins with partial or null knowledge of the interaction networks. The proposed approach aims to
generate a relevant protein sequence based on bidirectional Long-Short Term Memory (LSTM) with
partial knowledge of interactions. The general framework comprises conducting a scale-free and
fractal complex network analysis. The outcome of these analyses is then used to fine-tune the fractal
method for the vital protein extraction of PPI networks. The results show that several PPI networks
are self-similar or fractal, but that both features cannot coexist. The generated protein sequences (by
the bidirectional LSTM) also contain an average of 39.5% of proteins in the original sequence. The
average length of the generated sequences was 17% of the original one. Finally, 95% of the generated
sequences were true.

Keywords: scale-free; fractals; complex networks; protein–protein interactions networks;
bidirectional LSTM

1. Introduction

Protein–protein interactions (PPIs) are the basis for understanding most cellular events
in biological systems. Several methods have been used to identify protein–protein associa-
tions, to study and understand a cell’s physiological activities, such as signal transduction,
transcriptional regulation, and metabolic and regulatory pathways, and even to investigate
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therapeutic targets. Experimental methods, such as biochemical methods in cell cultures [1]
and living organisms [2], have been used to determine direct interactions in order to eval-
uate binding affinities in real time [3], examine pathogens’ virulence [4], quantify and
visualize PPIs in cells and tissues [5], and understand the nature of PPIs during biogenesis
reactions [6]. Moreover, molecular methodologies have been included to detect specific PPIs
and develop antifungals that disrupt virulence [7], characterize and screen protein–protein
complexes in a model antibody-antigen system [8], map and quantify effector–host PPIs
during an infection [9], and detect and characterize PPIs in vivo and in vitro assays [10].
Finally, genetic approaches have been used to identify phase mutations (G2/M or G1/S)
regulated by protein–protein interactions on eukaryotic cells [11], understand the cellular
construction of nanostructures through protein–protein interactions [12], identify the phys-
ical interactions and screen mutation function of some enzymes in a yeast network [13],
and detect genetic interactions as potential anticancer therapeutic targets [14]. However,
most of them are time-consuming and expensive.

Additionally, in silico approaches allow for modeling molecular interactions [15],
testing conformational changes of protein–protein docking and protein–DNA docking [16],
detecting enzyme activity [17], structurally characterizing two different molecules [18], and
even designing new therapeutics. In the same way, datasets are used to identify functional
interactions and detect likely PPIs [19], infer functionally similar genes, and understand the
pathogenesis of the disease [20]. Nevertheless, experimental and computational methods
are individually designed and are carried out for specific interactions.

Machine learning (ML) techniques have been widely used for characterizing sequences
of PPIs [21,22], considering the amino acid residue as the interaction site [23] and transform-
ing biological sequences into numerical representations [24], thus increasing the number
of proteins analyzed simultaneously and optimizing time and resources. In most cases,
different ML approaches have been used in computing PPI networks, using well-known
physiochemical properties and evolutionary profiles. However, to the best of our knowl-
edge, all investigations have focused on well-known networks or specific targets, not on
identifying relevant proteins with partial or null knowledge of the interaction network. This
work aims to generate a relevant protein sequence based on bidirectional Long-Short Term
Memory (LSTM) without knowledge of their specific interactions. The proposed approach
has roots in the complex network analysis pursuing two purposes: to give evidence that
several PPI networks are fractal but not scale-free and to extract the relevant proteins based
on fractality. The relevant protein sequences (extracted from known PPI networks in which
target proteins partake) are the cornerstone to building a bidirectional LSTM network; the
LSTM will then generate a sequence based on target proteins.

Related work and preliminaries that underpin this research will be introduced be-
low, followed by a presentation of the methodology and the results. The discussion and
conclusion will be given afterwards.

2. Related Work

ML techniques have been used on molecular and cellular levels to model, identify,
and predict binding interactions. The support vector machine algorithm has been used
to predict interactions of a pair of proteins [25,26]. Deep-learning neural networks have
been employed to design novel peptides [27]. On the other hand, based on physical
and semantic information about amino acids, the support vector machine classifies the
sequences (of a fixed length n and a set of 20 amino acids) [28] as positive (they exist)
or negative. Similarly, for predicting host–pathogen PPIs, an LSTM was developed to
identify the positive sequence of amino acids [29]. The approaches in [28,29] have a high
accuracy, of more than 0.98. An LSTM can also identify matches of PPIs from four different
species with prediction accuracies of more than 0.92 (rodent: 0.92; bacterium: 0.96; fly: 0.98;
nematode: 0.99) [30]. In the same way, PPIs of primary amino acid sequences across species
were identified in [31]. The deep neural network provides the probability that a pair of
proteins interact, and these candidate interactions are compared with those that occur to
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evaluate the performance. The precision ranged from 0.51 to 0.58, and the recall ranged
from 0.22 to 0.54, depending on the species.

Furthermore, classical ML algorithms such as naive Bayes and the support vector
machine have been employed to differentiate expressed genes [32,33] and validate gene
biomarkers [34]. These approaches used relevant nodes from PPI networks that usually are
extracted based on centrality measures such as node degree, closeness, and betweenness.
Moreover, ML tools have helped to classify diseases [35] and prognostic mutations [36]
and detect molecular diseases [37] based on PPI, as well as to identify infectious diseases
and the PPIs between humans and viruses [38–40]. Furthermore, clustering methods
on PPI networks have been employed to construct hierarchy trees and detect functional
modules [41].

Complex network analysis, such as the fractal dimension of PPI networks, has been
employed to detect the sets of PPIs that form subnetworks. In this approach, the fractal
dimension is the clustering metric that considers the number of nodes and edges in the
boxes computed by the sandbox algorithm [42]. Furthermore, the fuzzy fractal dimension
of PPI networks has been used to identify the essential proteins in PPI networks [43].
The crucial scale-free property of the dementia and hereditary Parkinson’s PPI networks
emerges when the vital proteins are deleted from them, revealing their importance not only
in the biological process but also in the network’s topology [44].

The previous work shows that the ML approaches infer potential interactions, validate
previous results, and analyze PPI networks. Deep learning techniques, such as LSTM, and
classical machine learning, such as support vector machine algorithms, have shown that
they can classify sequences and discern between positive and negative PPIs. Nevertheless,
they cannot create new long sequences, as is the purpose of this work. The new unknown
PPI sequences obtained by computational methods could help biologists to guide investi-
gations and reduce research time, experiments, and laboratory consumables, leading to the
development, design, and discovery of effective drugs acting on these new interactions.

3. Preliminaries
3.1. The Scale-Free Property of Protein–Protein Networks

The topology of PPI networks, like complex networks, is influenced by preferential
connection, attraction, and repulsion between hub nodes, directionality, and the number of
connections [45]. Additionally, complex networks may have small-world and scale-free
properties that influence their resilience. The resilience of networks has received relevant
attention in recent years [46–48]. Scale-free networks are known to be resilient to random
attacks but not directed ones, especially to nodes with greater importance. An example of
directed attacks is selecting the highest-degree nodes and deleting them.

A network has the property of being scale-free if the degree of the nodes follows a
power law distribution:

P(k) = k−α, (1)

where α > 1 (scale exponent), k >= kmin >= 1.
A power law with exponential cutoff is also a scale-free model, defined as

P(k) = k−αe−λk, (2)

On the other hand, the networks where the probability distribution of the degree
follows an exponential one do not possess a scale-free property.

P(k) = e−λk, (3)

where λ is the decay exponent.
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Furthermore, Weibull and log-normal generalize the exponential distribution defined
by Equations (4) and (5), respectively.

P(k) = e−( k
λ )

α
, (4)

where α is the shape parameter, and λ is the scale parameter.

P(k) =
1
k

e−
(log k−µ)2

2σ2 , (5)

where µ is the mean, and σ is the standard deviation.

3.2. The Fractal Dimension of Protein–Protein Networks

From a geometric perspective, a fractal is an object (for example, a compact set) that
is similar to parts of itself [49] with a non-integer Hausdorff dimension that is strictly
greater than the topological dimension (it is always an integer) [50]. The box-counting
dimension is more appropriate than the Hausdorff dimension to measure the roughness
of an object [51]. Based on these ideas, the box-counting dimension (db) for a complex
network was introduced in [52,53], and when it follows a power law as

Nb(l) ∼ βl−db , (6)

the network is said to be a fractal network. Nb(l) is the minimum number of boxes of
size l needed to cover the network. The box-counting dimension quantifies the pattern’s
complexity as a ratio of the change in detail to the change in scale. If the number of boxes
follows an exponential function, it is not a fractal network.

Nb(l) ∼ βe−db l . (7)

Two models for complex networks with an extra parameter have been proposed [54,55],
known as the delayed fractal,

Nb(l) ∼ β
τ + 1

τ + ldb
, (8)

and the delayed exponential,

Nb(l) ∼ β
τ + 1

τ + edb l , (9)

where db is the box count dimension, β is the scale factor, l is the diameter of the boxes to
cover the network, and Nb(l) is the number of boxes for Equations (6)–(9). τ >= 0 is known
as the delay parameter in Equations (8) and (9).

3.3. Extraction of the Relevant Proteins of the Interaction Network

PPI networks are complex [56–58] and could have a fractal topology [55]. The fractality
is the key to extracting relevant nodes of a network in order to destroy it by identifying net-
work boxes [46]. In a fractal network, the boxes contain a hub (a node where several nodes
are connected), and those boxes are usually connected to others by the hub (assortativity).
The most relevant nodes, if the network is fragmented, can be identified by eliminating the
nodes with the highest betweenness within a box. These nodes are considered relevant.
Deleting high-ranked betweenness nodes could make others disconnected; these “satellite”
nodes are not regarded as relevant [46]. The fractal methodology performs better than the
degree, betweenness, and PageRank methods on fractal and non-fractal networks; for more
details; see [46].

Figure 1 is an example of the nodes distributed in four boxes (each color representing
a box). The first step in fragmenting the network is to identify and delete the node with
the highest betweenness for each box (Node 36, 29, 26, and 32, ordered from the highest to
lowest betweenness value; see Figure 1a); consequently, Node 33 turns out to be a satellite
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node. In the next step, Node 2, 14, 24, 18, and 35 are identified as new relevant nodes.
These steps are repeated until there are no connected nodes (Figure 1b).

Figure 1. Steps of extracting relevant nodes by the fractal method. The nodes are distributed in four
boxes, each color representing a box. (a) First extraction step. (b) Second extraction step.

Extracting vital nodes can identify the relevant proteins of the interaction network.
Once an ordered list (from the most relevant to the least) of proteins is obtained, the
subnetwork formed by those proteins and their respective arcs contains fewer nodes and
arcs than the original one. On the other hand, selecting the nodes with the most connection
is an effective method of destruction when the networks are scale-free [59] since these
nodes maintain connectivity [60].

4. Method
4.1. PPI Network Collection

Cytoscape 3.9.1 [61] with the plugin stringApp was used to visualize and retrieve
networks from the STRING database [62]. The query was performed on the DISEASES
database [61], and the result was exported as a network. Several search terms and suffixes,
such as “aortic”, “astro”, “ataxia”, “biotin”, “bull”, “cal”,“cardiac”, “iso”, “tumor”, “type”,
“valv”, “veno”, “viral”, and “vitelli” (Table S1 shows all terms and suffixes), were used
one by one in different queries. Using two or more terms in the same query produces
no results. All PPIs were considered to build the networks, regardless of whether they
were experimental or not. A total of 476 human PPI networks were exported from the
DISEASES database, and two more were exported from the BioGRID database (https:
//thebiogrid.org/, last accessed on 30 December 2022) to compare our results using a
different source. The networks were retrieved by expanding the number of nodes to the
maximum allowed by the Cytoscape stringApp in each query. Finally, networks with more
than 101 nodes were selected. The average and standard deviation of the number of nodes
were 658.36 and 648.99, respectively; for further detail on the number of nodes of each
network; see Table S3. The networks from BioGRID are the last two rows of Tables S2 and S3.
Before being analyzed by the scale-free property and fractality, the largest component of
each network was selected. An organ is a group of tissues that perform a specific function,
and a system is a group of organs that work collectively to accomplish more than one
function. Table 1 shows the number of networks grouped manually by the functions of
human organs to match networks with proteins in common. The PPI networks could
belong to more than one class because some share functions in more than one human organ.

https://thebiogrid.org/
https://thebiogrid.org/
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Table 1. Classification of PPI networks by functions of human organs.

Functions of Human Organs PPI Networks

Immune 38

Metabolism 27

Motor 45

Nerve 67

Bone 79

Endocrine 43

Cardiovascular 27

Brain 45

Generalized 28

Others 232

4.2. Analysis of the Scale-Free Property and Fractality

The node degree distribution of each PPI network was fitted to the power law
model (1), the power law model with a cutoff (2), the exponential model (3), the Weibull
model (4), and the log-normal model (5). The best model was selected based on the Akaike
Information Criterion (AIC) [63], according to ∆AIC, computed as follows. First, the AIC of
ith model AICi was obtained; in our case, i stands for the power law model, the power law
model with a cutoff, the exponential model, the Weibull model, and the log-normal model.
The ∆AICi was computed, selecting the minimum AIC over all models tested AICmin and
subtracted to each AICi. The model’s ∆AIC with the minimum AIC was 0; thus, this
model could be considered the first candidate. Following the rule of thumb [64,65], the
first candidate model was different from the others with sufficient statistical evidence (and
must be selected as the best) if the ∆AIC is greater than 2. However, the models cannot
be differentiated. The AIC selection differs from the likelihood–ratio test employed in [66]
since AIC deals with the tradeoff between the goodness of fit and the model’s simplicity.
The fit of each model was computed in Matlab R2022a using the f itdist function, except for
(1), which was computed using the approach introduced in [67], which searches for Kmin
(described in Equations (1)), which minimizes the distance between the observed data and
the power law model. This method was implemented in [66] to conduct an extensive study
on real networks. The scale-free analysis provides empirical evidence allowing for the use
of the fractal method to obtain the sequence of proteins—instead of deleting the nodes with
the most connections (maximum degree-based attack). Comparison with the results of the
fractal analysis provides evidence of whether scale-free and fractal properties coexist and
can provide evidence that scale-free networks are rare [66,68].

Fractal analysis was carried out on 478 PPI networks. The algorithm employed to
compute the minimum number of boxes Nb(l) needed to cover the network was introduced
in [69]. The code section of the supplementary material contains a MATLAB R2022a
implementation of this algorithm and a brief example of its use. Once the dispersion of l vs.
Nb was obtained, the f itnlm function was employed to obtain the AIC. The classification
based on this analysis allows us to tune the diameter of the boxes l used in the fractal
method for relevant node extraction [46]. For example, the fractal networks that follow
Equations (6) or (8) can be destroyed efficiently by choosing l = d + 1, where d is the
network’s diameter. The best model of Equations (6)–(9) is chosen by the AIC, as explained
above. This approach has been employed in other work to classify complex networks as
fractal or non-fractal [46,55,70–72]. The fractal analysis shows that 20% of the PPI networks
are delayed fractals, and about 80% are delayed exponentials. For the former, l = d + 1 of
the fractal method was used, and l = d was used for the latter.
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4.3. Network Architecture for Regression and Protein Sequence Generation

The techniques of natural language processing, such as word2vec [73], used to obtain
the distributed representation of words have been used in computational biology [74–76].
The architecture of the regression LSTM network of AURC is depicted in Figure 2a. The pro-
tein sequences are encoded as integer numbers with the wordEncoding MATLAB function;
the sequence layer receives a normalized vector of an integer number of these sequences
that are the input of the LSTM layer. The LSTM layer contains 350 hidden units. Its
output passes to the fully connected layer that connects all inputs to the outputs with
weights and biases. The dropout layer with a probability of 0.2 is between the LSTM
and the fully connected layer to avoid over-fitting. The regression layer computes the
half-mean-squared-error loss for regression tasks and computes the responses—in our case,
the AURC.

Figure 2. (a) LSTM Network architecture for AURC regression. (b) Biderectional LSTM Network
architecture for generating protein sequences.

The sequences of nodes (proteins) obtained by the fractal and maximum degree-based
method were threatened as a sequence of “words”, where each word is an integer number
that identifies a protein. Both encoded sequences of proteins were then compared using
the regression LSTM to predict the Area Under the Resilience Curve (AURC) [46] to show
evidence that the fractal method outperforms the maximum degree-based attack. The fit of
the regression LSTM was compared using the Mean Absolute Percentage Error (MAPE),
Mean Absolute Error (MAE), Root Mean Square Error (RMSE), and adjusted correlation
coefficient (R2adj).

The bidirectional LSTM architecture for generating new sequences; see Figure 2b,
consists of an input sequence layer that receives the encoded protein sequence with the
wordEncoding MATLAB function. The training sequences are those extracted by the fractal
method of the networks grouped by functions of human organs; see Table 1. The word-
embedding layer (dimension = 100) maps word indices to vectors that feed the bidirectional
LSTM layer with 350 hidden units. A fully connected layer follows the bidirectional
LSTM. The bidirectional LSTM can employ the information of both sides of the sequence
(backwards and forward), instead of only one side, as in LSTM. The bidirectional LSTM
outperforms the LSTM when full sequences are processed ([77], p. 107). The softmax layer
smoots the outputs of the bidirectional LSTM to warrant that the probabilities that all
possible proteins amount to 1. Finally, the classification layer computes the cross-entropy
loss for each generated sequence of proteins.

In the training process, a sequence from those grouped by the functions of human
organs (training set) is chosen. The training set is refined by selecting the sequences that
contain proteins of the selected sequence (sequences whose Jaccard coefficient is above the
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threshold of 0.15); see Figure 3. Furthermore, the selected sequence is removed from the
training set. For example, let “TP53”, “ACTB2”, “AKT1”, and “AKT2” be the Proteins of
Interest (PIs) of the selected sequence. Once the LSTM network is trained, the generative
process starts with the first PI, such as “TP53”, and in each step, the bidirectional LSTM
network gives a scored set of candidate proteins, from which the highest score protein is
identified and added to the new sequence. The protein generated in the previous step is
now the seed. These steps are repeated until the number of proteins generated equals the
number of proteins in the real sequences. The process can stop before the length of the real
sequences is reached if the trained LSTM networks cannot find a new protein. In other
words, there is no protein with a probability higher than zero, or the protein is already in
the generated sequences. In our brief example, “AKT1” is added in the second step, and
“AKT2” is added in the third. This new sequence is an ordered list (relying on the score) of
relevant proteins. The training of the LSTM network and generation process is repeated
for each sequence in the training set. The regression LSTM and the bidirectional LSTM
networks were implemented in MATLAB R2022a. The example code to generate a new
protein sequence can be found in the supplementary material.

Figure 3. The generative process of protein sequences by bidirectional LSTM.

In evaluating the accuracy of the generative process, the Jaccard coefficient and the
Levenshtein distance [78] between the generated sequence and the original sequence are
computed. The first quantifies how similar the two sequences of proteins are (as a set) but
neglects the position of each protein in the sequence. The Levenshtein distance fills this
gap. For example, let “TP53”, “AKT2”, “ACTB2” be the original sequence, and let “TP53”,
“ACTB2”, “AKT2” be the generated sequences. The Jaccard coefficient between them is 1.
However, the proteins are in a different order. The generated sequence can be transformed
into the original, changing “AKT2” to “ACTB2” and “ACTB2” to “AKT2”. The Levenshtein
distance quantifies these two operations. Hence, the larger the value of the Levenshtein
distance, the greater the difference between the two sequences.

5. Results

The scale-free analysis shows that only four PPI network nodes’ degrees follow a
power law with a cutoff distribution; 161 were exponential, and for 30 PPI networks, there
is no sufficient statistical evidence supporting a choice between exponential and log-normal
models. Finally, for 281 PPI networks, the node’s degree follows a log-normal distribution;
see Table S2. Table 2 summarizes these results, showing that most PPI networks follow a
log-normal distribution.
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Table 2. The summary of fit of several distribution models to the node degree of PPI networks.

Distribution Networks Percentage

power law with cutoff 4 0.84

exponential 163 34.1

exponential or log-normal 30 6.27

log-normal 281 58.78

total 478 100

Figure 4 shows the fit of five models for the node degree of (a) Alzheimer’s and (b)
Blood protein (hyperproteinemia and hypoproteinemia) diseases. Moreover, Figure S1 of
supplementary material shows the fit of several models for the node degree probability dis-
tribution of (a) Endocarditis and (b) the Gilles de la Tourette syndrome network. Figures 4
and S1 reveal that selecting the best without the AIC is rather difficult. The scale-free
analysis results show that 92.88% of the degree distributions of the PPI networks in this
work follow a kind of exponential distribution (exponential and log-normal); thus, they are
not scale-free. These results undermine the use of the maximum degree-based attack since
it is the preferable method for obtaining relevant nodes if the network has the scale-free
property.

The fractal analysis shows that the box-covering of 57.74% of PPI networks best fits
the delayed exponential function, that of 20.29% is best for the delayed fractal, and that
of only 2.30% is best for the exponential function. The number of networks that cannot
be differentiated between exponential or delayed exponential or between exponential or
fractal is reported in Table 3. Thus, fractal networks (20.29%) are not as rare as self-similar
ones (0.84%). Moreover, the self-similar and fractal analyses suggest that fractality and
self-similarity cannot coexist in the PPI networks; see Tables S2 and S3.

Table 3. The summary of the fit of several models to the minimum number of boxes needed to cover
the PPI networks.

Function Networks Percentage

delayed exponential 276 57.74

delayed fractal 97 20.29

exponential 11 2.30

exponential or delayed
exponential 90 18.83

exponential or fractal 4 0.84

total 478 100
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Figure 4. The fit of several models for the node degree probability distribution of (a) Alzheimer’s
network and (b) blood protein disease network.

The box-covering of the PPI networks is mostly of the exponential type (78.87–57.74%
delayed exponential, 2.30% exponential, and 18.83% exponential or delayed exponential),
and 20.29% is of the delayed fractal type; meanwhile, only four cannot be classified in one
of the previous sets. These results, in conjunction with the self-similar analysis, suggest
that the fractal method for obtaining the relevant proteins of the PPI network is the most
suitable, since it obtains good results in fractal and non-fractal networks. For more evidence
supporting this, the relevant proteins obtained by the maximum degree-based method and
their correlation with the resilience of the PPI network (measured by AURC) [46] were
compared with that obtained by the fractal method. The regression LSTM network was
employed for this purpose. An example of the AURC is shown in Figure 5. The fraction
of nodes removed was plotted vs. the fraction of the size of the largest component in the
network. Initially, the size is 1, and the fraction of the removed nodes is 0. For a resilient
network, the AURC will be approximately 0.5, since the resilience curve will be a straight
line with a slope of − 1

2 . On the contrary, an AURC closer to 0 means that the network’s
resilience is poor. The AURC of the fractal and maximum degree-based attacks on the
same network provide a measure of their effectiveness that can be compared; for example,
the method with the lowest AURC is the most effective at destroying the network. The
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AURC was computed when the relevant nodes were obtained by the fractal and maximum
degree-based methods. A t-test shows that the fractal method obtained a lower AURC
(µ = 0.288, σ = 0.09) compared with the maximum degree-based method (µ = 0.35,
σ = 0.073), t(475) = 48.316 p < 0.0001. Hence, the proteins obtained by the fractal method
are more suitable for maintaining the cohesion of the PPI network.

Figure 5. The resilience curve of the Adenoma PPI network was obtained by removing the proteins
using fractal and maximum degree-based methods.

The MAPE, MAE, and RMSE of the regression of the protein sequences and the AURC
obtained by the fractal method are significantly lower than those of the maximum degree-
based method. On the other hand, the R2adj of the fractal method is higher than the R2adj
of the maximum degree-based method; see Table 4. The previous results support the
finding that the sequences extracted by the fractal method are suitable for maintaining the
cohesion of PPI networks. Furthermore, these protein sequences are highly correlated with
the PPI network’s resilience.

Table 4. The MAPE, MAE, RMSE, and R2adj µ(σ) of AURC regression.

Fractal Method Degree-Based
Method t-Test

MAPE 12.544(0.9169) 13.839(0.916) t(25.2) = 2.394; p = 0.024

MAE 0.031(0.005) 0.034(0.002) t(27.020) = 2.762; p = 0.01

RMSE 0.039(0.007) 0.043(0.002) t(24.254) = 2.191; p = 0.038

R2adj 0.806(0.059) 0.776(0.022) t(24.233)=-2.198; p = 0.038

The bidirectional LSTM network was then trained, as described above. The accuracy
of the generation process was tested using the protein sequences grouped in Immune,
Metabolism, Motor, Nerve, and Bone functions; see Table 1. The generated and the original
sequences were compared in terms of the Jaccard measure and Levenshtein distance. Both
sequences were expected to be identical, so the Jaccard value was 1 in this case, and the
Levenshtein distance was 0. Since the length of the generated sequences varied from 2
to the length of the original sequence, those with a length of less than 2 were discarded
for this analysis. The first n (length of the generated sequence) proteins were taken from
the original sequences to be compared with the generated one, since the latter is usually
shorter than the original one. This occurs since the bidirectional LSTM cannot produce
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a confident set of new proteins, and the generation process stops. Figure 6a shows the
Jaccard measure between the real and generated sequences of Bone. In this heat map,
intense blue means that the generated sequence contains several proteins that are also in
real sequences. The Levenshtein distance is shown in Figure 6b; intense blue means that
many operations such as proteins deletion and insertion transform the generated sequence
into a real sequence. Figure 6 supports the idea that the generated sequences contain many
proteins of the real sequence (intense blue in the Jaccard heat map) and that the proteins
in the sequences are in the true positions (light blue in the Levenshtein heat map). Hence,
the generated and real sequences match in terms of the proteins and their positions. The
plots for the remaining functions are in the supplementary material; see Figures S2–S5.
Table 5 summarizes the Jaccard measure, the Levenshtein distance, and the length ratio of
generated and real sequences grouped by the function of human organs.

Figure 6. The (a) Jaccard measure and (b) the Levenshtein distance between the real and generated
sequences of Bone.
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Table 5. The Jaccard measure, the Levenshtein distance, and the length (ratio) µ (σ) of the function of
organ sequences.

Function Jaccard Levenshtein Length (Ratio) Length
(Generated)

Immune 0.444 (0.278) 12.571 (11.698) 0.182 (0.234) 20.21 (16.741)

Metabolism 0.431 ( 0.320) 22.1 (23.921) 0.192 (0.24) 34.80 (30.583)

Motor 0.252 (0.232) 14 (10.863) 0.14 (0.162) 19.30 (17.169)

Nerve 0.324 (0.269) 15.118 (14.447) 0.152 (0.185) 22.04 (19.976)

Bone 0.523 (0.295) 14.952 (18.180) 0.218 (0.24) 31.81 (43.986)

Mean 0.395 15.748 0.177 25.632

The results of Table 5 show that the generated sequences of Bone contain about 50%
of the proteins (Jaccard measure) in the original sequence; meanwhile, the proteins in
the generated sequences of Motor are about 24% of the proteins contained in the original
sequence. Furthermore, the Levenshtein distance is the erroneous relevance forecasted
(position in the sequence); it ranges from 12 to 22. For example, the Levenshtein distance
of the generated sequence G and the real R is 7; see the Brachydactyly type D network
in Table 6. The first four proteins match in both sequences; however, the five in G differ
from those in the same position in R. G can be converted into R by (1) inserting “RAB7A”
and replacing the proteins in the (2) sixth, (3) seventh, (4) eighth, (5) ninth, (6) tenth,
and (7) eleventh positions. In practice, this information determines the cost of finding
the true protein sequence, which can help researchers in guiding experimental design,
understanding pathogenesis, and finding key points for new therapeutics. Finally, the
length ratio is the percentage of the total proteins of the real sequence generated. In
general, the bidirectional LSTM produced sequences with a length from 14% to 21% of the
original sequences.

Table 6. Examples of generated sequences (G) and real ones (R). Only the first eleven proteins are
shown to simplify the table.

Network Type Sequence

Brachydactyly
type D G ACTB ALB GAPDH CANX INS GNAS BMP2 STX16 RPS3 CD4 THY1

Brachydactyly
type D R ACTB ALB GAPDH CANX RAB7A INS IHH IL10 GNAS HSPA4 BMP2

Multiple congen-
ital anomalies-
hypotonia-
seizures syn-
drome

G PIGG MPPE1 PGAP1 CD59 PIGZ PIGQ PIGT PGAP2 CD55 RER1 TMED10

Multiple congen-
ital anomalies-
hypotonia-
seizures syn-
drome

R PIGG MPPE1 PGAP1 CD59 PIGZ PIGQ PIGT PGAP2 CD55 RER1 TMED10

Autosomal domi-
nant auditory neu-
ropathy 1

G OTOF MYO6 FMN1 ACTG1 CDH23 MYO7A DIAPH3 RHOA DIAPH1 RAC3 RAC2

Autosomal domi-
nant auditory neu-
ropathy 1

R OTOF MYO6 FMN1 ACTG1 CDH23 MYO7A DIAPH3 CDC42 RHOA DIAPH1 RAC3

Charcot–Marie–
Tooth disease
axonal type 2CC

G SOD1 SYT1 FSCN1 PSEN1 GDAP1 RAB5A DCTN1 WAS YARS KIF5A SNCA

Charcot–Marie–
Tooth disease
axonal type 2CC

R SOD1 FSCN1 DCTN1 PSEN1 NOTCH3 NEFL YARS KIF5A DYNC1H1 SNCA FUS
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Table 6. Cont.

Network Type Sequence

Diabetes Mellitus
RI

G INS SLC2A2 GCG HNF4A PPARG AKT1 PAX4 ZFAND3 IL6 ADIPOQ LEP

Diabetes Mellitus
RI

R INS SLC2A2 GCG HNF4A ALB PPARG GCK AKT1 PAX4 GLIS3 ZFAND3

Finally, the sequences of the relevant proteins extracted from PPI networks (by the
fractal method) and generated by bidirectional LSTM contained spurious interactions.
For example, the first two proteins in a relevant protein sequence could not be directly
connected in the network from which it was extracted. Although our approach does not try
to identify positive and negative interactions, those contained in the sequences are tested
using real accuracy and random accuracy [79]. First, the sequences were fragmented in
pairs, as in [76]. Let “ACTB”, “GAPDH”, “AKT1”, and “TP53” be a sequence of relevant
nodes; the first PPI is “ACTB” and “GAPDH”, and the second is “GAPDH” and “AKT1”;
see the middle of Figure 7 for the resulting PPI. The PPIs of the relevant protein sequences
are then tested to determine if they are in the network where it was extracted (an arc
between these proteins must exist in the network). Meanwhile, the PPI generated by the
bidirectional LSTM was tested to determine whether it belonged to the set of PPI network
groups by the function of the human organs used to train the bidirectional LSTM.

Figure 7. Detection of spurious PPIs in relevant node sequences.

Table 7 demonstrated that the mean accuracy (0.949) (see the Acce column) of extracted
protein sequences is similar to that of the generated ones (0.9486) (see Accg). These true
PPIs extracted from PPI networks were also learned by the bidirectional LSTM producing
a low rate of spurious PPIs. Furthermore, the fractal method extracts a high number of
true PPIs, even though it was not designed for this objective. This low number of spurious
PPIs is reflected in the high values of random accuracy; see Acc(r) in the generated and
extracted columns of Table 7. Random accuracy is the classification rate of the hypothetical
random model [79]. For example, if an extremely biased model classifies each current
PPI as true, then the number of correct classifications of spurious PPIs will be zero, and
the correct classification of true PPIs will equal its number; hence, the random accuracy
depends on how balanced the spurious and true PPIs are. In the balanced data (where 50%
of PPIs are spurious and 50% are true), our biased model will obtain an accuracy of 0.5,
equivalent to a random classification.

Table 7. The real (Acc) and random accuracy (Acc(r)) of relevant protein sequences extracted by the
fractal method and those generated by bidirectional LSTM. e means extracted by fractal method, g
means generated by bidirectional LSTM, and Sp means spurious.

Net Acce Acc(r)e PPIe Truee Spe Accg Acc(r)g PPIg Trueg Spg

Immune 0.936 0.935 1638 1533 105 0.951 0.949 533 507 26

Metabolism 0.936 0.935 1697 1588 109 0.96 0.958 672 645 27

Motor 0.966 0.965 1642 1586 56 0.915 0.914 601 550 51

Nerve 0.960 0.959 1716 1648 68 0.963 0.962 1067 1028 39

Bone 0.947 0.946 1649 1561 88 0.954 0.953 1895 1808 87
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6. Discussion and Conclusions

This study introduces an approach for generating a relevant protein sequence based on
bidirectional LSTM with partial knowledge of true PPIs. The general aim of the framework
was to conduct scale-free and fractal analysis to determine the topology of PPI networks.
The results demonstrate that a handful of PPI networks are self-similar or fractal, but both
cannot coexist (the union of scale-free networks (Table S2) and of fractal networks (Table S3)
is empty). The hub repulsion is a feature that causes the emergence of fractality [53,80] but
is not the only one. On the other hand, the Barabasi–Albert [81] model generates scale-free
networks but not fractal ones. In Kuang et al. [82], the model proposed by Song et al. [53]
was extended to conciliate these two approaches. Their results show that the scale-free
property and fractality coexist in some networks, with hub attraction and a high clustering
coefficient for each box (a property that the Songs networks do not have [83]). This result
coincides with the work of Ikeda [84], wherein a network model was proposed to generate
fractal and scale-free networks based on a high clustering local property. The PPI networks
have hub repulsion, meaning that the most important proteins are not directly linked to
others but through proteins with fewer connections generating the fractal property. On
the other hand, in less analyzed scale-free PPI networks, the hubs are linked to each other
directly, but the non-hub nodes in the boxes are poorly connected, preventing the fractal
property from emerging. In summary, research on fractal PPI disease networks should
focus on the interactions between the non-hubs of the boxes. However, scale-free PPI
disease networks must center on the hubs.

Furthermore, based on these results, the fractal attack was selected over the maximum
degree-based method for extracting relevant proteins. The sequences extracted by the
fractal method are highly correlated with the resilience (measured by the AURC) of the PPI
networks, and the fractal extraction produces an average of 94.9% of true PPI sequences.
This remarkable feature is also presented in the sequences generated by the bidirectional
LSTM, which reaches approximately 94.8% of true PPIs and is comparable with previous
studies [30,76].

The generated PPI sequences contain an average of 39.5% of proteins that are in the
original sequence (the Jaccard measure), and the bidirectional LSTM was able to generate
about 25 proteins per sequence by only using the extracted sequences obtained by the
fractal method. The ratio between the generated and original sequences of proteins was
17%. This means that large sequences were produced with partial PPI information, given
that the mean number of proteins in the original sequences is 303.95 (Length(original) =
Length(generated)/Length(ratio)). Moreover, these sequences of proteins (that are ordered
from high to low relevance) can drive the search for true but unknown PPIs. The results
show that the proposed method relies on the sample PPI networks selected to produce the
new sequences; thus, it requires careful selection. The results demonstrate that the spurious
PPIs in the sequences (extracted and produced) originated from the fractal method, which
was only designed to find relevant nodes, such as in [43]. This paves the way toward the
creation of an ad hoc algorithm that reduces false PPIs but finds the essential proteins. The
automatic generation of PPI sequences can be a powerful tool for understanding biological
processes without limitations such as costs, resources, and time.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology12010140/s1. Table S1: Terms and suffixes employed to
query the DISEASES on Cytoscape; Table S2: The ∆AIC of 476 human PPI networks for node degree
distribution; the values in bold are those less than 2; Table S3: The ∆AIC of 476 human PPI networks
for box covering; the values in bold are those less than 2; Figure S1: The fit of several models for
the node degree probability distribution of (a) Endocarditis network and (b) Gilles de la Tourette
syndrome network; Figure S2: The (a) Jaccard measure and (b) Levenshtein distance between real
and generated sequences of Immune; Figure S3: The (a) Jaccard measure and (b) Levenshtein distance
between real and generated sequences of Metabolism; Figure S4: The (a) Jaccard measure and (b)
Levenshtein distance between real and generated sequences of Motor; Figure S5: The (a) Jaccard
measure and (b) Levenshtein distance between real and generated sequences of Nerve; Figure S6:

https://www.mdpi.com/article/10.3390/biology12010140/s1
https://www.mdpi.com/article/10.3390/biology12010140/s1
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The box-covering implementation example of (a) brief network. (b) The result of the box number for
node two for a size one. (c) The result of the box number for node two for a size two. (d) The box
assignment for the network’s six nodes for the box size from one to five.
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