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Simple Summary: Allergic, inflammatory, or autoimmune diseases are characterized by exaggerated
immune responses to harmless proteins such as pollen, dust mites, and foods in the environment
or self-proteins. The number of cases has increased over the last 50 years. This is considered to be
related to reduced exposure to pathogenic microorganisms, as well as a revolutionary rise in exposure
to dietary chemicals and drugs via processed food, formula milk, preservatives, and antibiotics,
presumably resulting in the breakdown of immune tolerance to proteins. Such chemicals and drugs
may work as haptens, which are small molecules that only elicit an immune response when bound to
proteins. Indeed, accumulating evidence revealed the involvement of haptens in the development of
various autoimmune-like diseases, such as allergic, inflammatory, or autoimmune diseases including
allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel diseases, hemolytic
anemia, liver injury, leukoderma, and even antitumor immunity. This review highlights recent
advances in the chemical- and drug-induced development of these autoimmune-like diseases via
haptenation together with possible molecular mechanisms and in vitro testing alternatives to evaluate
in advance whether a substance might lead to the development of these diseases.

Abstract: Haptens are small molecules that only elicit an immune response when bound to proteins.
Haptens initially bind to self-proteins and activate innate immune responses by complex mechanisms
via inflammatory cytokines and damage-associated molecular patterns and the subsequent upregula-
tion of costimulatory signals such as cluster of differentiation 86 (CD86) on dendritic cells. Subsequent
interactions between CD86 and CD28 on T cells are critically important for properly activating naive
T cells and inducing interleukin 2 production, leading to the establishment of adaptive immunity
via effector and memory T cells. Accumulating evidence revealed the involvement of haptens in
the development of various autoimmune-like diseases such as allergic, inflammatory, and autoim-
mune diseases including allergic contact dermatitis, atopy, asthma, food allergy, inflammatory bowel
diseases, hemolytic anemia, liver injury, leukoderma, and even antitumor immunity. Therefore, the
development of in vitro testing alternatives to evaluate in advance whether a substance might lead to
the development of these diseases is highly desirable. This review summarizes and discusses recent
advances in chemical- and drug-induced allergic, inflammatory, and autoimmune diseases via hapte-
nation and the possible molecular underlying mechanisms, as well as in vitro testing alternatives to
evaluate in advance whether a substance might cause the development of these diseases.

Keywords: hapten; pro-haptens; allergic disease; autoimmune disease; inflammatory disease; sensiti-
zation; in vitro coculture

1. Introduction

Haptens are small molecules that only elicit an immune response when bound to pro-
teins. The hapten concept was developed more than 90 years ago by Karl Landsteiner [1],

Biology 2023, 12, 123. https://doi.org/10.3390/biology12010123 https://www.mdpi.com/journal/biology

https://doi.org/10.3390/biology12010123
https://doi.org/10.3390/biology12010123
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/biology
https://www.mdpi.com
https://orcid.org/0000-0002-2847-0341
https://doi.org/10.3390/biology12010123
https://www.mdpi.com/journal/biology
https://www.mdpi.com/article/10.3390/biology12010123?type=check_update&version=1


Biology 2023, 12, 123 2 of 19

who used synthetic haptens to study immunological responses. To acquire sensitizing
potential, molecules called pre-haptens and pro-haptens need to be activated to the elec-
trophilic state via abiotic activations outside living cells and biotic activations inside living
cells, respectively [2]. The former is mainly transformed into haptens by air auto-oxidation,
and the latter is mainly transformed by enzyme-mediated metabolic mechanisms. Hy-
persensitivity, an undesirable reaction elicited by the normal immune system, including
allergies, inflammatory, and autoimmune immune responses, was classified by Philip
Gell and Robert Coombs into four pathophysiological types in 1963 [3]. Type I is an IgE-
mediated immediate reaction, including anaphylactic responses. Type II is an IgG or IgM
antibody-mediated reaction. Type III is an immune complex-mediated reaction. Type IV is
a T cell-mediated cytotoxic reaction and delayed hypersensitivity reaction. Sensitization
is the process of becoming sensitive to a particular stimulus that had no effect previously
and a state where a previously encountered foreign substance triggers an immune reaction
and the development of allergic or autoimmune symptoms when exposed to the same
substance again. In the case of allergic sensitization, the process of sensitization involves
antigen-specific T and B cells and the production of antigen-specific immunoglobulins such
as IgE.

Haptens have been widely utilized to induce contact hypersensitivity (CHS) using ani-
mal models of human allergic contact dermatitis (ACD) [4]. ACD is an inflammatory skin
disease triggered by repeated exposure to contact allergens and is one of the most prevalent
skin diseases worldwide. CHS is a type IV delayed hypersensitivity reaction mediated by
T cells recognizing hapten-modified self-peptides in the context of major histocompatibility
complex molecules on dendritic cells (DCs) (Figure 1). These hapten-modified self-peptides,
which become immunogenic, are called neoantigens. CHS consists of two phases: sen-
sitization and elicitation [5]. The sensitization phase where the hapten is applied to the
skin for the first time and covalently and stably bind to serum or cellular self-proteins is
characterized by the activation of innate immune responses, including DCs, their migration
to the skin-draining lymph nodes, the priming of antigen-specific naive T cells, and the
generation of antigen-specific effector or memory T cells and B cells and antibody-secreting
plasma cells. The second elicitation phase where the hapten is applied to a different skin
area on the animal is dominated by the recruitment of effector T cells toward the site of
the allergen challenge and their activation followed by T cell-mediated tissue damage and
antibody-mediated immune responses. Haptens initially activate innate immune responses
by complex mechanisms involving inflammatory cytokines, damage-associated molecular
patterns (DAMPs), or the inflammasome (Figure 1). Danger signals such as reactive oxy-
gen species (ROS), extracellular adenosine triphosphate (ATP), and extracellular matrix
components are critically important for the maturation and activation of DCs and the con-
sequent upregulation of costimulatory signals such as cluster of differentiation 86 (CD86)
on DCs [6–9]. The ability for haptens to induce inflammatory and autoimmune responses
has also been used to study the mechanisms of inflammatory bowel disease (IBD) [10].
In addition, haptens that bind self-proteins have the potential to develop autoimmune
diseases such as autoimmune hemolytic anemia and liver injury [5]. Moreover, the tyrosi-
nase inhibitor rhododendrol (RD), used as a skin-whitening ingredient, reportedly has the
potential to induce leukoderma, a depigmentary autoimmune disease toward melanocytes
via binding of RD to melanocyte self-proteins including tyrosinase [11,12]. This process is
called haptenization, making them immunogenic [13]. However, if a chemical or drug as
a hapten binds to tumor-specific cellular proteins that subsequently become neoantigens,
autoimmune responses such as cytotoxic T cell (CTL) generation and antibody production
against the neoantigens can be induced, leading to tumor eradication [14–17]. Therefore,
haptenation induces positive and negative outcomes depending on the antigens to be
haptenized. Given the increasing number of the cases in which chemicals or drugs such as
hapten or pro/pre-hapten induce allergic and autoimmune responses, the development
of new methods for evaluating in advance whether a substance might cause allergic and
autoimmune responses is necessary. Because animal experiments for the risk evaluation of
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cosmetic products and ingredients have been banned, the development of in vitro testing
alternatives is highly desirable.
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Figure 1. Chemicals and drugs induce autoimmune-like responses via haptenation, resulting in
skin allergy, respiratory allergy, inflammatory bowel disease, hemolytic anemia, hepatotoxicity,
leukoderma, and antitumor immunity. The upregulation of costimulatory molecule CD86 via DAMPs
and inflammatory cytokines is critically important for the proper activation of naive T cells, leading
to the establishment of adaptive immunity, including Th1, Th2, and Th17 differentiation; CTL
generation; and antibody production. T cells activated without co-stimulation with CD86 become
anergic, a state in which cells are not responsive to the stimulation thereafter and are tolerant to
self-antigens. Recently, in addition to the hapten theory, non-covalent binding models such as the
pharmacological interaction with immune receptors (p-i) model and the altered peptide model have
also been proposed.

In this review, we summarize and discuss recent advances in chemical- and drug-
induced positive and negative outcomes via haptenation such as allergic, inflammatory,
autoimmune diseases, and antitumor immune responses and the possible molecular mech-
anisms underlying their development. In addition, we introduce new methods using an
in vitro cell coculture system to predict whether a substance might cause autoimmune-like
responses in advance.

2. Chemical- and Drug-Induced Allery, Inflammatory, and Autoimmune Diseases
2.1. Chemical- and Drug-Induced Allergy

There are different types of allergic response depending on the routes of allergen
exposure: skin allergies, which are allergic responses in the skin following skin contact
such as ACD; and respiratory allergies, which are allergic responses in the airways caused
by inhalation through the lungs via mostly asthma and food allergy, which occurs through
the gut soon after ingesting a certain food and can cause severe symptoms such as a life-
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threatening reaction known as anaphylaxis in some people. CHS is the animal model
of human ACD, an inflammatory skin disease triggered by repeated exposure to contact
allergens [4]. Many allergens cause CHS, such as urushiol, nickel, oxazolone (OXA),
fluorescein isothiocyanate (FITC), trinitrochlorobenzene (TNCB), dinitrofluorobenzene
(DNFB), formaldehyde (FA), ortho-phthaldialdehyde (OPA), trimellitic anhydride (TMA),
and hexamethylene diisocyanate (HDI). CHS is initiated by the activation of the innate
inflammatory immune response upon skin contact with low molecular weight chemicals,
resulting in the priming of chemical-specific skin-homing CD8+ cytotoxic T (Tc)1/Tc17
and CD4+ helper T (Th)1/Th17 cells [18]. Upon challenges with the same chemical, T
cells infiltrate the inflamed skin and then exert cytotoxic effects, secreting inflammatory
mediators to produce an eczematous skin reaction. Skin sensitizers induce Th1-oriented
responses mixed with Th2 and Th17 responses, whereas respiratory sensitizers induce
predominantly Th2 responses [19–25]. Asthma is a type I immediate hypersensitivity
reaction mediated by Th2 immune responses and consequent IgE production. Respiratory
allergies are caused by many sources of respiratory allergens, such as house dust including
dust mites, pet allergens, pollen, and particulates in the air, and they are inhaled, triggering
airway inflammation, asthma, and allergies. Irritants such as smoke and fumes and PM2.5
aerosol in the indoor and outdoor environments can aggravate allergy symptoms. Although
it has been assumed that inhalation exposure is necessary for respiratory sensitization,
recent experimental studies and clinical observations revealed that respiratory sensitization
can be achieved by skin contact with respiratory sensitizers [26,27]. Exposure to certain
food proteins such as milk, eggs, peanuts, wheat, and shellfish triggers the production of
antigen-specific IgE antibodies, causing food allergies. Of note, previous studies showed
that some chemicals or drugs such as preservative paraben and antimicrobial triclosan may
be linked to the development of food allergies [28,29].

OXA, TNCB, DNFB, and FA are haptens that mainly stimulate Th1 immune responses
to induce CHS responses, whereas FITC, OPA, TMA, and HDI are haptens that mainly
stimulate Th2 immune responses that induce not only CHS responses in the skin but also
respiratory allergic responses such as asthma in the airways caused by inhalation. In
particular, diisocyanates, acid anhydrides, and chloroplatinate salts are major respiratory
sensitizers [27,30,31]. Urushiol found in poison ivy is one of the most well-known exam-
ples of haptens/pro-haptens [32–34]. When exposed to skin, urushiol is metabolized by
oxidation to become a reactive quinone-type molecule that binds to cellular nucleophiles to
trigger a reaction in the skin to form a protein complex, such as neoantigens [35]. Similarly
to other contact sensitizers, urushiols induce inflammatory responses by CD8+ T cells
secreting interferon gamma but they are downregulated by CD4+ T cells in mice [36].

2.2. Chemical- and Drug-Induced IBD

IBD is a disorder involving the long-standing chronic inflammation of tissues in the
digestive tract [37]. There are two types of IBD: Crohn’s disease and ulcerative colitis (UC).
Crohn’s disease is characterized by the inflammation of the lining of the digestive tract,
which often involves the deeper layers of the digestive tract and most commonly affects the
small intestine. It can also affect the large intestine and, rarely, the upper gastrointestinal
tract. UC involves inflammation and sores along the lining of the large intestine and
rectum. To understand the histopathological features of patients with IBD and develop
novel pharmacological approaches, animal models that properly reproduce human IBD are
essential [38,39].

The most commonly used animal model is the trinitrobenzene sulfonic acid (TNBS)-
induced model, which reproduces the acute and chronic stages of IBD, including Crohn’s
disease in humans [38,40,41]. TNBS is a hapten that induces a delayed-type hypersensitivity
immune response. Experimental chronic colitis is induced by multiple rectal instillations of
TNBS dissolved in ethanol, which breaks through the mucosal barrier, allowing TNBS to
penetrate the bowel wall and consequently enabling the interaction of TNBS with colon
tissue proteins [41]. Chronic colitis is also induced by pre-sensitizing the skin, followed
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by the repeated weekly intrarectal administration of increasing doses of TNBS. TNBS
administration induces Th1- and Th17-mediated immune responses that are characterized
by the infiltration of Th1 cells together with the secretion of cytokines such as tumor
necrosis factor alpha and interleukin 12 (IL-12) and accompanied by the production of IL-23
and IL-17 by lamina propria cells, respectively [39]. This model mimics the chronic phase
of Crohn’s disease.

The OXA model is another IBD model induced by the intrarectal administration of a
hapten: OXA in ethanol [42]. A self-resolving acute response is induced by a single admin-
istration of an OXA enema, whereas a chronic response is preceded by pre-sensitization
in the skin 5 days before the administration of an OXA enema, resulting in chronic colitis.
Th2 immune responses are considered the main driver for human UC [43]. In the OXA
mouse model, the activation of Th2 immune responses by OXA is accompanied by the
production of IL-4 in the early phase, but then it is superseded by the production of IL-13
during the chronic phase; this is also the case for the lamina propria T cells in patients with
UC [44]. Although IL-13 is important for OXA-induced colitis by using an IL-13 receptor
alpha 2-Fc fusion protein [44], clinical trials targeting IL-13 failed to significantly improve
clinical responses [45,46].

2.3. Chemical- and Drug-Induced Autoimmune Hemolytic Anemia

Penicillin likely induces allergies such as IgE antibody-mediated type I immediate
hypersensitivity including anaphylaxis, Th cell-mediated type IV delayed hypersensitivity,
and IgG antibody-dependent type II cytotoxicity [47]. The phenotyping of penicillin-specific
CD4+ T cell clones obtained from the patients revealed a heterogeneous immunoprofile,
mostly consisting of Th2 cytokines (IL-4, IL-5, and IL-13) and to a lesser extent Th1 cytokines
(IFN-γ and IL-2) [48]. Therefore, the ability to stimulate multiple type I, II, and VI seems
to be a result of the activation of both Th1 and Th2 immune responses and also CD8+ T
cell responses. When penicillin is absorbed in the body, it is metabolized in the liver and
forms penicilloyl and penicillanic acid derivatives, which are produced via the opening
of the β-lactam ring, thereby generating a highly reactive amino group that can bind
to proteins via their free carboxyl group [49]. Thus, as a pro-hapten, penicillin induces
allergies, for which its molecular mechanisms are explained by the hapten theory. Immune
hemolytic anemia is also often caused by more than 100 chemicals or drugs including
penicillin and cephalosporin. This molecular mechanism can be similarly explained by
the hapten theory, but the proteins that metabolize penicillin binds to the cell surface and
cellular proteins in red blood cells (RBCs), resulting in antibody production against these
proteins [50]. Then, the hapten-coated RBCs are targeted by the antibody, followed by the
activation of complements, lysis by antibody-dependent cellular cytotoxicity, and clearance
by opsonization with macrophages in the spleen [51]. As a target for haptenation by
penicillin, human serum albumin, the highly abundant serum protein, was identified [52].
In addition, several human blood antigens such as Rh, Kell, Kidd, MNS, Lutheran, and P
were reported to be antigen-reactive with drug-dependent antibodies [52]. These antibodies
are assumed to react with the drug only, drug and RBC membrane, and mainly membrane.

2.4. Chemical- and Drug-Induced Liver Injury

Drug-induced liver injury (DILI) is a result of acute or chronic hepatotoxicity toward a
natural or manufactured compound [53]. More than 1000 chemicals and drugs reportedly
cause hepatotoxicity, and DILI is the leading cause of acute liver failure in the United
States. Most cases of DILI are asymptomatic, but the most common sign is jaundice
with an elevation in aminotransferases and alkaline phosphatase in hepatocellular injury
and in cholestatic injury, respectively [54,55]. Halothane, an inhalation anesthetic, was
approved for medical use in the United States in 1958. However, repeated exposure to
halothane in adults reportedly leads to the development of hepatitis in approximately 1 in
10,000 exposures [56]. Although the exact mechanism is unknown, halothane hepatitis
is considered to result from hypersensitivity-like allergic responses via the metabolism
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of halothane to trifluoroacetic acid by oxidation in the liver, which is primarily mediated
through cytochrome P450 [57,58]. Antibodies in the sera of halothane hepatitis patients
recognize trifluoroacetylated liver microsomal proteins comprising 100, 76, 59, 57, and
54 kDa [59]. Similar neoantigen expressions were observed in the liver but not in other
tissues of halothane-treated rats [60]. These results suggest that halothane-induced hepatitis
is highly likely to due to antibody-mediated immune responses against the modified self-
proteins in the liver, which act as neoantigens [58].

2.5. Chemical- and Drug-Induced Leukoderma

Chemical- and drug-induced leukoderma is an autoimmune response-mediated depig-
mentation disorder that is similar to vitiligo, which was first reported with monobenzone
and then with raspberry ketone, hydroquinone, or 4-tertiary butyl phenol. In 2013, more
than 20,000 customers who used new skin-lightening cream containing RD as the active
ingredient developed vitiligo (~2% of all users) called leukoderma. Although a large retro-
spective analysis showed that most patients experienced depigmentation only at the site of
exposure to the cream, approximately 5% of patients experienced depigmentation at remote
sites as well, suggesting the involvement of immune responses [61]. The common structure
of these depigmenting chemicals is a phenol comprising a benzene ring with a hydroxyl
side chain, and phenols with a nonpolar side chain in the para-position, particularly an
ether group, appear to be stronger depigmenting chemicals. This structure is similar to
the amino acid tyrosine, which is necessary for the synthesis of melanin by tyrosinase
and tyrosinase-related protein 1. Therefore, these chemicals act as competitive tyrosinase
inhibitors and consequently block melanogenesis, resulting in the whitening of the skin.

RD-induced leukoderma is mediated by the cytolysis of melanocytes, as well as by
subsequent immune responses toward melanocytes [12,62,63], including the generation of
melanocyte-specific CTLs. Recent evidence revealed that the immune mechanism by which
RD causes skin depigmentation is presumably explained by the fact that RD is a pro-hapten
that is activated metabolically in the skin, as proposed for other leukoderma-inducible ty-
rosinase inhibitors such as monobenzone [64] and N-propionyl-4-S-cysteaminylphenol [65].
RD is oxidized by tyrosinase in melanocytes, generating its active metabolites, RD-quinone
and RD-melanins [63,64,66], and RD-quinone covalently binds to tyrosinase or other
melanocyte proteins, producing neoantigens [64,65]. These neoantigens subsequently
trigger a sensitizing response cascade that induces the generation of melanocyte-specific
CTLs and resultant melanocyte killing. RD-melanins are pro-oxidants that induce the
generation of ROS and consequently deplete cellular antioxidants, eventually leading to
melanocyte death [67,68]. In addition, it was recently demonstrated using in vitro coculture
systems that RD induces the ATP release from melanocytes, and both ROS generation and
ATP release cooperatively act on DCs, resulting in the upregulation of the co-stimulatory
molecule CD86 and Th1-differentiating cytokine IL-12, potentially leading to the generation
of melanocyte-specific CTLs and eventually leukoderma [69]. These results suggest that
RD-induced leukoderma is indeed one of the pro-hapten-induced autoimmune diseases.

2.6. Chemical- and Drug-Induced Antitumor Immunity

Because the immune responses toward cancer are similar to autoimmune responses
toward self-antigens, several trials applying the use of haptens to the treatment of cancers by
inducing antitumor immunity have been reported [14–17]. Many reports have used ex vivo
haptenation to induce tumor regression in mice and human patients [14]. After the tumor is
removed, it is haptenated ex vivo and injected back into sensitized mice or human patients.
The antitumor immune responses induced by ex vivo haptenation are highly dependent
on the injection sites, intraperitoneally, intradermally, and subcutaneously. Because CHS-
like immune responses are likely induced, the intradermal injection of hapten-modified
tumor cells would be the most potent route for ex vivo haptenation [16]. By contrast,
the haptenation of tumor cells by multiple intratumoral injections of haptens in vivo also
induces tumor regression [15]. The haptenation of tumors causes a substantial amount
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of tumor cell deaths, as well as the stromal cells around the tumor, and releases many
danger signals and haptenated proteins, resulting in the activation and maturation of
immature DCs. Then, the DCs migrate to the draining lymph node and stimulate tumor
antigen-specific T cells. Similarly, because RD can induce melanocyte-specific CTLs to
induce leukoderma, it is highly reasonable to expect that RD may induce anti-melanoma
immune responses. In one study, the B16 melanoma tumor was treated with RD followed by
irradiation and repeatedly injected into C57BL/6 mice [70]. Then, their susceptibilities to the
inoculation of intact B16 melanoma were compared. The mice immunized with RD-treated
B16 melanoma showed tumor regression in vivo compared to the mice immunized with
mock-treated B16 cells. Recently, a new strategy to induce potent antibody-mediated Fc
receptor-dependent antitumor immune responses was reported; hapten-specific polyclonal
antibodies are recruited to tumors coated with haptens that are targeted toward tumors
by conjugation to a VEGF or osteopontin aptamer recognizing a receptor preferentially
expressed on the tumor cells [71].

2.7. Chemical- and Drug-Induced Hapten Inhibition

The small molecule hapten is also known to have the ability to block type III hyper-
sensitivity immune responses to the hapten–carrier adduct by preventing the adduct from
binding to the antibody. This process is called hapten inhibition. Some hapten molecules
bind to antibodies against that molecule, but if the adduct cannot form immune complexes
with antibodies, the hapten fails to cause an immune response, leaving fewer antibodies
left to bind to the immunogenic hapten–protein adduct. One of the examples of hapten
inhibitor is dextran 1, which is a small fraction (1 kDa) of the entire dextran complex, and
it is sufficient for binding to anti-dextran antibodies but insufficient for the formation of
immune complexes and resultant immune responses. Thereby, dextran 1 can reduce the risk
of immune responses, including anaphylactic shock upon the subsequent administration of
dextran [72,73].

3. In Vitro Cell Culture System to Predict Whether Chemicals and Drugs May Cause
Autoimmune Responses in Advance

Allergic and autoimmune responses, which are divided into four types by the Gell
and Coombs classification, are mediated by the activation of T cells and the subsequent
generation of effector and memory T cells and B cells, resulting in the establishment of
adaptive immunity. The skin is currently considered the most important site for initial
exposure and sensitization to chemicals and drugs to cause allergic and autoimmune
responses [74]. Generally, the skin sensitization process proceeds under physiologic con-
ditions as follows [75–77]. Sensitizers first attach to the epithelium surface and penetrate
it, and during this process, they covalently bind to serum and cellular self-proteins that
are abundantly and broadly present, such as human serum albumin, cytokeratins, and
heat shock proteins [78]. Then, the haptenized proteins are captured by immature DCs
and processed, and their peptides are presented on major histocompatibility complex class
II, with the upregulation of costimulatory molecules such as CD86 and CD80 and C-C
chemokine receptor type 7. By attracting its ligands chemokine (C-C motif) ligand 19/21,
the DCs subsequently enter high endothelial venules and migrate to the draining lymph
node [79]. In the lymph node, antigen-presenting DCs encounter naive CD4+ T cells and
stimulate them in order to differentiate into effector cells such as Th1, Th2, and Th17, initi-
ating adaptive immunity and leading to the generation of CTLs and antibody-producing
plasma cells. To properly activate naive T cells and establish adaptive immunity, the upreg-
ulation of costimulatory molecules such as CD86 and CD80 on antigen-captured DCs via
signaling with DAMPs and inflammatory cytokines is essential. The interaction between
CD86 on antigen-presenting cells such as DCs and CD28 on T cells then stimulates naive
T cells and subsequently induces IL-2 production, which is important to prevent anergy,
a state in which cells are not responsive to the stimulation thereafter and are tolerant to
self-antigens, leading to the activation of adaptive immunity via effector and memory
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T cells (Figure 1) [80]. Therefore, it is highly reasonable that an in vitro testing method to
assess the sensitizing potential and allergenicity of chemicals and drugs utilizes CD86 as a
marker for predicting the sensitizing potential.

Considering that many new chemicals and drugs are currently being produced,
whether these new molecules cause autoimmune-like responses as stated above is critically
important and therefore needs to be predicted in advance. Determining the sensitization
potential of a chemical is an important safety assessment process. Two traditional tests
are accepted by the Organization for Economic Co-operation and Development (OECD)
for the assessment of chemical sensitization potential: the maximization test [81] and the
Buehler test [82], both of which utilize the guinea pig. The mouse local lymph node assay
(LLNA) is the gold-standard assay for evaluating the chemical sensitization potential using
animal models [83]. The LLNA assesses the sensitization potential by monitoring the
induced proliferative response of lymphocytes in the draining lymph nodes following
chemical exposure. This assay has been extensively evaluated and validated, and the
proliferative response is highly correlated with the sensitization potency of the test chemi-
cals [84]. However, a global movement is emerging, and the use of animal models for the
safety testing of chemicals has been significantly limited due to introduction of the 3Rs
principle of refinement, replacement, and reduction in animal experimentation in research
wherever possible [85]. Because animal experimentation for risk assessments has thus
been banned, creating new in vitro methods is highly desired. Therefore, several in vitro
assays for predicting the skin-sensitizing potential of chemicals have been developed: the
direct peptide reactivity assay [86], KeratinoSens [87], the human cell line activation test
(h-CLAT) [88], the IL-8 luciferase assay [89], and GARDskin [90,91]. Each approach has its
individual pros and cons, but the in vitro culture methods that target a later phase in the
downstream sensitization process such as DC maturation and CD4+ T cell differentiation
have several benefits by reflecting the sum of upstream events.

3.1. h-CLAT

To evaluate the skin sensitizing potential of chemicals and drugs in vitro, the h-CLAT
is widely used under OECD test guideline 442E [92]. h-CLAT quantifies the increase in
cell surface expression of costimulatory molecule CD86, which is indispensable for the
activation of naive CD4+ T cells [93], and adhesion molecule CD54, which is important
for interaction between antigen-presenting cells and T cells, on the human DC surrogate
monocytic leukemia cell line THP-1 [94] (Figure 2A). The molecular mechanisms by which
sensitizers induce the upregulation of CD86 and CD54, and the maturation of DCs is
mediated by DAMPs such as ROS, high mobility group box 1, S100A/B, extracellular
ATP, uric acid, hyaluronic acid fragments, and heat shock proteins, and proinflammatory
cytokines such as IL-1, and IL-8 [95]. The upregulation of CD86 on immature DCs is
critically important to properly stimulate antigen-specific naive CD4+ T cells via CD28 on T
cells to produce IL-2, which is a growth factor for T cells, and the subsequent activation of
adaptive immunity [80]. Although h-CLAT has been widely used for the evaluation of the
skin-sensitizing potential of chemicals and drugs, it need to be used along with other assays
in a defined approach (OECD 497) [96]. Moreover, h-CLAT cannot detect pro-haptens or
pre-haptens; therefore, the coculture systems of THP-1 cells with other cells such as the
human keratinocyte cell line HaCaT cells have been reported [97].
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Figure 2. In vitro cell culture systems created for predicting the sensitizing potential and allergenicity
of chemicals and drugs. Due to the current limited utilization of animal experimentation for risk
evaluation, several in vitro cell culture systems as alternative methods have been developed to predict
the sensitizing potential and allergenicity of chemicals and drugs. (A) The h-CLAT is an in vitro
evaluation method widely used as a guideline test for predicting the skin sensitizing potential of
chemicals by measuring CD86 and CD54 on THP-1 cells, DC surrogate cells. However, h-CLAT is
disadvantaged in not being able to evaluate pro-haptens, because THP-1 cells only have limited
metabolic capacity. (B) The h-CLAT-w/M system consists of THP-1 cells and melanoma SK-MEL-37
cells, as surrogate melanocytes are established. This system is useful for evaluating whether whitening
agents that target melanocytes, especially tyrosinase, cause leukoderma as an adverse effect. Using
the h-CLAT-w/M, RD was shown to act on melanocytes, generate ROS, release ATP, and consequently
upregulate CD86 and IL-12 in THP-1 cells, potentially leading to the generation of melanocyte-specific
CTLs and eventually leukoderma. (C) The DC coculture system consists of the human upper airway
epithelial cell line BEAS-2B cells, and human peripheral monocyte-derived proliferating cell line
CD14-ML cells. This system successfully discriminates typical chemical respiratory sensitizers from
typical skin sensitizers by measuring the mRNA expression of one of the critical molecules for Th2
differentiation in DCs, OX40L. (D) To more precisely reproduce the in vivo activation and migration
of naive CD4+ T cells after stimulation with DCs treated by chemical sensitizers, a new two-step
DC/T cell coculture system was established by further adding peripheral allogeneic naive CD4+ T
cells to the DCs stimulated in the DC coculture system. In this two-step DC/T cell coculture system,
the mRNA upregulation of IL-4 in T cells representing KE4 was successfully used to discriminate
typical respiratory sensitizers from skin sensitizers.

3.2. h-CLATw/M

h-CLAT is disadvantaged in not being able to evaluate pro-haptens, because THP-1
cells only have limited metabolic capacity [98]. To compensate for that disadvantage, we
recently established a new coculture system, h-CLATw/M, consisting of THP-1 cells and
human melanoma cell line SK-MEL-37 cells as surrogate melanocytes [69] (Figure 2B). This
is because RD is a pro-hapten and needs to be metabolized by oxidation with tyrosinase in
melanocytes and converted to RD-quinone that binds to self-proteins. Without melanoma
cells, only a slight upregulation of the expression of CD86 and IL-12 by RD was observed in
h-CLAT, suggesting that RD might be a skin sensitizer that induces contact hypersensitivity.
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However, this cannot refer to the leukoderma-inducing potential. By contrast, with the
melanoma cells in h-CLATw/M, RD was shown to upregulate the expression of CD86
and IL-12 much more than it did in h-CLAT, suggesting that RD is a tyrosinase- and
melanocyte-specific sensitizer. In particular, RD was demonstrated to be a potent inducer
of leukoderma by acting on melanocytes and subsequently generating ROS and releasing
ATP, and consequently upregulating CD86 and IL-12 and leading to the generation of
melanocyte-specific CTLs [69] (Figure 2B). This is because RD is a pro-hapten and needs to
be metabolized by oxidation with tyrosinase in melanocytes. IL-12 is a potent factor for
Th1 differentiation and CTL generation [99], and both ROS and ATP reportedly induced
IL-12 production from macrophages and DCs [100–102].

Generally, a skin sensitizer is typically considered to be hapten-specific for proteins
present abundantly and broadly in serum and cells, inducing an allergic reaction across the
skin when exposed to the sensitizer again (Figure 3A). By contrast, RD is unique in being a
pro-hapten specific for tyrosinase that metabolizes into its hapten sensitizer, RD-quinone,
by oxidation in melanocytes, resulting in ROS production and ATP release and the resultant
upregulation of CD86 and IL-12, which leads to the induction of leukoderma (Figure 3B).
The former can be detected by h-CLAT, and the latter can be detected by h-CLATw/M.
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Figure 3. Comparison between general hapten-induced sensitization and RD-induced sensitization.
Generally, a skin sensitizer is considered to be hapten-specific for proteins present abundantly and
broadly in serum and cells, inducing an allergic reaction across an expansive layer of skin when
exposed again to the sensitizer (A). By contrast, RD is unique in being a pro-hapten specific for
melanocytes that metabolizes into its hapten sensitizer, RD-quinone, by oxidation in melanocytes,
resulting in ROS production and ATP release, and the resultant upregulation of CD86 and IL-12,
which lead to the induction of leukoderma (B). The former can be detected by using h-CLAT and the
latter can be detected by using h-CLATw/M.

3.3. h-CLAT with Other Cells

Thus, the coculture system of THP-1 cells with appropriate cells is very useful for
assessing the sensitizing potential of pro-haptens, which are metabolized in certain tissues
and cells. In place of melanocytes in the h-CLATw/M, the coculture system of THP-1 cells
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can be presumably applied to other cells such as hepatocytes, keratinocytes, and intestinal
epithelial cells using human hepatoma cell line HepG2, human keratinocyte cell line
HaCaT, and human colon adenocarcinoma cell line Caco-2, respectively. For instance, the
sensitizing potential of pro-haptens such as halothane and penicillin to induce liver injury
and hemolytic anemia, respectively, might be assessed in the coculture system of THP-1
cells with HepG2 cells (h-CLATw/H) by measuring the CD86 upregulation. Comparing
other hepatocyte cell lines, HepG2 cells were reported to show more similarities to the
human liver than the other cell lines with respect to the expression of cellular cytochrome
P450 (CYP) proteins such as CYP1A2, CYP2B6, and CYP3A4 [103]. In the case of the
induction of IBD, the chemicals and drugs described above such as TNBS and OXA are
haptens; therefore, h-CLTA can be used for their assessment of sensitizing potentials.
However, if there were pro-haptens, which induce IBD, they might be assessed in the
coculture system of THP-1 cells with Caco-2 cells (h-CLATw/C) by measuring the CD86
upregulation. Caco-2 cells are commonly utilized as a biochemical and physical barrier to
the passage of small molecules and ions [104,105]. When cultured under specific conditions,
Caco-2 cells become differentiated and polarized, expressing microvilli, several enzymes
and transporters, and tight junctions, which phenotypically resemble the enterocytes lining
the small intestine [104,106]. Further studies are necessary to investigate whether these
new coculture systems are really effective.

3.4. DC Coculture

The Gell and Coombs classification divides allergic reactions into two types: one is
a delayed hypersensitivity type IV skin allergic response following skin contact such as
ACD; another is an immediate Type I respiratory allergic response in the airways caused
by inhalation (mostly asthma). Because the levels of risk management for these reactions
are quite different and respiratory sensitizers often causes long lasting and severe adverse
health problems [107], skin and respiratory sensitizers need to be accurately identified
in advance. However, discrimination between skin and respiratory sensitizers cannot be
correctly achieved by current alternative methods [108].

Skin and respiratory sensitizers have been demonstrated to induce different immune
responses; skin sensitizers induce Th1 responses mixed with Th2 and Th17 responses,
while respiratory sensitizers induce predominantly Th2 responses [19–25]. Previously, skin
and respiratory sensitizers was successfully distinguished by the assessment of cytokine
profiles in the LLNA; compared to the skin sensitizers, the respiratory sensitizers much
more enhanced the expression of molecules critical for Th2 immune responses such as IL-4
and IL-4Rα [23–25]. Because IL-4 is the predominant differentiating factor of Th2 cells and
a strong effector cytokine produced by Th2 cells, IL-4 is considered to be the best marker
for Th2 differentiation and the induction of Th2 immune responses [109,110].

Previously, we developed an in vitro assay using a three-dimensional (3D) cocul-
ture system mimicking human upper airway epithelium [111]. This system comprises
human upper airway epithelial cell line BEAS-2B, human peripheral monocyte-derived
immature DCs, and human lung fibroblast cell line MRC-5, which cultured in individual
scaffolds. After stimulation with several typical skin and respiratory chemical sensitizers,
a quantitative PCR analysis was performed within individual scaffolds to analyze the
mRNA expression levels of molecules critical for Th2 differentiation such as OX40 ligand
(OX40L) [112,113], IL-4, IL-25, IL-33, and thymic stromal lymphopoietin. Both sensitizers
showed a similarly augmented expression of DC maturation markers such as CD86, but
among these molecules, OX40L expression in DCs was most significantly and consistently
increased by respiratory sensitizers compared to skin sensitizers. Thus, this coculture
system can successfully discriminated typical respiratory sensitizers from skin sensitizers
by measuring the critical molecule for Th2 differentiation, OX40L, in DCs.

Recently, in order to improve the versatility, peripheral monocyte-derived proliferating
cells called CD14-ML were generated by the infection of peripheral CD14+ monocytes with
retrovirus expressing c-MYC, B-cell lymphoma 2, and BIM1 according to the published
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method [114]. Then, in place of peripheral monocyte-derived immature DCs, immature
DCs derived from CD14-ML were applied to the DC coculture system without the MRC-5
fibroblast cell line (Figure 2C). Similarly to peripheral monocytes, the enhanced OX40L
mRNA expression was detected by typical respiratory sensitizers compared to skin sensi-
tizers [115]. Thus, this DC coculture system might be useful for discriminating respiratory
sensitizers from skin sensitizers by the preferential OX40L mRNA upregulation in the
CD14-ML-derived DC cells.

3.5. DC/T Coculture

The adverse outcome pathways (AOPs) for skin and respiratory sensitization path-
ways were established to accurately develop alternative methods for their assessment [75–77].
The AOP includes four key events (KEs): KE1 covalently binds to skin proteins, KE2
activates keratinocytes, KE3 activates DCs, and KE4 activates T cells. All of the currently
validated in vitro assays are based on KEs 1–3, and there is no validated in vitro assay based
on KE4 to date [116]. We postulated that an in vitro T cell-based assay could discriminate
respiratory sensitizers from skin sensitizers by the preferential upregulation of IL-4 in T
cells, thereby becoming the ultimate in vitro assay. Therefore, we tried to establish the T
cell-based assay that reproduces the physiological spatiotemporal flow of sensitization
processes in vivo ranging from the exposure of DCs to sensitizers proceeding through the
upper airway epithelium and subsequently the migration of the antigen-presenting DCs to
the draining lymph nodes, to the stimulation of naive CD4+ T cells by the DCs [117].

To more precisely reproduce the in vivo activation of naive CD4+ T cells by DCs that
are stimulated with sensitizers through the upper airway epithelium and then migrate into
the draining lymph nodes, we recently established a new two-step DC/T cell coculture
system by further adding peripheral allogeneic naive CD4+ T cells to the DCs stimulated
in the DC coculture system. In this DC/T cell coculture system, the upregulation of IL-4
mRNA in T cells representing KE4 is successfully used to discriminate typical respiratory
sensitizers from skin sensitizers [115]. To improve the versatility, peripheral monocyte-
derived immature DCs were similarly replaced with immature DCs derived from CD14-ML
cells in the DC/T cell coculture systems (Figure 2D). Thus, this two-step DC/T cell coculture
system might be useful for discriminating between respiratory and skin sensitizers by the
differential upregulation of IL-4 mRNA in T cells.

3.6. DC/T/B Coculture

Thus, the two-step DC/T coculture system utilizes the cytokine expression in T cells
as a marker to evaluate whether chemicals or drugs evoke skin or respiratory sensitization.
However, currently, the in vitro coculture system for measuring the ultimate immune
response, that is, humoral responses such as antibody production or isotype switching to
IgE, has not been reported. To establish such a coculture system, B cells are necessary and
added to the DC/T coculture, generating a DC/T/B coculture system, which might be
able to evaluate T-dependent antibody responses (TDAR) [118]. The TDAR assay is the
most extensively validated immunotoxicity assay and is widely used as first-line immune
function assays as they can globally assess the effects on antigen presentation, Th cell
function, and T cell-dependent antibody production. The gold standard for evaluating the
potential effects on TDAR is the primary IgM antibody response to highly immunogenic
and intact sheep erythrocytes (SRBCs) [119,120]. Rodents are injected with SRBC, and the
spleen is removed several days later to prepare a spleen cell suspension that is subsequently
incubated with SRBC and complement the plaque-forming cell (PFC) assay. Spleen cells
that produce anti-SRBC antibodies form hemolytic plaques with yellowish areas that
can be counted. A more quantitative analysis of the SRBC-specific IgM or IgG after
multiple injections with SRBC can be performed by specific ELISA. To establish the DC/T/B
coculture system for the evaluation of TDAR, further studies are necessary to generate an
antigen-specific B cell line that is capable of differentiating toward antibody-producing
plasma cells after stimulation with the same antigen-specific CD4+ T cell clone.
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4. New Concepts of Chemical- and Drug-Induced T Cell Activation

The activation of T cells is predominantly determined by two signals [121]. The first
signal is the interaction between peptides processed from an antigen presented on the
major histocompatibility complex (MHC) I and II and the T cell receptor (TCR), which
triggers the activation of antigen-specific CD4+ helper T cells and CD8+ cytotoxic T cells,
respectively [122]. The second signal is the costimulatory one of CD86/CD80, which is
indispensable for the proper activation of T cells through CD28, secreting IL-2 that is an
autocrine growth factor for T cells [123]. Danger signals via Toll-like receptors, inflamma-
somes, or inflammatory cytokines are essential for the upregulation of these costimulatory
signals upon stimulation with haptens [124]. The hapten theory has been described as
the classical explanation for T cell activation by chemicals and drugs. Small molecules,
which are incapable of initiating an immune response alone, covalently bind to self-proteins
and are intracellularly processed, and the resultant hapten-modified self-peptides are
subsequently presented by MHC molecules on the surface of antigen-presentign cells as
neoantigens for TCR interactions [125,126].

Although chemical- and drug-induced hypersensitivity reactions have mainly been
explained by the hapten theory, the pathway by which T cells are activated by these small
molecules is not still fully understood. Currently, two additional pathways have been
proposed for the activation of T cells in addition to the hapten theory; the pharmacological
interaction with immune receptors (p-i) model and the altered peptide model [127–129].
Pichler et al. proposed the novel p-i concept (Figure 1), challenging the requirement for
antigen processing and covalent binding to proteins for T cell activation [130–132]. This
concept suggests that chemicals and drugs such as sulfamethoxazole and lidocaine can
activate immune cells via a direct and reversible interaction with immune receptors such as
TCR or MHC via non-covalent binding and without the requirement of antigen processing.
Such rapid T cell-mediated reactions are consistent with the hypersensitivity features of
allergic and autoimmune reactions. In contrast, the altered peptide model was proposed
following the report on the mechanism whereby abacavir induces hypersensitivity via the
activation of CD8+ T cells in an HLA-B*57:01-restricted manner [133]. This model postulates
that a small molecule can bind non-covalently to the pocket of the MHC-binding groove
directly or that may occur in the endoplasmic reticulum prior to intracellular loading [134].
Resultant binding subsequently alters the specificity of peptide binding, resulting in the
presentation of novel unconventional self-peptides as neoantigens that are not usually
presented by the particular HLA allele. The peptides are shifted in amino acid residues
to accommodate the bound drug, and they are not drug-modified peptides, as seen in the
hapten theory.

5. Conclusions and Future Perspectives

Atopy is mainly caused by Th2-biased immune responses, which are characterized
by exaggerated IgE immune responses to common harmless protein substances such
as pollen, dander, dust mites, and foods in the environment. The number of patients
with atopic diseases such as atopic dermatitis, allergic asthma, allergic rhinitis, and hay
fever increased over the last 50 years, mainly due to reduced exposure to pathogenic
microorganisms according to the hygiene hypothesis [135]. In addition, the breakdown
of oral immune tolerance to food proteins and subsequent sensitization to them is often
associated with atopic diseases [28,29]. McFadden et al. [136] previously proposed the
hapten-atopy hypothesis: The dramatic increase in the number of patients of atopic diseases
is caused at least in part by a revolutionary increase in exposure to dietary chemical- and
drug haptens via processed food, formula milk, food preservatives, and oral antibiotics and
drugs in the environment. Increased oral exposure to chemicals and drugs may compete
with food proteins for the development of oral tolerance, consequently resulting in a
predisposition toward the acquisition of food protein allergy and subsequently atopy [28,29].
McFadden et al. [137] also postulated that initial innate immune responses toward chemical
haptens result in the promotion of Th1 cell responses via the Toll-like receptor, and repeated
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skin exposure to certain types of hapten may result in the generation of an immunological
environment where the development of Th2 immune responses is favored.

Allergic reactions can range from sneezing and hay fever to atopy and anaphylaxis,
and at worst even death. Not only proteins but also low molecular chemicals and drugs
can cause these allergic reactions, and there are many cases showing that chemicals or
drugs induce autoimmune responses via the haptenation of self-proteins with and without
undergoing metabolism. Every year, many new chemicals and drugs are developed,
many of which might include haptens or pro-/pre-haptens. It is possible that these new
substances might induce autoimmune responses via the haptenation of self-proteins. All
these immune responses are mediated by adaptive immunity, especially the effector and
memory T cells and B cells. Therefore, whether these chemicals and drugs have sensitizing
potential, that is, the ability to properly activate T cells and subsequently B cells, and
establish adaptive immunity, is important. The development of in vitro methods to predict
such sensitizing potentials of chemicals and drugs in advance is highly desirable. Thus,
compared to proteins, haptens are small in molecular weight, but their effects on immune
responses could be greater than what have observed to date. Additional studies are
warranted to more comprehensively understand the contribution of hapten or pro/pre-
hapten to the development of adverse immune responses and intractable diseases.
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