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Simple Summary: Obesity is an independent risk factor for atrial fibrillation, which, in the ensuing
decades, will probably increase the global burden. Previous studies have indicated that inflammation
is a central mediator between obesity and atrial fibrillation. However, the mechanisms underlying this
crosstalk are still being uncovered, and there are insufficient specific biomarkers. We co-analyzed the
atrial fibrillation and obesity microarrays to investigate the possible molecular mechanism of obesity-
related atrial fibrillation. We found that MNDA, CYBB, CD86, FCGR2C, NCF2, LCP2, TLR8, HLA-DRA,
LCP1, and PTPN22 were only elevated in blood samples of obese atrial-fibrillation patients. Atrial-
fibrillation patients’ left atrial appendage had increased infiltration of naïve B cells and decreased
infiltration of memory B cells. Ten validated hub genes were related positively to naïve B cells and
negatively to memory B cells. Ten validated genes identified by bioinformatics analysis, specifically
correlated with obesity-related atrial fibrillation, may serve as biomarkers for obesity-related atrial
fibrillation. These findings may also aid in comprehending pathophysiological mechanisms and
identifying possible treatment targets for obesity-related atrial fibrillation.

Abstract: Obesity is an independent risk factor for atrial fibrillation (AF). However, the mechanisms
underlying this crosstalk are still being uncovered. Co-differentially expressed genes (co-DEGs) of
AF and obesity microarrays were identified by bioinformatics analysis. Subsequently, functional
enrichment, cell-type enrichment, and protein–protein interaction network analyses of co-DEGs
were carried out. Then, we validated the hub genes by qRT-PCR of patients’ blood samples. Finally,
CIBERSORT was utilized to evaluate the AF microarray to determine immune infiltration and the
correlation between validated hub genes and immune cells. A total of 23 co-up-regulated DEGs
in AF and obesity microarrays were identified, and these genes were enriched in inflammation-
and immune-related function. The enriched cells were whole blood, CD33+ myeloid, and CD14+
monocytes. The hub genes were identified as MNDA, CYBB, CD86, FCGR2C, NCF2, LCP2, TLR8, HLA-
DRA, LCP1, and PTPN22. All hub genes were only elevated in blood samples of obese-AF patients.
The CIBERSORT analysis revealed that the AF patients’ left atrial appendage had increased infiltration
of naïve B cells and decreased infiltration of memory B cells. The hub genes were related positively
to naïve B cells and negatively to memory B cells. Ten hub genes may serve as biomarkers for
obesity-related AF. These findings may also aid in comprehending pathophysiological mechanisms
for obesity-related AF.
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1. Introduction

Atrial fibrillation (AF) is one of the most common cardiac arrhythmias, while a study
published in 2020 based on the prospective urban and rural epidemiological (PURE) study
demonstrated that the incidence of AF is 270–360 cases per 100,000 [1]. Obesity was
first identified as an independent risk factor for AF in the Framingham cohort study [2].
In recent years, an umbrella review and meta-analysis of observational and Mendelian
randomization studies suggested that an increase of one unit in body mass index (BMI) was
associated with an increased risk of AF [3]. Given that obesity has spread widely across the
globe, it is likely to increase the global burden of AF in the coming decades. More seriously,
obese patients have a lower success rate for catheter ablation and are more likely to relapse
after surgery, while both BMI [4] and epicardial fat [5,6] are associated with the risk of
AF progression and its recurrence. Therefore, it is necessary to investigate the potential
pathogenesis of AF associated with obesity.

At present, the mechanisms involved in obesity-related AF remain unclear. Obesity
may cause AF through local effects, such as abnormal secretion of adipokines, inflamma-
tion, hypoxia, and adipose and fibrous tissue infiltration [7,8], which may also increase
the susceptibility to AF through systemic effects mechanisms such as insulin resistance,
metabolism disorders, inflammatory states, and hemodynamic changes [9,10]. The mech-
anism appears diverse, but many studies proved that inflammation might be a pivotal
mediator between obesity and AF [11]. However, there is still a lack of effective prediction
methods for obesity-related AF, and the conditions and prognoses of these patients are not
easily predictable. Therefore, it is necessary to search for specific biomarkers to identify the
possible mechanism of obesity-related AF.

CIBERSORT is a widely used analysis tool, which can carry out deconvolution analysis
of gene expression profiles and predict fractions of immune cell types in a mixed cell
population [12]. Leukocyte signature matrix (LM22) can be used as the reference gene
matrix for estimating 22 different types of immune cells. CIBERSORT is effective against
numerous non-tumor diseases.

In this study, we used a microarray study as an effective method to explore possible
pathogenesis and to find specific markers. Due to the lack of a microarray study of obesity-
related AF patients, we analyzed the AF and obesity microarrays to investigate the co-DEGs
and possible biomarkers of obesity-related AF. Then, we validated the hub genes in obesity-
related AF patients’ blood samples. Finally, CIBERSORT was used to compare the immune
infiltration of left atrial appendages (LAAs) between patients with sinus rhythm (SR) and
AF. We investigated the relationship between hub genes and immune cell types further.
Consequently, this study has important implications for identifying specific biomarkers
and potential pathogenic mechanisms.

2. Materials and Methods
2.1. Materials and Methods

Figure 1 displays the study’s methodology. GSE79768 and GSE94752 were retrieved
from Gene Expression Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/,
accessed on 26 April 2022). GSE79768 (platform: GPL570) has paired LAA and right atrial
appendages (RAA) from 7 AF patients and 6 SR patients. GSE94752 (platform: GLP11532)
has subcutaneous white adipose tissue (WAT) specimens from 9 lean and 39 obese patients.
LAA data of the GSE79768 dataset were used to identify differentially expressed genes
(DEGs) between patients with AF and SR. Data from GSE94752 was used to identify mRNA
associated with obesity susceptibility. We first calculated the DEGs of these two microarrays
and found that the up-regulated and down-regulated DEGs from these two microarrays
intersected. By analyzing the co-DEGs of the two gene datasets listed above, we determined
the potential relationship between AF and obesity. As described elsewhere, the AF patients
in this study had a disease course lasting longer than one month, whereas the SR patients
had no clinical evidence of AF [13]. We only analyzed the data of the left atrium because
there is still evidence that the left atrium and right atrium have different gene expressions,
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and the left atrium plays a more critical role in the pathogenesis of AF [14]. The lean patients
had a BMI of less than 25 kg/m2, while the BMI of obese patients was over 30 kg/m2, as
indicated elsewhere [15].
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2.2. Data Processing and Identification of DEGs and Co-DEGs

The raw datasets of GSE79768 and GSE94752 were accessed and quality controlled by
R (Version 4.1.2) packages of “affy”, “affyPLM” and “limma”. Robust multiarray average
(RMA) was used to normalize the data. The adjusted p-value < 0.05 and |log2FC| < 0.585
were used as thresholds to filter out DEGs. Hierarchical cluster heat maps were used to show
distinguished mRNA expression levels of DEGs by the “pheatmap” package in R. Volcano
plots were generated to represent all mRNA expression levels and the corresponding statistical
inference value by “ggplot2” and “ggrepel” packages. Further, we calculated and made Venn
diagrams for co-DEGs of AF- and obesity-DEGs by the “VennDiagram” package.

2.3. Gene Ontology, Pathways, and Cell-Type Enrichment Analyses of Co-DEGs

Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway
enrichment analyses (http://www.kegg.jp/ or http://www.genome.jp/kegg/, accessed
on 15 May 2022) of co-DEGs were carried out using the “clusterProfiler” and “pathview”
packages of R software. Bar graphs were used to display enrichment results. The KEGG
pathway graph was used to display the gene enrichment pathway. The q value (adjusted
p-value) threshold was set to 0.05. Further, Enrichr (https://maayanlab.cloud/Enrichr/,
accessed on 15 May 2022) and the Human Gene Atlas database were used to evaluate
co-DEG cell types with enriched co-DEGs.

2.4. Protein–Protein Interaction Network Integration of Co-DEGs

Protein–protein interaction network integration (PPI) of co-DEGs was analyzed by
the search tool for the retrieval of interacting genes (STRING database, Version 11.5; http:
//string-db.org/ accessed on 15 May 2022), which is suitable for identifying interactions
between input genes. Subsequently, the analytic results of the STRING database were fed
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into Cytoscape software (Version 3.7.2). The biological networks and node degrees were
analyzed and represented graphically, and the top ten hub genes were identified.

2.5. Validation for the Potential Role of Hub Genes

The expression levels of the top ten hub genes in obesity-related AF were confirmed by
quantitative real-time polymerase chain reaction (qRT-PCR). This study included patients
from the Chinese PLA General Hospital. To further investigate the function of hub genes,
we obtained blood samples from eight lean-AF, eight obese-AF, seven lean-SR, and eight
obese-SR patients. Patients’ clinical information can be seen in Table S1. Total RNA from
blood was prepared using a high-performance blood total RNA extraction kit (DP443,
TIANGEN). Reverse RNA transcription was performed by a reverse-transcription system
(K1622, Thermo Fisher, Waltham, MA, USA). Obtained cDNA was amplified using SYBR
premix kit (A25742, Thermo Fisher) by BIO-RAD CFX96 (Bio-Rad Laboratories, Hercules,
CA, USA). Predesigned gene-specific primers are listed in Table S2. β-actin RNA levels
were used as an internal control. This study protocol involving human subjects had
been reviewed and approved by the Chinese People’s Liberation Army General Hospital
Ethics Committee. The patients/participants provided their written informed consent
to participate in the study. The AF patients were diagnosed with an electrocardiogram
(ECG), whereas the SR patients did not exhibit any symptoms of AF (such as palpitations,
dizziness, chest pain, or pressure) or ECG evidence. The lean patients’ BMI were no more
than 25 kg/m2, and they did not have any metabolic disorders, for example, hyperlipidemia
or diabetes mellitus. The patients who had a BMI greater than 30 kg/m2 were regarded as
obese patients.

2.6. Immune Infiltration by CIBERSORT Analysis of AF-DEGs

We used the CIBERSORT algorithm to analyze the normalized data generated from
raw data, and the leukocyte signature matrix (LM22), which contains 22 types of immune
cells, was used as the reference gene matrix [12]. LM22 includes macrophages M0, M1, and
M2, memory B cells, B naïve cells, plasma cells, CD8 T cells, gamma-delta T cells, follicular
helper T cells, CD4 memory-activated T cells, CD4 naïve T cells, CD4 memory resting T
cells, regulatory T cells (Tregs), neutrophils, monocytes, activated NK cells, resting NK
cells, resting dendritic cells, activated dendritic cells, eosinophils, activated mast cells, and
resting mast cells. With a p-value less than 0.05, the samples were considered successful
for deconvolution analysis and further subjected to differential analysis of proportions
of immune cells. Further, “ggplot2”, “pheatmap”, and “vioplot” packages were utilized
to visualize the percentage and difference of immune cell infiltration. The relationships
between two immune cells and between immune cells and validated hub genes were
calculated by the “corrplot” package.

2.7. Statistical Analysis

R (4.1.2) was utilized to conduct the bioinformatics analysis. This study’s qRT-PCR
data were processed using GraphPad Prism (Version 9). Using F-tests, the expression levels
of hub genes were analyzed. Adjusted p-value (q value) and p-value less than 0.05 were
deemed statistically significant.

3. Results
3.1. Identification of DEGs in Atrial Fibrillation and Obesity

We identified 54,675 probes corresponding to 20,267 genes in the GSE79768 dataset and
33,298 probes corresponding to 19,409 genes in the GSE94752. There are 412 DEGs between
AF patients and SR patients in GSE79768 LA specimens, including 292 up-regulated genes
and 120 down-regulated genes. There are 746 DEGs between obese and lean patients in
GSE94752 WAT specimens, including 547 up-regulated genes and 199 down-regulated
genes. Following this, we discovered one co-down-regulated gene and twenty-three co-
up-regulated genes in the aforementioned two datasets. The above data are available in
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Table S3. Heat maps of the top 50 up-regulated and top 50 down-regulated genes of AF-
DEGs and obese-DEGs are presented, and these figures can be found in Figures S1 and S2.
Figure 2a illustrates the number of co-expressed genes of AF- and obese-DEGs, and these
genes are labeled in Figure 2b, which displays the distribution of the differences in gene
expressions. Further, Figure 2c,d demonstrate hierarchical clustering analysis of AF- and
obese-related DEGs, respectively.
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Figure 2. Venn diagram, volcano plot, and heat map of AF- and obese-related DEGs. (a) Venn
diagram of DEGs related to AF and obesity. (b) Volcano plot of DEGs related to AF. Gray points
represent the adjusted p-value > 0.05; red points represent adjusted p-value > 0.05 and up-regulated
genes; green points represent adjusted p-value < 0.05 and down-regulated genes. (c) Heat map of
GSE79768 with co-DEGs related to AF and obesity. The vertical axis represents samples, and the
horizontal axis represents co-DEGs. Pink, AF samples; blue, SR samples; red, greater expression;
green, less expression. (d) Heat map of GSE94752 with co-DEGs related to AF and obesity. Pink,
obese samples; blue, lean samples; red, greater expression; green, less expression.

3.2. GO terms, KEGG Pathway, and Cell-Type Enrichment in Co-DEGs

Given that there is only one down-regulated gene in co-DEGs, only the up-regulated
genes were utilized for enrichment analysis. The GO-terms enrichment results are shown
in Figure 3a and Table S4. The top ten GO terms related to biological processes (BPs) among
these genes were: positive regulation of cytokine production, immune response-regulating
signaling pathway, immune response-activating cell-surface-receptor signaling pathway,
immune response-activating signal transduction, immune response-regulating cell-surface-
receptor-signaling pathway, activation of the immune response, lymphocyte activation
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involved in immune response, positive regulation of α-β T cell activation, positive regula-
tion of interferon-gamma (IFN-γ) production, and positive regulation of T cell activation. In
terms of cellular components (CCs), there was a significant correlation in NADPH oxidase
complex, MHC class II protein complex, MHC protein complex, an integral component of
the lumenal side of endoplasmic reticulum membrane, the lumenal side of endoplasmic
reticulum membrane, the endocytic vesicle, the lumenal side of the membrane, an integral
component of endoplasmic reticulum membrane, an intrinsic component of endoplasmic
reticulum membrane, and the lysosomal membrane. The terms related to molecular func-
tion (MF) mainly include superoxide-generating NAD(P)H oxidase activity, oxidoreductase
activity, acting on NAD(P)H, oxygen as acceptor, MHC class II protein-complex binding,
MHC protein-complex binding, peptide antigen binding, GTPase binding, oxidoreductase
activity, acting on NAD(P)H, peptide-binding, electron-transfer activity, amide-binding.

The KEGG pathway enrichment results are shown in Figure 3b and Table S2. In the
KEGG analysis, the up-regulated genes were mainly enriched in leishmaniasis, phago-
some, staphylococcus aureus infection, allograft rejection, graft-versus-host disease, type
I diabetes mellitus, the intestinal immune network for IgA production, autoimmune thy-
roid disease, viral myocarditis, rheumatoid arthritis, hematopoietic cell lineage, asthma,
osteoclast differentiation, systemic lupus erythematosus, cell adhesion molecules, tuber-
culosis, diabetic cardiomyopathy, inflammatory bowel disease, and antigen processing
and presentation.

Enrichment analysis of cell types indicated that up-regulated genes in co-DEGs are
more likely to identify whole blood, CD33+ myeloid, and CD14+ monocytes (Figure 3c
and Table S4) The interaction of enriched cell types is shown in Figure 3d, which shows
an interaction among whole blood, CD33+ myeloid, and CD14+ monocytes. Further, the
relationship between cell-type enrichment and genes is shown in Figure 3e. Figure 3f
depicts the pathway map of the phagosome, which, according to the aforementioned
enrichment analysis, may play a role in obesity-related AF.

3.3. PPI Network Analysis in Co-DEGs

As 21 co-DEGs filtered into the PPI network, we identified 16 nodes and 43 edges,
and these data appear in Figure 4a. The hub genes calculated by Cytoscape software are
MNDA (score 320), CYBB (score 314), CD86 (score 312), FCGR2C (score 242), NCF2 (score
240), LCP2 (score 182), TLR8 (score 148), HLA-DRA (score 54), LCP1 (score 30), and PTPN22
(score 8), which are considered to be associated with obesity-related AF. (Figure 4b) Among
these genes, MNDA, CYBB, and CD86 possessed the top three scores, calculated by the
maximal clique centrality (MCC) algorithm.

3.4. Validation for the Potential Role of Hub Genes

We confirmed hub-gene expression levels in lean-SR, obese-SR, lean-AF, and obese-
AF patients’ blood samples. As depicted in Figure 5, all ten hub genes were uniquely
expressed at a higher level in obese-AF patients compared with lean-SR, obese-SR, and
lean-AF patients.

3.5. Immune Infiltration Analyses

Due to the co-DEGs being enriched in whole blood, CD33+ myeloid, and CD14+
monocytes, we further analyzed the DEGs in LAA samples between SR and AF patients
by the CIBERSORT algorithm. The overall differential expressions of immune fractions
between SR and AF patients are depicted in Figure 6a. More specifically, in Figure 6b, the
LAA of AF patients exhibited a higher infiltration of naïve B cells and a lower infiltration
of memory B cells compared to SR patients. As shown in Figure 6c, naïve B cells were
negatively associated with memory B cells, regulatory T cells (Tregs), resting NK cells,
M2 macrophages, and activated mast cells, whereas they were positively associated with
gamma-delta T cells, M1 macrophages, and resting mast cells. Memory B cells were
negatively associated with naïve B cells, CD4 memory resting T cells, gamma-delta T cells,
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M1 macrophages, resting mast cells, and neutrophils, while positively associated with
Tregs, resting NK cells, M2 macrophages, activated dendritic cells, and activated mast
cells. However, no correlation was found between monocytes, memory B cells, and naïve
B cells. Therefore, we further analyzed the correlation between hub genes and immune
cells. As illustrated in Figure 6d, naïve B cells were positively associated with LCP1, HLA-
DRA, TLR8, CD86, and CYBB. Meanwhile, memory B cells were negatively associated with
PTPN22, LCP1, HLA-DRA, TLR8, LCP2, NCF2, FCGR2C, CD86, CYBB, and MNDA.

Biology 2023, 12, x FOR PEER REVIEW 6 of 14 
 

 

regulating signaling pathway, immune response-activating cell-surface-receptor signal-
ing pathway, immune response-activating signal transduction, immune response-regu-
lating cell-surface-receptor-signaling pathway, activation of the immune response, lym-
phocyte activation involved in immune response, positive regulation of α-β T cell activa-
tion, positive regulation of interferon-gamma (IFN-γ) production, and positive regulation 
of T cell activation. In terms of cellular components (CCs), there was a significant correla-
tion in NADPH oxidase complex, MHC class II protein complex, MHC protein complex, 
an integral component of the lumenal side of endoplasmic reticulum membrane, the lu-
menal side of endoplasmic reticulum membrane, the endocytic vesicle, the lumenal side 
of the membrane, an integral component of endoplasmic reticulum membrane, an intrin-
sic component of endoplasmic reticulum membrane, and the lysosomal membrane. The 
terms related to molecular function (MF) mainly include superoxide-generating 
NAD(P)H oxidase activity, oxidoreductase activity, acting on NAD(P)H, oxygen as accep-
tor, MHC class II protein-complex binding, MHC protein-complex binding, peptide anti-
gen binding, GTPase binding, oxidoreductase activity, acting on NAD(P)H, peptide-bind-
ing, electron-transfer activity, amide-binding. 

 

Figure 3. GO terms, KEGG pathway, and cell-type enrichment. (a) GO term enrichment for AF- and
obese-related co-DEGs. Dot sizes, counts of enriched DEGs; dot colors, q value. (b) KEGG pathway
of AF- and obese-related co DEGs. Dot sizes, counts of enriched DEGs; dot colors, q value. (c) Bar
graph showing p-value for Enrichr cell-type enrichment, sorted by p-value ranking. Red nodes, adjust
p-value < 0.05; gray nodes, adjust p-value > 0.05. (d) Network showing the interaction of enriched
cell types. Red nodes, adjust p-value < 0.05; gray nodes, adjust p-value > 0.05. (e) Clustergram shows
the relationship between cell-type enrichment and genes, sorted by p value ranking. Enriched terms
are the columns, input genes are the rows, and cells in the matrix indicate if a gene is associated
with a term. (f) KEGG pathway map of the phagosome, which is enrichment in co DEGs: CYBB
(gp91), NCF2 (p67phox), HLA-DRA (MHCII), and FCGR2C (FcγR). Red, up-regulated genes; green,
down-regulated genes.
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4. Discussion

In recent years, the incidences of atrial fibrillation (AF) and obesity have increased
simultaneously, garnering more attention [16]. In obese patients, the adipose tissue (AT) is
in a state of inflammation, which can cause AF [17], and recent studies have revealed that
AF can be reduced by intervening in the “quality” of AT [18]. EAT is a highly active visceral
tissue that produces many different pro-inflammatory adipokines that can diffuse directly
to the myocardium and cause immune-cell infiltration and inflammation that may lead to
AF [19]. The current study has identified and verified ten biomarkers for obesity-related AF
by analyzing co-DEGs of AF microarray and obese adipose tissue microarray. In addition,
we demonstrated a positive correlation between these biomarkers and the ratio of naïve
B cells to memory B cells in the LAA of AF patients, which aids in the identification of
initiating factors and potential therapeutic targets in obesity-related AF.

We found 23 co-DEGs in the two microarrays, 22 of which were up-regulated and 1 was
down-regulated. First, based on a complete study of GO, KEGG, and cell-type enrichment
of these co-up-regulated genes, we hypothesize that AT of obese patients and LAA of
AF patients shares certain physiological processes. The blood’s CD33+ myeloid cells and
CD14+ monocytes adhere to and infiltrate the tissues. The superoxide-generating activity of
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NADPH oxidase complex, phagocytosis activity, and MHCII antigen-presentation function
of monocyte-derived macrophages was enhanced. In addition, the neutrophil extracellular
trap formation was strengthened. Further, lymphocytes were activated in the tissues,
and the secretion of cytokines(including IFN-γ) was enhanced. Second, the hub genes
in co-up-regulated DEGs were identified as MNDA, CYBB, CD86, FCGR2C, NCF2, LCP2,
TLR8, HLA-DRA, LCP1, and PTPN22 by the PPI network. These hub genes were validated
in blood samples of obesity-related AF. Third, the CIBERSORT analysis of the LAA of
AF patients suggested increased infiltration of B cell naïve and decreased infiltration of
memory B cells. The ratio of naïve/memory B cells had a positive association with CD4
memory resting T cells, gamma-delta T cells, M1 macrophages, resting mast cells, and
neutrophils; and a negative association with Tregs, resting NK cells, M2 macrophages,
activated dendritic cells, and activated mast cells. The validated hub genes were positively
associated with the naïve/memory B cell ratio.

In obese patients, adipose tissue can release danger-associated molecular patterns
(DAMPs) and then cause immune cell infiltration by Toll-like receptors (TLR) [20]. In
2008, Chen et al. first identified that AF patients have more inflammatory cells identified
as CD45+ infiltrating the atria than normal controls [21]. Then, more research revealed
that inflammation is an essential common pathway for AF caused by obesity [22]. This
is consistent with our research. Co-DEGs were primarily enriched in immune function
in our study. The ten hub genes pertain to the immune system. All ten hub genes were
only raised in the blood of obese-AF patients, but not in the blood of lean-SR, lean-AF, or
obese-AF patients. At present, few studies have found specific markers for obesity-related
AF, while our research found that blood samples qRT-PCR of these genes may become a
novel convenient method for predicting obesity-related AF.

CYBB, FCGR2C, NCF2, and HLA-DRA of validated hub genes were enriched in the
phagosome pathway. LCP1, LCP2, CD86, and HLA-DRA were enriched in lymphocyte
activation and immune response. MNDA, CYBB, CD86, TLR8, and PTPN22 were enriched
in positive regulation of cytokine production. Research published in 2023 in Science
also suggests that a history of obesity reprograms mononuclear phagocytes, leading to
transcription of pro-inflammatory cytokines [23]. Some studies have suggested that the
inflammatory increase of macrophages and inflammatory factors can lead to AF through
ion channel remodeling and structural remodeling [24,25]. The inflammatory-related genes
are generally increased in classically activated macrophages (M1). Macrophages with
increased NOX2 and enhanced phagocytosis can stimulate neutrophil extracellular trap
formation [26]. In addition, this type of macrophage can not only secrete inflammatory
cytokines, and enhance MHCII antigen presentation, but also stimulate the activation of
CD4+ T cells and B cells [27], which is consistent with our study’s findings.

CYBB and NCF2, both NADPH oxidase (NOX), are present in phagocytic cells and
participate in the “respiratory burst” to produce a large number of reactive oxygen species
(ROS) and contribute to T cell activation [28]. The ROS can be released from the phagocytic
cells and act on other cells [29]. ROS is one of the primary mechanisms causing obesity-
related AF [22], and there exists a mechanism called “ROS-induced ROS release” (RIRR) [30].
Therefore, so finding the trigger source of ROS may play a critical role in obesity-related AF
prevention. There has been some controversy about the role of NOX2 in the pathogenesis
of AF. A 2015 study suggested intermittent hypoxia may induce AF by activating NOX2,
thereby decreasing atrial Cx40 and Cx43 [31]. A study in 2020 suggested that NOX2
may increase the incidence of AF in obese mice by reducing INa, IKur, and atrial action
potential duration (APD), and mitochondrial antioxidants could prevent the occurrence
of AF [32]. However, another study in 2021 suggested that in atrial NOX2 overexpression
mice, NOX2 overexpression could only slightly increase the induction rate of AF. However,
no effect on electrophysiology and structural remodeling was found, and ROS induced by
overexpression of human NOX2 in mouse myocardium is not the primary cause of the rising
incidence of AF [33]. Atrial ROS main sources vary in AF courses and atrial matrix [34].
In our study, the increase of NOX2 in obesity was mainly concentrated in monocytes,
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so NOX2 and ROS causing AF may be mainly related to the increase of inflammatory-
monocyte-derived macrophages rather than cardiomyocytes. Currently, studies on the
co-effects of NCF2 and CYBB on ROS are mainly seen in autoimmune, infectious, and
ischemic diseases [35–37]. The mechanism of NCF2 in AF needs to be further studied.

HLA-DRA and CD86 are both biomarkers of M1 macrophages. A study based on
human cardiomyocytes suggests that M1 macrophages with high expression of CD86 in
atrial fibrillation may promote extracellular matrix remodeling of atrial fibroblasts and
participate in the occurrence of atrial fibrillation [38]. TLR8 (toll-like receptor 8) recognizes
pathogen-associated molecular patterns (PAMPs) and mediates the production of cytokines
necessary for the development of effective immunity. A study reported that TLR8 was
correlated with levels of IL6, IL1β, and a greater inflammatory response, which is an
important mechanism that causes atrial fibrillation [30]. However, the mechanism of NCF2,
HLA-DRA, TLR8, FCGR2C, MNDA, LCP1, LCP2, and PTPN22 in AF has not been studied.
A comprehensive examination of these genes could aid in developing targeted protective
measures to limit the damage caused by abnormal immunity.

In 2010, a study revealed the infiltration of CD3+ T cells and a small number of CD20+
B cells in the atria of patients with AF by the immunohistochemistry method [39], but the
exact mechanism of lymphocyte involvement in AF has not been investigated fully. Our
findings suggest a possibility that the activated lymphocytes can secrete lymphokines such
as IFN-γ, further enhancing the phagocytosis and respiratory burst of monocytes [40]. It has
been reported that in systemic sclerosis, the activation and apoptosis of the memory subset
of B cells stimulate the proliferation of the naïve subset of B cells, resulting in an increased
proportion of naïve/memory B cells [41], so a higher percentage of naïve/memory B
cells may be associated with a pro-inflammatory state. It has been suggested that obesity,
pro-inflammatory factors, and phagocytosis-derived Fc ligand can cause the depletion of
memory B cells [42,43], which may explain the increase in the ratio of naïve/memory B
cells in this study. Furthermore, in this study, the pro-inflammatory immune cells like,
CD4 memory resting T cells, gamma-delta T cells, M1 macrophages, resting mast cells, and
neutrophils were positively correlated with the ratio of naïve/memory B cells. In addition,
the expression of the validated hub genes is directly proportional to the naïve/memory B
cells ratio and may be involved in regulating the infiltration and activation of B cells.

Still, our study has several limitations. First, we have tentatively verified the correla-
tion among these hub genes, obesity, and AF in small-sample subjects. Therefore, the results
of this study need to be further investigated in a cohort study with larger sample sizes.
Second, this study only focused on one AF dataset due to limited datasets with intra-dataset
distinction and correctable inter-dataset batch effect, so greater sample sizes of LAA sam-
ples from obese-AF patients should be further verified. Finally, more in vivo and in vitro
studies containing protein level verifications are warranted to elucidate the underlying
mechanisms among these validated genes, infiltrating immune cells and obesity-related AF.

5. Conclusions

In summary, we identified ten genes by bioinformatics analysis, which were specifi-
cally correlated with obesity-related AF, and these genes could be potential biomarkers for
obesity-related AF. Our findings may potentially contribute to a deeper understanding of
the pathophysiological mechanism and the identification of possible treatment targets in
obesity-related AF.
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