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Simple Summary: Timely and accurate detection of cardiovascular diseases is critical to reduce the
risk of myocardial infarction. This article proposes a methodology using machine learning, neuro-
fuzzy and statistical methods to predict cardiovascular diseases. Our results show that the proposed
methodology outperformed well known approaches, reaching a high prediction accuracy greater
than 90%. Our methodology helps medical doctors to enhance diagnosis, quality of healthcare and
efficacious prescriptions, decreasing the time for exams and minimizing expenses in clinical practice.

Abstract: Timely and accurate detection of cardiovascular diseases (CVDs) is critically important
to minimize the risk of a myocardial infarction. Relations between factors of CVDs are complex,
ill-defined and nonlinear, justifying the use of artificial intelligence tools. These tools aid in predicting
and classifying CVDs. In this article, we propose a methodology using machine learning (ML)
approaches to predict, classify and improve the diagnostic accuracy of CVDs, including support
vector regression (SVR), multivariate adaptive regression splines, the M5Tree model and neural
networks for the training process. Moreover, adaptive neuro-fuzzy and statistical approaches, nearest
neighbor/naive Bayes classifiers and adaptive neuro-fuzzy inference system (ANFIS) are used to
predict seventeen CVD risk factors. Mixed-data transformation and classification methods are
employed for categorical and continuous variables predicting CVD risk. We compare our hybrid
models and existing ML techniques on a CVD real dataset collected from a hospital. A sensitivity
analysis is performed to determine the influence and exhibit the essential variables with regard
to CVDs, such as the patient’s age, cholesterol level and glucose level. Our results report that the
proposed methodology outperformed well known statistical and ML approaches, showing their
versatility and utility in CVD classification. Our investigation indicates that the prediction accuracy
of ANFIS for the training process is 96.56%, followed by SVR with 91.95% prediction accuracy. Our
study includes a comprehensive comparison of results obtained for the mentioned methods.

Keywords: adaptive neuro-fuzzy inference system; artificial intelligence; bioinformatics;
cardiovascular diseases; classification; elastic net; myocardial infarction; statistical methods

1. Introduction and Objectives
1.1. Introduction and Bibliographical Review

Cardiovascular diseases (CVDs) are related to arrhythmia, blood vessel problems,
heart failure, myocardial infarction, strokes and other cardiac issues, these being some of
the leading causes of death in the world [1]. In 2019, as reported by some organizations [2],
over 17 million persons died from these diseases, which is more than 30% of all deaths
worldwide during the same year. Thus, in healthcare, particularly for CVDs, timely and
accurate detection of diseases and determining the vital risk factors are critically important.
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Several risk prediction algorithms have been recommended, mainly employing regres-
sion methods integrating the data via well known risk factors [3]. However, these methods
neglect the complexity and nonlinear characteristics of risk factors that have little or no
mutual interaction [4], seriously affecting the prediction of CVDs.

CVDs include factors associated with blood pressure, cholesterol level, glucose level,
living style and smoking, which can be controlled by taking medication and certain precau-
tions. Nonetheless, factors such as age, ethnicity and family history of CVDs do not change
with medication. Therefore, many factors need to be considered for accurate prediction of
CVDs considering complexity and nonlinearity, justifying the use of artificial intelligence
(AI) tools, which aid in predicting and classifying CVDs.

AI, machine learning (ML) and fuzzy logic play a vital role in the medical sciences
to diagnose numerous diseases effectively in patients. ML is an advanced tool that al-
lows systems to learn and improve automatically based on the experience of the target
system. Supervised and unsupervised ML algorithms are the most common algorithms.
A supervised ML algorithm uses the system’s past knowledge for new data. However,
unsupervised ML algorithms utilize unclassified and unlabeled raw data.

ML techniques are reliable and efficient for predicting CVDs rather than naive ML
and regression methods [5–7]. Several ML algorithms have been proposed during the last
decade for forecasting CVDs using different parameters, datasets and approaches. For
instance, ML approaches were proposed for predicting CVDs using the body mass index
(BMI) [8]. Different ML models, such as decision trees, support vector machines (SVMs),
artificial neural networks (ANNs), naive Bayes (NB) and random forests, were utilized to
diagnose CVDs [9]. Among these models, the ANNs showed the best accuracy at 84.25%.

The mental load and other effects were statistically assessed with the analysis of
variance test (ANOVA) using electroencephalogram (EEG) signals of thirty volunteer
persons [10]. The predictive ability of ML algorithms using CVD data was evaluated in [11].
These authors found that SVM might outperform others when the objective is to maximize
a specific mathematical function concerning the given dataset. Similarly, the ability of ML
methods was compared, discovering that the SVM can identify hidden patterns in complex
medical data [12]. Several researchers employed ML methods to validate their prediction
frameworks. For instance, ML methods were utilized to obtain new insights on a dataset
of over 40,000 patients with heart failure in Sweden [13]. These authors employed cluster
analysis to discover four new illness phenotypes in this group.

Medical data of many UK patients were used to conduct prospective cohort re-
search, which allowed a CVD incident to be predicted for ten years utilizing four ML
approaches [14]. A random forests method was conducted to compare the conventional
CVD risk ratings and to detect how well they might predict the six CVD events, considering
participants of the MESA study [15]. The authors utilized the recommendations of some
organizations (such as the Cardiology American College) that the growing number of
patients potentially benefit from preventative medication using ML approaches.

When determining the effectiveness of algorithms, their accuracy level often matches
that of other classifiers (as NB, logistic models and SVM). For instance, ten different factors
concerning heart diseases in patients from South Africa and three different methods (NB,
SVM and decision tree) were used to evaluate the approaches [16]. The Framingham
scoring method was employed for risk classification of acute coronary heart diseases [17].

Deep learning algorithms were employed, with the k-nearest neighbor algorithm
being identified as the better one with 66.7% accuracy rate compared to the random forest
algorithm with 63.49% [15]. Thirteen factors and a collective CVD dataset were utilized
to predict heart valve diseases and achieved a 92.0% accuracy rate [18]. ML algorithms
based on their accuracies and computation time were applied with 22 factors for predicting
CVDs [19]. ML algorithms with different datasets, feature classifiers and accuracy rates
were compared [20]. A method for automatic estimation of ML algorithms applied to CVDs
was recommended in [21].
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Fuzzy logic allows us to represent the common knowledge, mainly of the qualitative
linguistic type, in a mathematical language through the theory of fuzzy sets and mem-
bership functions associated with them [22]. Fuzzy (or non-crisp) logic is a multivalued
paraconsistent logic in which the true values of linguistic variables can be transformed into
any real numbers between zero and one through probabilities. Therefore, it is employed to
handle the concept of partial truth, where the truth value may range between entirely true
and completely false. By contrast, in the Boolean (traditional or crisp) logic, the truth values
of variables may only be the integer values zero or one. Fuzzy logic is based on the fact that
people make decisions using imprecise and non-numerical information. This logic allows
decisions based on intermediate degrees of compliance with a premise. Such logic is better
suited to our real world, where our opinions are relative. Fuzzy logic is one of the best AI
methods for coronary heart disease diagnosis. It is employed to predict disease occurrence
with the help of linguistic variables and a membership function. Fuzzy logic uses linguistic
variables, which usually enable us to measure by crisp numbers. Fuzzification is the next
step for the identification of the variables. The rules are established with linguistic variables
and their term sets which are the backbone of a fuzzy model called fuzzy inference systems.

A fuzzy model was proposed using membership functions (MFs) to find out the num-
ber of MFs affecting the outcome optimality and accuracy of a fuzzy model [23–25]. The
performance of an adaptive neuro-fuzzy inference system (ANFIS) model is determined by
how well the system parameters are chosen, the complexity they have and the type of train-
ing offered by ANNs [26]. An ANFIS method to classify the CVD degree was developed
using seven factors along with the k-fold cross-validation method and the patient’s heart
disease degree was successfully estimated with a 92.3% accuracy rate [27]. ANFIS con-
trollers were utilized to compare the feedback from the output of electrocardiogram (ECG)
signals, determining a control scheme for people who suffer from CVDs [28]. A medical
diagnostic system based on ANFIS and principal component analysis was investigated to
forecast the CVD risk with a classification accuracy of 93.2% [29].

The gap in the investigation of CVDs is focused on enhancing the prediction accu-
racy using numerous factors with traditional classification methods [18–20]. Nevertheless,
mainly the causes of CVDs are not known precisely. Age, BMI, cholesterol level, diabetes,
eating habits, family history of heart problems, gender, high blood pressure, smoking,
as well as an unhealthy and stressful lifestyle are the major factors affecting CVDs. In
recent studies, the ANFIS and ML approaches were employed for predicting CVDs using
factors such as age, BMI, cholesterol level (LDL/HDL), family history, F-glucose, gender,
glucose level, high pressure, lifestyle, nationality, past medical history (PMH), red blood
cell (RBC), smoking and stress level. As mentioned, some CVD factors are measurable,
some are categorical and the response variable is also categorical. It is necessary to use the
Gifi transformation method to balance the data and not oversimplify the complexity of
the problem. This transformation includes categorical and measurable risk factors with
non-linear interactions and converts the data into a measurable form. The prediction is
based on previous learning and performs its duties best if the training data are not extrapo-
lated [30]. It is possible to predict the patients who suffer the CVD. As a branch of AI, ML
is increasingly utilized for predicting CVDs.

1.2. Contributions and Plan of the Article

Based on the complete bibliographical review presented above, we identified a gap
that allows us to propose a methodology to improve predictive accuracy when detecting
CVDs using numerous risk factors. We employ AI techniques based on ML, adaptive
neuro-fuzzy and statistical approaches for the early prediction and classification of CVDs.

Consequently, the primary motivation for the present investigation is to provide
timely medical treatment and diagnosis using an intelligent system based on current digital
technologies. This system must besides effect efficient patient monitoring. Therefore, the
main objective of the present investigation is to design and put into practice a system to
improve predictive accuracy when detecting CVDs employing several risk factors.
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Our contributions to the area can be summarized as follows:

• ML, ANFIS and statistical classification tools supported by the Gifi method are utilized
to predict CVDs early in a more precise way.

• The effects of seventeen parameters on CVDs are investigated in depth using response
surface methodology (RSM).

• The obtained findings are matched with the state-of-the-art studies comprehensively.
• Sensitivity analyses are carried out for ANFIS and SVR to determine the influence

of significant factors such as age, BMI, glucose, cholesterol, RBC and HDL/LDL
cholesterol levels on CVD.

• The results of statistical approaches with the Gifi method are given using statistical
classification tools and linear discriminant analysis.

• The Nash–Sutcliffe model efficiency (NSE) coefficient is used to quantitatively describe
and assess the model output’s predictive accuracy.

• We compare the capability of an adaptive elastic net logistic regression (AENLR) [31]
and Gifi transformation with ML techniques (SVR, MARS, M5Tree and ANNs).

The plan of the present article is as follows. Section 2 points out the methodology used
in the present investigation; Section 3 gives the results and findings of the present study. In
Section 4, we discuss the performance of the applied approaches as well as some limitations
of our study. In Section 5, conclusions related to the present investigation are provided.

2. Methodology
2.1. Dataset and Framework of the Study and Patients

The dataset was collected retrospectively from the medical record system of fam-
ily medicine and cardiology clinics at a university hospital in Saudi Arabia, including
159 patients over the age of 16 who visited the cardiology clinic and complained of heart
disease symptoms for over four months between 6 June 2020 and 10 October 2020. Each
patient was tested for biometric measurements, ECG and bold lab works (such as F-glucose,
HBA1c, cholesterol levels and RBC). In addition, every individual was asked about all
other historical diseases that they had. Then, the diagnosis of the presence or absence of
cardiovascular diseases for a patient was determined according to the expert opinion of the
medical doctor based on the hospital records for each patient.

For this retrospective observational study, the data were collected with no names or
identification (ID) numbers to preserve the confidential records after obtaining administra-
tive permission from the university hospital. Thus, this research depends on clinical and
laboratory data collection; no experimental interventions were needed or applied. Typically,
most of the measurable data could be collected online. Nevertheless, we used retrospective
data to avoid wasting time and costs. We decided on our full criteria set from the early
beginning of our work, considering the demographic constraints in Saudi Arabia. We did
not exclude or include any other criteria during the work. These criteria were determined
by an expert medical consultant, one of the authors of the present article. As a statistical
analysis, CVD prediction and classification were made with ML approaches and elastic net
modeling. The MATLAB software was used for all computations.

The dataset is collected to (i) classify and determine the best predictors (covariates)
during analysis; (ii) build different ML classifiers and employ them for achieving an adequate
model; and (iii) provide an appropriate analysis regarding the transparency of classifiers and
the reasoning process to improve medical physicians’ prediction accuracy. Table 1 describes
the CVD dataset considering seventeen input variables corresponding to CVD risk factors,
which play an essential role in CVDs and are specifically chosen by the experts in CVD and
family medicine. Table 2 reports all the risk factors with their sources.
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Table 1. The dataset characteristics and descriptions of variables; see abbreviations in Nomenclature.

Variable Notation Data Type Coding and Description

Gender X1 Nominal Female (1); Male (0)
Age X2 Continuous Age of patents
Nationality X3 Nominal SA = 1; EG = 2; SU = 3; YE = 4;

IND = 5; JOR = 6; PAK = 7 PAL = 8; ETH = 9;
CAN = 10; PHL = 11; TUN = 12; SY = 13

Symptoms X4 Nominal SOB: shortness of breath; PMH: past medical history
PMH X5 Ordinal PMH: Past medical history (DM: Diabetes mellitus = 1);

HTN: Hypertension = 1;
NAD: No abnormality detected = 0; DM and HTN = 3

Smoking X6 Ordinal No = 0; Yes = 1
Activity X7 Ordinal Low = 1; Normal = 0
BMI X8 Continuous Body mass index
Systolic X9 Continuous Systolic blood pressure
Diastolic X10 Continuous Diastolic blood pressure
F-glucose X11 Continuous Blood sugar (glucose) level
HbA1c X12 Continuous Three-months average blood glucose (sugar) levels
Cholesterol X13 Continuous Cholesterol test
RBC X14 Continuous Red blood cell
LDL X15 Continuous Low density lipoprotein
HDL X16 Continuous High density lipoprotein
ECG X17 Ordinal Electrocardiogram test; Normal = 1; Otherwise = 0

Diagnosis (CVD) Nominal Cardio disease = 1, No cardio diseases = 0

Table 2. Source of the CVD variables; see abbreviations in Nomenclature.

Variable Source

Gender Liao et al., 1997 [32]; Roeters van Lennep et al., 2002 [33]; Anderssen et al., 2007 [34]
Age Anderssen et al., 2007 [34]; Dahlof, 2010 [35]
Nationality Kurian and Cardarelli, 2007 [36]; Sibai et al., 2010 [37]
Symptoms Hertz et al., 2020 [38]
PMH Stampfer et al., 1988 [39]; Denes et al., 2007 [40]; Naghavi-Behzad et al., 2013 [41]
Smoking Weycker et al., 2007 [42]; Dahlof, 2010 [35]
Activity Twisk, 2000 [43]; Eisenmann, 2004 [44]
BMI Weycker et al., 2007 [42]; Barroso et al., 2017 [45]
Systolic blood pressure Weycker et al., 2007 [42];
Diastolic blood pressure Denes et al., 2007 [40]; Weycker et al., 2007 [42]
F-glucose Weycker et al., 2007 [42]
HbA1c Weycker et al., 2007 [42]; Borg et al., 2011 [46]
Cholesterol Dahlof, 2010 [35]
RBC Kameneva et al., 1998 [47]; Dahlof, 2010 [35]
LDL Weycker et al., 2007 [42]
HDL Weycker et al., 2007 [42]
ECG Dahlof, 2010 [35]; Rosiek and Leksowski, 2016 [48]

2.2. Gifi System for Data Transformation

The purpose of the Gifi method in this study is to convert categorical data into mea-
surable data. The labels of the research’s ordinal or nominal factors contain some metric
properties. To transform data with the Gifi method, scaling and linear combination methods
are used together. We assign the ideal scale values to each factor class depending on the
procedure optimizing criterion. Qualitative variables are converted to measured variables
in the optimal scaling method. In contrast, the linear combination method converts multi-
dimensional categorical data into one-dimensional continuous space by linearly combining
their classes.
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When the categorical variables have a high dimension, the linear combination method
is more helpful [49]. Let (s1, . . . , sm) be an m× 1 vector holding the number of classes for
each factor and p signify the dimensionality of the analysis required. We code each variable
δl , for l ∈ {1, . . . m}, into the n× sl matrix Hl .

Let X be the object score, represented by an n× p matrix (often p ≤ m). If Yl is the
quantifying of the variable classes δl , Hlyl indicates a modification or quantification for each
of the n elements of the variable δl . Objects in the same class acquire the same quantization
without further requirements on Yl .

In a homogeneity analysis, the quantization for each variable is gathered in the sl × p
matrices Yl . As a result, for the variable δl , Hlyl produces quantifications of the elements.
For instance, we have that

δl =



a
b
a
c
c
a

 =



Y1
Y2
Y1
Y3
Y3
Y1

 =



1
0
1
0
0
1

0
1
0
0
0
0

0
0
0
1
1
0

X

Yj1
Yj2
Yj3

 = Hlyl ,

where Hlyl denotes a single transformation generated by variable j on n objects. A homo-
geneity analysis minimizes a loss function given by σX;Y1,...,Ym = (1/m)∑m

l=1 SS(X− Hlyl),
where the sum of squares (SS) is the matrix elements. Under normalization, the loss
function is reduced concurrently over object scores X and Yl using an iterative approach
known as the alternating least squares algorithm; see [50–54] for more information on the
Gifi transformation. Here, the categorical variables that need to be transferred to the Gifi
systems are activity, gender, nationality, PMH, smoking and symptoms.

2.3. The Support Vector Machines Method

SVM is a powerful nonparametric ML approach that can predict and classify complex
problems [55]. The method is effective for problems that have nonlinear relations between
inputs and output variables. The input vector (X with observed values denoted by x) can be
mapped into the output response using an N set of input (Xi) variables in SVR [56]. The non-
linear relation in SVR is defined using the expression Y(x) = b + ∑N

j=1(ω1 −ωN)L(x, xj),
where ω1−ωN are the weights used to link the input and output data and b is the bias. Here,
L(x, xj) denotes the kernel function that transfers the input data from real space into N-
dimensional feature space. The kernel is determined commonly by utilizing the Gaussian ra-
dial basis function to define the nonlinear relations stated as L(x, xj) = exp(−0.5‖x− xj‖2/σ2),
where σ is the kernel parameter. Here, γ is the value in the SVR procedure [57]. An
optimization procedure determines the regression model to verify the unknown parameter
weights using two slack variables, ζ and v∗ namely, as

Min
‖ω‖2

2
+ D ∑N

j=1 (vj + v∗j ),

ST: yj− < ωL(x, xj) > −c,−c ≤ γ + vj, ωL(x, xj) > −yj + c ≤ γ + v∗j , v∗j , vj ≥ 0;

where γ is the residual used to control the predicted value Y(x) and the observed value
denoted by O, when |Y(x)−O| is less than γ and then the error is identified as zero. The
Karush–Kuhn–Tucker conditions are applied and the optimum values of

Max − 1
2 ∑N

j,l=1 (ϑj − ϑ∗j )(ϑl − ϑ∗l )L(xj, xl) + ∑N
j=1 γ(ϑ∗j − ϑj)−∑N

j=1 yj(ϑ
∗
j − ϑj)

ST: ∑N
j=1 (ϑ

∗
j − ϑj) = 0, 0 ≤ ϑj ≤ D, 0 ≤ ϑ∗j ≤ D;
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are determined by employing the Lagrange relation to maximize the regression function,
where ϑ∗j , ϑj denote the corresponding multipliers. The SVR is approximated by

Y(x) = b +
N

∑
j=1

(ϑj − ϑ∗j )L(x, xi). (1)

The three main parameters of the SVR approach (D, γ, σ) were presented in (1) and
they must be defined in the modeling process.

2.4. Fuzzy Rules and Membership Functions

MFs can be conveniently defined and expressed by mathematical equations. Parame-
ters (D, σ) are used to identify Gaussian MFs, where D and σ are the MF center and width.
Additionally, there are operators called hedges, such as (very, quite, more or less) and
connectives, to change their meaning in fuzzy terms. We consider that

Gaussianx,c,σ = exp
(
−0.5(x− c/σ)2

)
, (2)

µ(x5) = µnormal =

{
0; for x < 1 and x > 5.5;

exp
(
− 1

2
( x−3.5

1.9
)2
)

, for 1 ≤ x ≤ 5.5;
(3)

where xj is the specific crisp input variable and µ(xj) is its membership degree. The
membership degrees can be used to specify the fuzzy variables identified by the linguistic
terms numerically. A Sugeno fuzzy rule-based ANFIS model assumes that IF X1 is A, X2
is B, X3 is C and so on, THEN Yj = f j(x1, . . . , xk) = ax1 + bx2 + · · ·+ kxk + rj, where A, B
and C are fuzzy terms in the premises part of the fuzzy rules, while Yj = f j(x1, . . . , xn) are
crisp outcomes in the consequent part of the fuzzy rules illustrating the output of the fuzzy
model in this work. Such rules are utilized in a loop (inner) of the model to establish the
ANFIS and obtain crisp outcomes of CVD cases.

2.5. The ANFIS Approach

For the inference procedure, fuzzy reasoning is used to obtain crisp outcomes from
the ‘IF–THEN’ rule. The fuzzy stage is the preliminary step of the inference system using
fuzzified inputs in a specified universe. The firing strength of the rules is important and
not all rules need to be triggered (fired) to achieve the requested outputs. In this study, the
ANFIS models under consideration have only one output: the CVDs. The mean absolute
error (MAE), mean bias error (MBE), the root of the mean square error (RMSE), desirability
function (DF) and NSE are employed in the training/testing process to determine the error
rate of the model. The MSE is calculated as

MSE =
1
n

n

∑
t=1

(yt − yt)
2, (4)

where yt and yt show the true output and forecasted value of the CVDs. The MSE shown
in (4) produces a moderate error that may be preferable to one that usually has small errors
and so the method can penalize large forecasting errors. The DF approach transforms the
outcome values to a scale-free value, such as desirability, with values of 3, 4 and 5.

2.6. Response Surface Method for Factor Assessment and Sensitivity Analysis

The RSM is a mathematical and statistical optimization tool used to model and analyze
problems in which several input factors influence the output response. The RSM solves the
problems where the relation between input factors and the output response is unknown.

From the result analysis, the two modeling approaches (ANFIS and SVR) provide
the robust capability for predicting the CVDs with the highest capability and lower error
(high accuracy) among other modeling approaches. These two approaches are employed
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for the sensitivity analysis when effectively checking the primary influence of some input
variables, such as age, BMI, glucose, cholesterol, RBC and LDL, on CVD prediction. The
sensitivity analysis is computed using the differential predicted results as the marginal
effect by increasing the input variables with ∆x. The increasing input by ∆x, as (x + ∆x),
is given in the models for data predictions. The mean of differences between the old
prediction of input data with no increase and the new prediction obtained by input data
being increased by (x + ∆x) is compared for differential probability of CVDs stated as
DF f (∆x) = −mean(Y(x + ∆x)−Y(x)).

Considering the marginal effect of input variables using the differential method, the
DP for several input variables, that is, age, BMI, glucose, cholesterol, RBC and LDL, are
presented in Figures 1 and 2 for the SVR and ANFIS methods. Based on the results
presented, we define the sensitivity factor (SF) through the relation given by

SF =

(
DF f

(
∆xj
)
−DF f (∆x1)

∆xj − ∆x1

)
× 100.

The SF represents the negative or positive effects of CVD inputs, showing the influence
of inputs on the CVD. The highest SF indicates the influence of inputs that is highly
sensitive.

Figure 1. Plots of DFs for age (a), BMI (b) and glucose (c); see abbreviations in Nomenclature.

Figure 2. Plots of DFs for cholesterol (a), RBC (b) and LDL (c); see abbreviations in Nomenclature.
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2.7. Statistical Approaches for CVD Classification

Here, we not only present a wide range of soft computational approaches for CVD
classification but also aim to compare them with statistical classification methods. For this
purpose, some statistical classification tools such as linear discriminant analysis (LDA),
quadratic discriminant analysis (QDA), k-nearest neighbor (kNN), naive Bayes (NB) and
decision trees (DT) classifiers are used.

Different from classical classification algorithms, it has been proposed for the first
time in the literature to determine the variables affecting the classification using AENLR
analysis integrated with the the Gifi system data transformation method.

The AENLR model [31] is given by

β̂AENLR = argminβ

{
−

n

∑
i=1
{yi log(πi) + (1− yi) log(1− πi)}+ λ1

n

∑
j=1

wj|β j|+ λ2

n

∑
j=1

β2
j

}
. (5)

By allocating small weights to large coefficients and big weights to small coefficients,
adaptive weights are intended to assure regularization. The penalty term stated in (5) is
formulated as

PAENLR(λ1, λ2, β) = λ1

n

∑
j=1

wj|β j|+ λ2

n

∑
j=1

β2
j . (6)

If we assume λ2 > 0, then the expression established in (6) is strictly convex. Moreover,
this penalty term can be written as

PAENLR(λ1, λ2, β) = λ

(
α

n

∑
j=1

wj|β j|+ (1− α)
n

∑
j=1

β2
j

)
. (7)

where α ∈ (0, 1) is an elastic net tuning parameter that controls the mixing between the
l1-norm and l2-norm terms in the penalty. It is commonly recommended to use a relatively
large value of α and then use it in 10-fold cross-validation to choose λ defined in (7).

After determining the variables contributing to the classification using AENLR, the
results are compared with these variables using the five different classification procedures
mentioned above.

2.8. Flowchart of the Methodology

Figure 3 shows a scheme indicating that nine different AI approaches have been
trained and tested for the dataset obtained from CVD patients. The performance of models
is compared using the MAE, RMSE and MBE metrics.
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Figure 3. Flowchart of machine learning approaches for the prediction of cardiovascular diseases; see
abbreviations in Nomenclature.

3. Results and Findings
3.1. Exploratory Data Analysis

Tables 3 and 4 and Figures 4–8 provide descriptive statistics of each variable under
study.

Note that the gender ratio in the dataset is 61.01% (female) and 38.99% (male), with
n = 159 patients. The distributions of the continuous variables are mostly asymmetrical,
with high variability, and present some outliers.

3.2. ANFIS for CVD Prediction

The ANFIS modeling approach is built based on the different learning capabilities
of ANN algorithms. In this study, a hybrid learning algorithm is employed to derive
the Sugeno ANFIS framework using the learning capability of the BPNN algorithm. As
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mentioned, the dataset was collected from a university hospital and the ANFIS approach
predicts CVDs with crisp numerical outcomes. The ANFIS modeling approach includes
the input variables, the fuzzy rules set, the MFs, the designed inference system and the
defuzzification procedure for predicting CVDs. Different combinations of input and out-
put relationships are trained/tested to reach the most suitable model for predicting the
patient suffering the CVD. Figure 9a–d show the 3D relations of input parameters which are:
(a) BMI-cholesterol level; (b) cholesterol level-glucose level; (c) BMI-smoking; and
(d) smoking-nationality versus CVDs.

Table 3. Descriptive statistics of the continuous variable under study; see abbreviations in Nomenclature.

Variable Notation n Mean Standard Deviation Median Minimum Maximum Range Skewness Kurtosis

Age X2 159 55.21 14.7 56 17 82 65 −0.25 −0.61
BMI X8 159 26.45 6.82 26 14 42 28 0.37 −0.6
Systolic BP X9 159 139.5 18.74 140 96 179 83 −0.16 −0.52
Diastolic BP X10 159 81.8 11.56 86 50 103 53 −0.56 −0.37
F-glucose X11 159 6.33 1.45 6.1 3.89 10.5 6.61 0.48 −0.46
HbA1c X12 159 6.54 1.65 6.4 3.6 11.7 8.1 0.66 0.08
Cholesterol X13 159 4.95 1.16 4.9 2.69 7.4 4.71 0.07 −0.88
RBC X14 159 2.42 1.02 2.3 0.37 4.6 4.23 0.05 −0.83
LDL X15 159 3.24 1.02 3.45 0.96 5.38 4.42 −0.21 −0.58
HDL X16 159 1.44 0.55 1.34 0.09 3.9 3.81 1.83 5.44

Table 4. Descriptive statistics of categorical variables under study; see abbreviations in Nomenclature.

Variable Notation Values or Categories

Gender X1 Female Male
61.01% 38.99%

Symptoms X4 SOB PMH NN
61.01% 30.82% 8.18%

PMH X5 DM HTN DM,HTN
41.51% 33.33% 25.16%

Smoking X6 NO PAST YES
64.78% 10.06% 25.16%

Activity X7 LOW NORMAL
54.72% 45.28%

ECG X17 Normal Change,STE,STD,SVT
49.06% 50.94%

Diagnosis (CVD) - No heart diseases Heart diseases
60.38 % 39.62%
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Figure 4. Distribution of the patients by gender (left) and gender versus diagnosis (right).
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Figure 5. Distribution of the patients by age versus gender (left) and age versus diagnosis (right).
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Figure 9. Three-dimensional relations of CVD with BMI, glucose level, smoking and nationality; see
abbreviations in Nomenclature.

Similarly, the 2D relations of some inputs, such as the cholesterol level, glucose level,
BMI and smoking, versus the response (CVD), are presented in Figure 10a–d, respectively.
As seen in Figures 9 and 10, the relations of the input–output factors for CVDs are complex,
ill-defined, unknown and remarkably nonlinear, which justifies the use of AI techniques.
The 3D plots exhibit the full surface of the CVD output and the related input span. Hence,
developing a mathematical model to solve this complex problem is difficult for decision-
making. ML and ANFIS approaches can usually predict such complex problems. Hence,
fuzzy methods and other intelligent modeling approaches, such as ANNs or hybrid intel-
ligent systems, can be efficiently used with linguistic statements to solve imprecise and
uncertain information [57] for predicting CVDs. Fuzzy and/or neuro-fuzzy modeling
approaches can tell us more about the dynamics of CVDs by a set of linguistic associations
with the help of input and output parameters. These associations use ‘IF–THEN’ rules to
show the relationships of factors using variables related to linguistics and the correspond-
ing terms. This ‘IF–THEN’ is the mapping of factors constituted from linguistic variables
and terms, usually having two parts called antecedent and conclusion. The rule set is
the backbone of an ANFIS. Gaussian memberships are utilized to detect the parameters
and fuzzification process of the CVDs. The rule is utilized in a loop of the ANFIS model
operating and obtaining crisp outputs for the classification of CVDs.

Our findings show that employing a small number of clusters (demonstrated by the
rules) results in obtaining so many rules. In contrast, large cluster numbers generally pro-
duce fewer rules. Both are undesirable and must be avoided as they cause huge deviations
in the prediction performance of the ANFIS model for CVD cases. Then, additional MFs do
not increase the effectiveness of a fuzzy model [58].

3.3. Fuzzy Rules and Membership Functions

Figure 11 shows the MFs which are fine-tuned for the input predictors: smoking (X6),
BMI (X8), LDL cholesterol level (X15) and cholesterol level (X13). Different terms can be
employed to identify fuzzy linguistic variables. For instance, the terms low, normal, high,
very high; nonsmoker, average, highly smoking; low density, average and high HDL are
the fuzzy linguistic terms used in this study.



Biology 2023, 12, 117 14 of 31

Figure 10. Two-dimensional relations of CVD with cholesterol level, glucose level, BMI and smoking;
see abbreviations in Nomenclature.

Figure 11. MFs for ANFIS model obtained for the estimation of CVDs; see abbreviations in Nomen-
clature.

A multi-input single-output ANFIS rule set for the prediction of CVDs can be exhibited
as follows:

Rule 1:
IF ‘Gender is (woman)’ AND ‘Age is young (70.6)’ AND ‘Nationality is (Yemen)’. . . THEN
‘The CVD is 0.935’

...

Rule 7:
IF ‘Gender (X1) is (man)’ AND ‘Age (X2) is young (25.7)’ AND ‘Nationality (x3) is (Jorda-
nian)’. . . THEN ‘The CVD is 0.0019’
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3.4. The ANFIS Approach for CVD Prediction

As an inference procedure, fuzzy reasoning obtains crisp responses from the fuzzy
‘IF–THEN’ rules. In this study, the dataset is mixed, containing both data from categorical
and continuous variables. To model the ANFIS approach and compare the results, the
categorical data are transformed into continuous data using the Gifi system.

The input data was fuzzified to develop a fuzzy inference system in the specified
universe. The second step was the MF formulation and the establishment of fuzzy rules.
As seen in Figure 11a–d, in this work, we employ the Gaussian MFs, formulated based on
the dataset obtained for the factors affecting the CVDs. Such rules are utilized in a loop
(inner) of the model to establish the ANFIS and obtain crisp outcomes of CVD cases. Seven
fuzzy rules were established based on the data available. Our model revealed that a small
number of clusters (defined by rules) obtains too many rules. In contrast, many clusters
generally caused a small number of rules. The RMSEs obtained from ANFIS models clearly
show deviations in Table 5. Hence, the best ANFIS model producing the lowest RMSE is
obtained when the number of MFs is seven. The fine-tuned MFs for the input variables:
smoking (X6), BMI (X8), LDL cholesterol level (X15) and cholesterol presence (X13) are
presented in Figure 11a–d. A fuzzy linguistic term set was established as ‘rarely smoking,
regularly smoking, smoking, heavily smoking, not smoking at all’ and ‘very low, low,
normal, slightly high, high’ for the fuzzy linguistic variables affecting the CVDs.

Gaussian MFs are utilized to identify the fuzzy linguistic variable ‘LDL cholesterol
level (X15)’. Its MFs are indicated by the fuzzy terms ’extremely low’; ’low’; ’normal’;
’high’; ’very high’; and enormously high’. The corresponding linguistic term ‘normal’ is
mathematically stated in (2) and (3). The firing strength of each rule is necessary and it
should be noted that not all the rules need to be fired to obtain the desired output. In this
study, the ANFIS models under consideration have only one output: the CVDs. As seen in
Table 6, eight ANFIS structures are developed and tested with several rules that were used
to specify the CVD cases and minimize the prediction error. Initially, the error tolerance was
set at 0.001 for the training process and 1000 iterations of the back-propagation multi-layer
(BPML) algorithm were targeted. The MAE, RMSE and MBE approaches were used to
assess ANFIS prediction performance. Additionally, the DF and NSE of the training and
testing process were determined for an ANFIS structure; see Table 6.

The MAE, MBE, RMSE, DF and NSE are employed in training/testing processes to
determine the error rate of the model and the results are given in Table 5. The ANFIS
structure has average MSE, RMSE and MBE of 0.0165, 0.0679 and 0.0028, respectively, for
the training process. As given in Table 5, the DF of the ANFIS model for the training
process is the highest, with a value of 0.9829. The MAE, RMSE and MBE results show that
the ANFIS approach reaches 0.0165, 0.0697 and 0.0028 error rates for the training process,
respectively. For the testing process, the ANFIS approach obtains error rates of 0.2085,
0.3292 and 0.0062, respectively. The DF and NSE of the ANFIS approach are 0.9829 and
0.9656 for the training process, which are the highest rates among the other approaches.

The NSE coefficient is 0.9656, which quantitatively describes the predictive accuracy of
the model output. The NSE for the training is high enough for the trained and tested ANFIS
model. Similarly, the NSE coefficient is determined and used to describe and assess the
predictive accuracy of model output quantitatively. The NSE is equivalent to the coefficient
of determination (R2), so its range is between zero and one. An NSE coefficient close to one
indicates a model with more predictive capability.

Figure 12 shows the distribution of true data points versus the training/testing out-
comes of an ANFIS structure for CVDs. This structure provides the lowest mean error (ME)
and standard deviation (SD) among the other approaches, whose values are 0.0034 and
0.1603, respectively, showing its superior prediction capability with low uncertainty and
robust approximation.
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Table 5. The comparative results of the indicated model for training and testing phases; see abbrevia-
tions in Nomenclature.

Model MAE RMSE MBE DF NSE

Errors for Training Phase of Models

SVR 0.0387 0.0389 0.0046 0.9583 0.9195
MARS 0.2700 0.3402 0.0021 0.6560 0.4383
M5Tree 0.2541 0.3382 0.0060 0.6782 0.4714
ANN–BR 0.2744 0.3557 0.0035 0.6399 0.4291
ANN–SCG 0.0847 0.1232 0.0008 0.9066 0.8237
ANN–BFG 0.0923 0.1253 0.0002 0.8987 0.8079
ANN–LM 0.1246 0.1564 0.0012 0.8620 0.7407
RBFNN 0.2185 0.2980 0.0021 0.7346 0.5455
ANFIS 0.0165 0.0697 0.0028 0.9829 0.9656

Errors for Testing Phase of Models

SVR 0.2165 0.2965 −0.0041 0.7163 0.5382
MARS 0.2329 0.2870 −0.1011 0.6928 0.5032
M5Tree 0.2002 0.3055 −0.1059 0.7493 0.5730
ANN–BR 0.1774 0.2622 −0.0914 0.7779 0.6215
ANN–SCG 0.2720 0.3842 −0.0344 0.7101 0.4198
ANN–BFG 0.2653 0.3677 −0.0489 0.7191 0.4339
ANN–LM 0.3500 0.4289 −0.1516 0.6629 0.2533
RBFNN 0.2553 0.3395 −0.0950 0.6857 0.4554
ANFIS 0.2085 0.3292 0.0062 0.7600 0.5551

Table 6. ANFIS models with MFs and training errors; see abbreviations in Nomenclature.

Modeling Approach Number of Rules and MFs Training RMSE Number of Rules and MFs Training RMSE

ANFIS

9 0.080 4 17.442
11 11.119 6 6.444
21 19.759 7 0.0697
15 17.585 5 15.525

Figure 12. The true data points—blue—versus the training and testing outcomes—red color points
and lines—of ANFIS approach; see abbreviations in Nomenclature.

3.5. Elastic Net Modeling for CVD Prediction

We compare the capability of the AENLR and Gifi transformation with the ML
techniques (SVR, MARS, M5Tree and ANNs such as ANN–BR, ANN–SCG, ANN–BFG,
ANN–LM, RBFNN) employed for predicting the CVDs. The accuracy of these methods
was investigated and is presented in Table 6. SVR, M5Tree and MARS are called probit
models in statistics. They are the regression models where the dependent variable (Y) takes
only two values: with ’1’ showing the cardiac disease and ’0’ indicating no cardio disease
in our study. These modeling approaches predict the probability that, if a patient carries
some specific characteristic, she/he may fall into one of these two specific classes.

We have a vector of covariates, including seventeen health-related variables influenc-
ing the CVD cases. In the present investigation, the covariates’ set includes gender (X1),
age (X2), nationality (X3), symptoms (X4), PMH (X5), smoking (X6), activity (X7), BMI (X8),
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systolic blood pressure (X6), diastolic blood pressure (X10), F-glucose (X11), HbA1c (X12),
presence of cholesterol (X13), RBC (X14), LDL (X15), HDL (X16) and ECG (X10) and the
response variable (Y) presence of CVD. Hence, the observed patients are categorized based
on their predicted probabilities of being classified as a person who has a cardiac disease ‘1’
or does not have a cardiac disease ‘0’.

Eight different ML methods were trained and tested for the dataset of CVDs and the
performances of the models were compared using MAE, RMSE and MBE. The results can be
seen in Table 5. For checking the optimization of the responses, we employed DF. As seen
in this table, the desirability of the SVR approach was found to be 0.9585 for the training.
Similarly, the DFs of ANN–SCG and ANN–BFG are 0.9066 and 0.8987, respectively. In
addition, the DF of the ANN–BR approach for the testing process is 0.7779, which is the
highest among the approaches. Table 5 also shows that the other methods have slightly
lower but closer DF values for the training and testing processes. For the ANN–SCG and
ANN–BFG methods, the NSE coefficients are 0.8237 and 0.8079 for the training and testing
processes, respectively. However, the other ML approaches have lower NSE coefficients
for training and testing procedures. For instance, the ANN–BR has the highest testing
coefficient of 0.6215, but the M5Tree and MARS have values of the NSE coefficient equal to
0.5730 and 0.5032, respectively.

As seen in Table 5, the SVR method gave 0.0387, 0.0389 and 0.0046 rates of error for the
training process of CVD prediction using the MAE, RMSE and MBE methods, respectively.
The desirability rate and NSE were found to be 0.9583 and 0.9195 for the training process.
The testing process of the SVR method gave 0.2165, 0.2965 and −0.0041 error rates using
MAE, RMSE and MBE, respectively. The DF and NSE are 0.7163 and 0.5382 for the testing
process, respectively. In addition, ANN–SCG presents the best outcomes with 0.0847, 0.1232
and 0.0008 error rates of the training process using MAE, RMSE and MBE, respectively.
The testing errors of the ANN–SCG approach are 0.2720, 0.3842 and −0.0344, considering
MAE, RMSE and MBE, respectively.

As mentioned, the SVR is a powerful nonparametric approach of the ML method
that is utilized for predicting the response of ill-defined problems with nonlinear relations
between input and output factors. In the SVR approach, three main parameters (D, γ, σ)
are identified in this work. Employing a method of trial-and-error, the three levels of
parameters D ∈ {10, 100, 1000} and γ and σ are identified. Table 7 shows that the smallest
RMSE values (a better response among other models) were obtained when D = 10, γ = 0.05
and σ = 0.75. However, increasing D and σ, the RSME did not change significantly. Here,
γ in the objective function of the SVR model is an effective parameter for predicting CVDs.
The best outcome of the RMSE (0.0389) was obtained when γ was equal to 0.05.

Figure 13a shows the data distribution (blue color points and lines) of CVDs and
the predicted data (red color points and lines) of CVDs obtained with training/testing
processes of the SVR model. This model produces very close prediction outcomes of CVDs.

Figure 13b depicts the distribution of true data points (blue color points and lines)
for training/testing processes of the MARS method versus the red color points and lines
showing the distribution of the predicted CVD cases. In this figure, ‘1’ depicts the patients
with cardiac problems and ‘0’ illustrates the patients who do not have cardiac problems.

The blue color points and lines in Figure 13c illustrate the distribution of true data
points versus red color points and lines showing the distribution of the predicted CVD
outcomes by the M5Tree method for the training and testing process.

Figure 14a displays the frequency of errors for the predicted CVD cases, with
mean = 0.0028 and SD = 0.1375 when the SVR approach is employed. The error ranges of
the SVR approach are smaller, whereas the shape of its histogram is leptokurtic, showing
that the findings are better and the approach is superior to the MARS (b) and M5Tree (c)
models. For an SVR approach, Table 7 presents ME = 0.0028 and SD = 0.1375.

Figure 14b illustrates the distribution of the errors for the predicted CVD cases with
mean = −0.0187 and SD = 0.3297 (Table 8). Note that the M5Tree method is a piecewise
regression model used for binary decisions. The linear regression functions are developed
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as the terminal nodes (leaves) to provide the relation between predictors for the causes of
CVD risk in the M5Tree model.

Figure 14c shows the distribution of the errors for the predicted CVD cases with
mean = 0.0165 and SD = 0.3315; see Table 8. Error ranges for prediction of the M5Tree
method are high and the distribution is widespread.

As a statistical approach, the MARS method is used for predicting CVDs. In this
method, the nonlinear regression is employed using the piecewise linear splines as a basic
function, where a stepwise process is applied to explore the basic functions.

Table 7. The RMSE for the indicated value using the SVR method; see abbreviations in Nomenclature.

D = 500 D = 1000 D = 10
γ γ γ

σ 0.05 0.1 0.2 0.05 0.1 0.2 0.05 0.1 0.2

0.50 0.0487 0.0924 0.1853 0.0487 0.0924 0.1853 0.0498 0.0996 0.1996
0.75 0.0486 0.0957 0.1917 0.0485 0.0958 0.1917 0.0389 0.0958 0.1907
1.00 0.049 0.0936 0.1753 0.0488 0.0935 0.1751 0.0725 0.1032 0.1838
1.50 0.0436 0.0934 0.1693 0.0484 0.0934 0.1691 0.1367 0.1512 0.1963

Table 8. The average prediction errors of ML approaches; see abbreviations in Nomenclature.

SVR MASR M5Tree ANN–BR ANN–SCG ANN–BFG ANN–LM RBFNN ANFIS

ME 0.0028 −0.0187 −0.0165 −0.0156 −0.0063 −0.0097 −0.0296 −0.0174 0.0035
SD 0.1375 0.3297 0.3315 0.3386 0.2044 0.1992 0.2359 0.3063 0.1602

ME is mean error and SD is standard deviation.

Figure 13. Plots of true data—blue—points used for the training and testing of the SVR (a),
MARS (b) and M5Tree (c) methods and red points are the predicted outcomes; see abbreviations in
Nomenclature.

Figure 14. Distribution of the errors for the predicted and true data of CVDs in the training process
using SVR (a), MARS (b) and M5Tree (c) of ML methods; see abbreviations in Nomenclature.
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3.6. ANNs and Pattern Recognition

Multilayer ANNs are well known ML tools with the layers output, input and hidden.
The ANNs provide a nonlinear mapping between the responses to the input parameters.
We employ 1000 total iterations (epochs) for the training phase of the BPML algorithm with
M-nodes (selected between 5 and 15) hidden to optimize the approach.

We utilize a method of trial-and-error to give the best results when predicting message-
passing neural network models. Moreover, we examine different optimization approaches
for training the ANN models: Powell Beale conjugate gradient, BFG-BP and LM. The
RMSEs for the training dataset using four BPML algorithms with various hidden nodes are
presented in Figure 15.

The RBFNN is a fast-training algorithm that can be formulated efficiently to predict
complex and ill-defined problems. An RBFNN model for predicting CVDs corresponding
to various hidden nodes with different RBF parameters was compared in Figure 15 using
RMSE. RBFNN is investigated for σ ∈ {0.25, 0.5, 1, 2, 5} and the number of hidden layers
equal to 10, 20, 30, 40, 50, 60 and 70, with M + 1 being unknown coefficients and M hidden
nodes. Then, considering M as one of the main parameters in the RBFNN model, the
M-centre of RBF is determined using the K-mean clustering approach. The best CVD
prediction is calibrated with RBFNN when the hidden layers are 60 nodes and σ = 0.5 by
comparing the RMSE values. The lowest RMSE value is 0.9176, as depicted graphically in
Figure 15.

Figure 15. The RMSE for various hidden nodes of different RBFNN models; see abbreviations
in Nomenclature.

The BR method provides stable results for different hidden nodes, but it is not a very
accurate training approach compared to the others. The BFG is superior and provides
accurate results for the training of ANNs compared to other optimization methods. The
number of hidden nodes for the ANN model was selected as M > 10. In the present study,
it is set to M = 11.

The ANN pattern recognition process is employed to find the regularities and similari-
ties in a dataset using ML approaches. The similarities are investigated based on a statistical
analysis of true historical data and the outcomes of algorithms. The best performance is
selected from the iteration with a minimal validation error. After several training iterations,
the error generally decreases. However, it may increase on the validation dataset as the
network overfits the training data.

The outcomes of the ANN–BR algorithm are presented in Figure 16a. The figure
shows the distribution of the true data points (blue points) versus red color points and lines
showing the distribution of the predicted CVD outcomes with the ANN–BR approach for
the training and testing phases. This algorithm employs the Jacobian matrix for minimizing
the combination of weights and squared errors when determining the performance of
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responses, which produces a network that can oversimplify the optimization process.
The ANN–BR network is trained for the inputs and outputs, whereas the best training
performance is obtained at the 244 iterations.

From Figure 16b, note that the ANN–CG algorithm is one of the more successful
methods for predicting CVDs.

The ANN–BFG is a deep learning algorithm. This is an alternative approach to
the ANN–BFG methods for fast optimization. From Figure 16c, the algorithm produced
successful outcomes with minimum error and SD for predicting CVDs in the training and
testing phases. This figure illustrates the distribution of data points of the ANN–BFG
approach. The blue color points and lines show the true data and the red color points and
lines show the distribution of the CVDs predicted with this method.

The ANN–LM algorithm is also utilized for training/testing the CVD observation
fitting problem and a two-layer feed-forward network is employed. The learning level of
this algorithm is high and it is the fastest training algorithm. Moreover, the error rate is
lower. Figure 16d shows the distribution of the true data points versus the training and
testing outcomes of the ANN– LM algorithm depicted with red color points and lines
of CVDs.

Figure 17a shows the distributions of errors for the predicted CVDs with ME of
−0.0156 and SD of 0.3386; see Table 9. The MSE and RMSE for the true and predicted
CVD data are 0.1149 and 0.3389 for the ANN–BR algorithm, respectively. The ANN–CG
algorithms search along the conjugate directions, which usually creates faster convergence
than the steepest descent directions. The error level of this approach is found to be higher
compared to the other algorithms.

Figure 17b shows the frequencies of errors for the predicted data of CVDs using the
ANN–CG approach. Based on this algorithm, as reported in Table 10, the ME and the
SD are −0.0063 and 0.2044, respectively. Therefore, the error level of this approach seems
reasonable compared to the other soft comparing methods.

Figure 16. The true data—blue—points versus the predicted (red) data points using ANN–BR (a),
ANN–CG (b), ANN–BFG (c) and ANN–LM (d) for the training and testing phases; see abbreviations
in Nomenclature.
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Figure 17. Distribution of error with CVD data using ANN–BR (a), ANN–CG (b), ANN–BFG (c) and
ANN–LM (d) approaches; see abbreviations in Nomenclature.

Table 9. The correlation and SD of the true and predicted data of ML models; see abbreviations
in Nomenclature.

Observation SVR MASR M5Tree ANN–BR ANN–CG ANN–BFG ANN–LM RBFNN ANFIS

Correlation 1 0.962 0.739 0.737 0.725 0.909 0.915 0.886 0.780 0.947
SD 0.489 0.437 0.348 0.335 0.327 0.469 0.476 0.499 0.394 0.495

SD: standard deviation.

Table 10. The true data versus the predicted data of CVDs using ML approaches; see abbreviations
in Nomenclature.

True Outputs SVR MARS M5Tree ANN–BR ANN–CG ANN–BFG ANN–LM RBF–NN ANFIS

1 0.96 0.923 0.662 0.704 0.999 1.052 1.083 0.603 0.999
0 0.04 0.550 0.208 0.380 0.015 0.014 −0.027 0.256 0.000
1 0.96 0.277 0.122 0.128 0.872 0.859 0.698 0.337 1.000
0 0.04 −0.048 0.179 0.060 0.044 0.088 −0.083 0.077 0.000
1 0.96 0.928 0.567 0.647 1.003 1.113 0.915 0.899 1.000
0 0.021 0.035 0.038 0.152 −0.082 −0.060 0.016 0.097 0.000
1 0.96 0.785 0.872 0.864 0.975 0.932 1.001 0.785 1.000
0 0.04 0.426 0.104 0.260 0.220 0.029 0.037 0.007 0.000
1 0.96 0.471 0.730 0.475 0.947 0.964 0.931 0.732 1.000
0 −0.03 0.059 0.047 0.032 −0.047 0.009 0.215 0.037 0.000
1 0.96 0.405 0.541 0.421 0.806 0.805 0.647 0.741 1.000
0 0.04 0.247 0.294 0.343 0.201 0.169 0.042 0.240 0.000

Figure 17c depicts the distribution of the predicted error. Hence, we obtain
ME = −0.0097 and SD = 0.2359; see Table 9. In addition, as presented in Table 11, the
MSE and RMSE for the predicted CVDs are 0.0397 and 0.1994 for the ANN–BFG algorithm,
respectively. This is one of the more successful algorithms for predicting CVDs.

Figure 17d shows the distribution of the predicted error of the ANN–LM approach,
whereas the ME and SD are presented in Table 8. This optimization approach reveals
ME = −0.0296 with SD = 0.2359. The correlation and SD of ML models’ true and
predicted data are presented in Table 9, which shows the difference between the targets
and the output values of observation.

Figure 18 shows the true data points (blue) versus the training and testing outcomes
(red color points and lines) of RBFNN approaches.

3.7. Response Surface Method for Factor Assessment

When a suitable approximation between the functional relationship of an output
response (CVDs) and the nonlinear independent factors are determined, as we did for
CVDs, an RSM-based polynomial approach might be a good approximation for a relatively
small region problem. Figure 19 shows the plots of the main seventeen factors’ effect on the
CVDs, constructed based on the RSM. The interactional relationship of measurable and
categorical factors indicating the CVD risk is shown in this figure.
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Figure 18. The true data points—blue—versus the training and testing outcomes—red points and
lines—of RBFNN; see abbreviations in Nomenclature.

From Figure 19, note that the measurable factors related to pressure diastolic, age,
F-glucose, HbA1c, HDL and the presence of cholesterol at a high level directly increase
the risk of CVD. However, BMI, systolic blood pressure and RBC have a less significant
effect on CVDs. In addition, an apparent CVD effect on gender is observed. It seems men
suffer CVDs more than women. Shortness of breath slightly indicates a CVD problem.
PMH is a strong indicator of CVD. Patients who have diabetes mellitus and hypertension
can have a CVD. Even patients who have no abnormality detected may also have a CVD.
Smoking also affects CVD negatively. Physical activity seems to have a direct positive
effect on CVD, which reduces the risk drastically. ECG seems to be an essential categorical
variable that identifies the patients who suffer from CVD. Our study covers patients from
different nationalities, indicating that Jordanians suffer the least CVDs and Yemenis suffers
the most. Consequently, gender, nationality, PMH, BMI, smoking, lifestyle, average glucose,
LDL/HD, family history, high pressure and stress increase CVD risk. As a result, the
predicted outcomes obtained with such formulations are distinct and can be matched using
the dual and triple effect of parameters on CVD using the RSM.

Figure 19. Plot of main effects for significant parameters on a CVD; see abbreviations in Nomenclature.

3.8. Sensitivity Analysis

Our findings of SF show, as shown in Figure 1a, that age increase of one year increases
the CVD probability by 0.467% and 0.424% according to SVR and ANFIS approaches,
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respectively. Decreasing the BMI by 0.5 units decreases the CVD risk by about 0.152% and
0.132%; see Figure 1b. Nonetheless, increasing the glucose also increases CVD probability
by about 6.183% and 6.763 according to SVR and ANFIS approaches, respectively; see
Figure 1c. Similarly, the increase in cholesterol increases the CVD probability by 4.392% and
4.531% according to SVR and ANFIS approaches, respectively; see Figure 2a. In contrast,
every 0.1 unit decrease in RBC decreases the CVD probability by about 4.562% and 4.623%;
see Figure 2b. However, every 0.1 unit increase in LDL increases the CVD probability by
about 4.353% and 3.214 according to the SVR and ANFIS approaches, respectively; see
Figure 2c.

3.9. CVD Prediction

As a function of the regularization parameter λ, with a green circle and a dashed
line, Figure 20a emphasizes the minimum-deviance location. The blue-circled point has
the smallest variance plus one SD. We use the parameter α = 0.9 to encourage keeping
groupings of strongly linked predictors rather than deleting all but one of them. The dotted
line and green circle indicate the location of the least amount of the error employing a
cross-validation method. Then, the location with the smallest error using a cross-validation
method (plus one SD) is marked with a blue circle and a dotted line. The trace plot indicates
non-zero model coefficients as a function of the regularization value. There are 17 curves in
Figure 20b because there are 17 predictors in the linear model.

We indicate the point with a minimum error of a cross-validation method with the
dotted line and blue circle (plus one SD) shown in Figure 20a. A trace plot with 17 curves
is given in Figure 20b. As λ increases to the left, coefficients equal to zero are removed. We
summarize the results in Table 11, which shows that the standard normal quartiles and
the variables X1 (gender), X7 (activity) and X17 (ECG), are the best choices with non-zero
coefficients. According to the AELNR results, the factors affecting whether a person has
cardiovascular disease or not were determined to be gender, activity and ECG. Therefore,
using these coefficients for any statistical classification approach is recommended. The
classification results obtained from the statistical methods are presented in Table 12.

Table 11. Estimated coefficients for the variable indicated and their p-values; see abbreviations in
Nomenclature.

Indicator Estimated Value Standard Error Value t Statistic p Value

Y-intercept −4.828 3.862 −1.250 0.211
Gender X1 51.094 19.834 2.576 0.001
Age X2 0.041 0.031 1.301 0.193
Nationality X3 5.221 4.773 1.094 0.274
Symptoms X4 7.198 8.669 0.830 0.406
PMH X5 −2.703 10.288 −0.263 0.792
Smoking X6 −15.231 17.806 −0.855 0.392
Activity X7 −1311 492.99 −2.659 0.007
BMI X8 −0.022 0.050 −0.436 0.663
Systolic X9 0.021 0.028 0.736 0.462
Diastolic X10 −0.015 0.040 −0.383 0.702
F-glucose X11 0.201 0.414 0.485 0.627
HbA1c X12 0.113 0.413 0.274 0.784
Cholesterol X13 −0.163 0.361 −0.451 0.652
RBC X14 0.063 0.406 0.154 0.877
LDL X15 −0.023 0.479 −0.048 0.961
HDL X16 −0.640 0.544 −1.177 0.239
ECG X17 30.677 10.85 2.827 0.004
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Table 12. The classification results obtained for statistical methods; see abbreviations in Nomenclature.

Method TN FN TP FP CA CER Sensitivity Specificity

LDA 80 6 57 16 86.16 0.1383 90.47 6.25
QDA 78 7 56 18 84.27 0.1572 88.88 7.29
kNN 79 7 56 17 84.91 0.1509 88.88 7.29
NB 77 6 57 19 84.27 0.1572 30.16
DT 79 6 57 17 85.53 0.1446 82.29 26.98

LDA: Linear discriminant analysis; QDA: Quadratic discriminant analysis; kNN: k Nearest Neighbor classifier;
NB: Naïve Bayes classifier; DT: Decision tree classifier; TP: True positive; FP: False Positive; TN: True negative; FN:
False negative; CA: Classification accuracy; CER: Classification error rate.

Figure 20. Plots of cross-validation deviance (a) and trace (b) of the elastic net fit, where λ with
minimum error of cross-validation and α = 0.9 is located at the green circle and dotted line; see
abbreviations in Nomenclature.

4. Discussion

The Taylor diagram is a mathematical scheme designed to graphically indicate the
representations of patterns to match the models’ performance statistics simultaneously,
that is, the correlation coefficient, SD and RMSE. These statistics can be plotted on a 2D
graph to summarize the multiple aspects of models’ performance related to one another;
see Figure 21. The findings clearly show that the SVR provides the highest correlation
coefficient and SD of 0.4370 from the observed data compared to the other ML models.
Similarly, the ANFIS approach depicted correlation coefficient and SD outcomes of 0.9471
and 0.4951, respectively, which is the closest value to the observed data. ANN–BFG and
ANN–CG followed these two approaches. The Taylor diagram established for different ML
models presented in Figure 21 provides better compression of ML methods when depicting
the accuracy and SDs. Therefore, the model with the lightest observation point shows
the highest trend. We use the SD of the observed and predicted values of the models as
a measure of variability. We measure the variability as the radial distance utilizing the
origin of the plot. The SD in Figure 21 represents the modeling uncertainty for the ML
approaches. A model providing the smallest SD difference from the observed value among
others exhibits a better prediction and low tension, providing a robust approximation.

The overall predictive ability and limitations of ML-based algorithms in CVDs were
summarized in [11]. A comprehensive search study was designed for the prediction
of these diseases [59]. Hence, the limitations can be organized as follows: firstly, the
data are arbitrary because there are no standard guidelines for utilization. Hospitals
have different data repository systems. In addition, clinical data are heterogeneous and
usually imbalanced. Secondly, technical parameter-related data are usually not disclosed
to the public, leading to high statistical heterogeneity. Some parameters are measurable
and some are categorical. Third, criteria selection methods and procedures are arbitrary
and heterogeneous. Fourth, we could easily classify the ML algorithms based on their
performance. Fifth, several studies have reported different evaluation matrices.
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Figure 21. Taylor diagram for comparing the prediction capability of ML models; see abbreviations
in Nomenclature.

Visits to the hospital during this investigation were restricted, especially since the
time of compilation of the data coincided with the COVID-19 pandemic period. This is the
reason for the relatively small number of samples used, which could be a limitation of this
study.

We have held a sensitivity analysis for age, BMI, glucose, cholesterol, RBC and LDL.
Though some ML algorithms and ANFIS approaches are robust, several studies have not
reported a complete evaluation system of measurement. Then, some studies reported only
the technical aspects without clinical aspects, likely due to a lack of clinician supervision.
However, we determined our criteria and the data collection process under the supervision
of an expert medical consultant. Table 13 presents the comparison of our findings with
state-of-the-art methods. The ANN–LM algorithm showed the highest accuracy rate of
96.2%. The accuracy rate of the ANFIS approach is also high and is 94.7%.

Table 13. Comparison of our findings with state-of-the-art methods.

Methods Accuracy (%) Miss Rate (%)

Naive Bayes [60] 75.80 24.20
HRFLM [60] 88.40 11.60
Decision tree [60] 85.00 15.00
SVM [61] 88.00 12.00
Fuzzy-based ML 91.30 08.70
Framingham risk score [62] 687.04 12.96
Logistic regression [61] 89.00 11.00
Logistic regression [62] 86.11 13.89
ANFIS, our findings 94.70 5.30
ANN-LM, our findings 96.20 3.80
ANN-BFG, our findings 91.50 08.50

5. Conclusions

CVDs correspond to the most common causes around the world related to mortality,
affecting not only the heart and blood arteries but also heart failure, blood vessel diseases,
stroke, arrhythmia, provoking a myocardial infarction. Determining the vital risk factors is
crucial to intervening with the patient on time.

Relations between factors of CVDs are complex, ill-defined and nonlinear, justifying
the use of artificial intelligence tools. These tools aid in predicting and classifying CVDs. In
addition, mathematical/statistical models, such as those based on RSM, can solve complex
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problems in predicting CVDS when identifying 3D relations, which is not an easy task
when making decisions.

ML can usually predict such complex problems and ANFIS approaches. Moreover,
fuzzy logic and other intelligent models, such as ANNs or hybrid intelligent systems,
can be used with linguistic statements to solve imprecise and uncertain information for
predicting CVDs [57]. Moreover, fuzzy and/or neuro-fuzzy modeling approaches can tell
us more about the dynamics of CVDs by a set of linguistic associations. In the present
study, a comprehensive literature review was carried out using conventional ML and naive
regression methods to detect well known risk factors of CVDs. To classify a patient as
healthy or unhealthy, in our investigation, we used seventeen factors for predicting CVDs
based on the M5Tree, SVR, MARS, feed-forward back-propagation, neural fitting, BR, SCG
and ANFIS models.

We considered categorical and continuous variables, such as gender, age, nationality,
PMH, BMI, smoking, lifestyle, F-glucose, cholesterol, average glucose, LDL/HDL, RBC,
family history, blood pressure and stress levels. The Gifi system was used to convert the
categorical data into continuous data. RSM was employed to determine the impacts of risk
factors in 3D relations and very interesting conclusions were achieved.

MAE, RMSE and MBE were used to judge the performance of tools and approaches to
simultaneously check the optimization of the outputs considering the desirability function.
Moreover, the NSE coefficient was used to quantitatively describe and assess model pre-
diction quality for the range between zero and one. In addition, a sensitivity analysis was
performed to consider the marginal effects of factors such as age, BMI, glucose, cholesterol,
RBC and LDL on CVDs, for two approaches. As detailed in the results and findings section,
the age, BMI and glucose level were highly related to CVDs.

The ANFIS and SVR modeling approaches provided the highest prediction accuracy
and tendency with the lowest error rates. The ANFIS prediction accuracy coefficient for
the training process was 96.56%, followed by the SVR method with an NSE coefficient of
91.95%. The prediction accuracies of the other approaches were found as follows: ANN–CG
82.37% and ANN–BFG 80.79% for the training phase. The different ML approaches gave
lower prediction accuracies for the NSE coefficient during the training. Furthermore, for
the testing phase, the highest coefficient was found for the ANN–BR method at 62.15%,
with the M5Tree, ANFIS and MARS models reaching values of 57.3%, 55.51% and 50.32%.

Based on linear discriminant analysis, the classification procedure obtained after the
Gifi system application achieved a high classification performance, such as the successful
ANN approaches. According to the results obtained from the prediction and classification
using the linear discriminant analysis, gender, activity and ECG are the most significant
variables that affect CVDs. As mentioned, our findings showed that employing a small
number of clusters (demonstrated by the rules) resulted in obtaining so many rules. In
contrast, large cluster numbers generally produce fewer rules. Both are undesirable and
must be avoided as they cause huge deviations in the prediction performance of the
ANFIS model for CVD cases. Then, additional membership functions do not increase the
effectiveness of a fuzzy model [58].

This research covered a gap in CVDs as the researchers used numerous factors with
traditional classification methods, which are imprecise indicators. For example, CVDs
were classified [63] with traditional ML algorithms using 14 variables such as f-glucose,
ECG and cholesterol from the healthcare dataset containing 76 attributes. The maximum
accuracy rate of 91% was obtained by logistic regression. CVDs were estimated [64] with
ML tools using 12 variables such as age, systolic and diastolic blood pressure. After making
a variable selection using the correlation coefficient, the maximum accuracy rate they can
reach with SVM was 78.84%. Using the UCI dataset containing 76 attributes, CVDs were
classified [65] with many ML algorithms. After carrying out feature selection with the
correlation map, the following accuracy rates were obtained for the traditional methods:
85% for LR, 81% for DT, 90% for SVM, 83% for RF, 90% for KNN and 84% for QDA. All
these results showed that ANFIS combined with the Gifi data balance method has superior
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classification performance. Moreover, in terms of statistical methods, a high accuracy rate
with only three variables after feature selection with AENLR is another outstanding result.

As the causes of CVDs are unknown, this uncertainty can be handled by employing
fuzzy sets and systems to relate the factors and CVDs. The ML approaches help medical
doctors enhance their diagnostic capability and accuracy, affecting patients’ prediction,
quality of healthcare and efficacious medication prescriptions. Moreover, using such
techniques has significance for healthcare centers, decreasing the time for medical exams,
minimizing expenses in the clinical practice and enhancing practitioners’ efficiency [66].

Future research may improve statistical analysis, such as evaluating the computational
complexity and ranking analysis of the models using statistical significance testing of post
hoc methods. Moreover, applying other unsupervised ML methods, such as hierarchal
clustering and anomaly detection with more data on nationalities, can significantly improve
CVD prediction and classification. The methods derived in the present investigation are
universal and based on artificial intelligence techniques. Therefore, they can be applied
to practically all the areas where structured and unstructured data are available. Another
future step might be developing an expert system to diagnose CVD patients.
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Nomenclature
The following abbreviations are used in this manuscript:

AENLR Adaptive elastic logistic net regression
ANFIS Adaptive neuro-fuzzy inference system
ANN Artificial neural network
ANOVA Analysis of variance
AI Artificial intelligence
BFG Broyden–Fletcher–Goldfarb–Shanno quasi-Newton back propagation
BMI Body mass index
BPML Backpropagation multiple layer
BPNN Back propagation in neural network
BR Bayesian regularization
CVD Cardiovascular disease
DF Desirability function
DP Differential probability
DT Decision trees
ECG Electrocardiogram
EEG Electroencephalogram
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FFB Feed forward back propagation
FIS Fuzzy inference system
HbA1c Glycated hemoglobin
HDL High density lipoprotein
kNN k-nearest neighbor
LDA Linear discriminant analysis
LDL Low density lipoprotein
LM Levenberg–Marquardt
MAE Mean absolute error
MARS Multivariate adaptive regression splines
MBE Mean bias error
ME Mean error
MESA Multiple ethnic studies of atherosclerosis
MF Membership functions
ML Machine learning
NB Naive Bayes
NSE Nash–Sutcliffe efficiency
PMH Past medical history
QDA Quadratic discriminant analysis
RBC Red blood cell
RBFNN Radial basis functions neural networks
RSM Response surface methodology
RMSE Root of the mean square error
SCG Scaled conjugate gradient
SD Standard deviation
SF Sensitivity factor
SS Sum of squares
ST Subject to
SVM Support vector machines
SVR Support vector regression
WHO World Health Organization
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