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Simple Summary: Understanding what functions can be performed by members of the human gut
microbial community and how they are interconnected can be very useful for the comprehension of
this ecosystem’s function in human health and disease. Here, we propose an original approach to
derive this information from metatranscriptomes and test it on publicly available data. The main idea
is to develop an ecosystem-centric method aimed at quantitatively assessing the activity of particular
groups of microorganisms associated with crucial functions performed by the human gut microbiota,
such as the production of butyrate and acetate, the reduction of sulfate, and the decomposition of
mucin—the key component of the intestinal mucus layer. The proposed method provides more
information about the structure and properties of the analyzed ecosystem than other similar methods.
We believe that such a strategy has great potential for biomedical research and potential applications
in clinical medicine.

Abstract: We propose the trait-based method for quantifying the activity of functional groups in the
human gut microbiome based on metatranscriptomic data. It allows one to assess structural changes
in the microbial community comprised of the following functional groups: butyrate-producers, aceto-
gens, sulfate-reducers, and mucin-decomposing bacteria. It is another way to perform a functional
analysis of metatranscriptomic data by focusing on the ecological level of the community under study.
To develop the method, we used published data obtained in a carefully controlled environment and
from a synthetic microbial community, where the problem of ambiguity between functionality and
taxonomy is absent. The developed method was validated using RNA-seq data and sequencing data
of the 16S rRNA amplicon on a simplified community. Consequently, the successful verification
provides prospects for the application of this method for analyzing natural communities of the human
intestinal microbiota.

Keywords: trait-based approach; functional groups; microbial ecology; human gut microbiome

1. Introduction

The human gut is a habitat for a diverse and complex microbial ecosystem of trillions
of bacteria. Members of the microbial community can interact with their host in a variety
of ways—from establishing symbiotic relationships to participation in the pathogenesis
of numerous diseases such as diabetes, obesity, and other gut-related disorders [1–3]. The
way these interactions are structured largely depends on the relationships between these
bacteria and the structure of a microbial ecosystem.

The multi-omics approaches characterize the entire community in different ways,
allowing us to assess the diversity of species [4,5], their functional potential [6], and gene
expression [7]. However, the investigation of microbial relationships in natural commu-
nities using these approaches faces certain obstacles. It is rather difficult to distinguish
patterns in such data and to draw mechanistic conclusions about the processes of interest
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since, in large systems, the effect of these processes can overlap with a large number of
other unknown, uncontrolled, and simultaneously acting factors.

All these facts push researchers to focus on synthetic microbial communities to study
ecological processes [8]. Such communities are usually designed using a bottom-up ap-
proach, where a limited number of microbial populations are used to assemble a simplified
community inhabiting a well-characterized and controlled environment. This allows one to
gradually increase the complexity of the studied ecosystems and track the impact of each
additional element added to it, ensuring high controllability and reproducibility. As a result,
such a community serves as a proper model for natural ecosystems, which helps to un-
derstand the fundamental principles of metabolite-mediated ecological interactions [9,10].
Moreover, synthetic microbial communities are exceptionally useful for developing and
calibrating new methods of investigation of microbial ecosystems.

Another problem that hinders studying the role of bacteria in ecosystems is the
difficulty of assigning genes and their products to particular species. First, not all repre-
sentatives of the human microbiota receive high-quality reference genomes [11]. Second,
the widespread occurrence of horizontal gene transfer further complicates this problem
because a gene can be introduced from another phylogenetic group [12]. Despite the fact
that this problem can be partially solved using the approaches based on k-mer analysis [13],
it remains far from being resolved.

To avoid these problems and achieve a thorough mechanistic understanding of ecosys-
tem processes, it seems relevant to use trait-based approaches [14]. They focus on the
quantitative assessment of phenotypic characteristics that affect the population perfor-
mance through environmental gradients, regardless of species. Such approaches do not
require precise taxonomic identification of organisms and rather focus on their ecological
functional roles. They represent the characteristics of organisms in terms of their numerous
biological attributes, such as physiological, morphological ones, or any other quantitative
traits. Recently, trait-based approaches have become widespread and even adopted for
describing microbial ecosystems [15–17]. In modern molecular genetics and bioinformatics
methods, we rarely deal with phenotypic data but rather with indirect information about it.
However, a huge amount of information that is being accumulated using new methods
such as metagenomics, metatranscriptomics, and metaproteomics can also be employed
for the development of theoretical rethinking and adaptation of the trait-based approaches
derived from macroecology.

We use the trait-based approach to develop a method for dissolving the problem of
lacking taxonomic identity information by focusing on ecologically significant quantitative
traits, presumably involved in a phenotype formation. We identify the entire set of genomic
data features that contain information about the phenotypical traits of bacteria relevant for
ecological interactions.

Modern functional analysis methods such as HumanN and Karnelian [18,19] aim to
analyse the entire metagenome or the metatranscriptome as a whole and represent all
known metabolic pathways. However, such tools yield information that is redundant for
the reconstruction of environmental relations. We believe that broad strategies inevitably
incur certain costs, such as the unnecessary consumption of computing resources and
difficulties in formalizing a quantitative assessment of feature abundances.

Our approach, linking the data from high-throughput sequencing to the structure and
properties of the ecosystem, aims to characterize environmental relations accurately, which
is important for biomedical research and potential application in clinical medicine.

2. Methods
2.1. Metagenomic and Metatranscriptomic Data from a Synthetic Community Modelling the Core
Microbiome of the Human Gut

We chose the gut microbial community described in the article [10] as the object of
our study. It consists of 14 species of sequenced commensal bacteria that perform the core
metabolic activities of human gut microbiota. The authors carried out gnotobiotic mice



Biology 2023, 12, 115 3 of 13

colonization by this community and used it as a model to study the links between dietary
fiber content, microbiota composition, and mucus layer health.

In our method, we use transcriptome data from experiment 1 of the article obtained
from the cecum at day 54. Throughout the experiment, mice were fed a variety of diets,
including a fiber-rich diet (R)—four mice, a fiber-free diet (F)—three mice, and the alter-
nation of a fiber-rich diet and fiber-free diet (FR)—six mice. At the end of the experiment,
the mice were sacrificed, and the intestinal contents were sent for further analysis. For all
mice, the abundance of bacteria in the gut microbiota was measured based on 16S rRNA,
transcriptome analysis was performed only for three mice per diet selected at random.

We estimated the adequacy of our reconstruction by comparing the functional group’s
abundance with the bacterial taxonomic abundance based on 16S rRNA obtained in that
paper (see Table S2 in Supplementary Materials) [10]. Figure 1 shows how bacterial taxa
were grouped into functional groups for comparison. Thus, the independent information is
used to verify the method, which is not involved in its construction. All the used data are
described in Tables S1 and S2 in Supplementary Materials.
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Figure 1. General scheme of the reconstructed metabolic interaction network. Outcoming arrows
denote the production of metabolites, incoming arrows denote their consumption by the members of
respective functional groups. The production of metabolites that results from the metabolic activity
of most organisms is referred to as “general fermentation”.

2.2. Methodology for Identification of the Key Functional Groups and Their Trait-Determining
Genetic Features (TDGFs)

To implement a trait-based method for quantifying the activity of functional groups
in the human gut microbiome based on metatranscriptomic data, it is necessary to distin-
guish the functional groups in the microbial community (see Figure 1 and more details in
Document S1 in Supplementary Materials). Under a functional group, we mean a set of
organisms that obtain the metabolic activity of interest that affects the entire community.
We reconstructed metabolic interactions between the community members using an expert
search and analysis of the literature [10,20–39].

To assess the abundance of each functional group, we introduce the concept of trait-
determining genetic features (TDGF). It is a particular genetic sequence for a key enzyme,



Biology 2023, 12, 115 4 of 13

which is usually responsible for a bottleneck in the metabolic pathways of interest (more
details in Figure S1 in Document S1). Under the function that defines a functional group, we
mean both a simple metabolic process and a set of various metabolic reactions associated
only with a common substrate or product. Quantitative assessment of functional trait
occurrence can be expressed through the abundance of a single TDGF (one gene).

A total of eight TDGFs were selected (more details in Table S3 in Document S1). Carbon
monoxide dehydrogenase, acetyl-CoA synthetase, and both corrinoid iron-sulfur protein
subunits are involved in the formation of acetyl-CoA in acetogenesis. The dissimilation type
sulfite reductase is responsible for the conversion of sulfite to hydrogen sulfide, which is
the final stage of the sulfate reduction pathway; butyryl-CoA dehydrogenase catalyzes the
key reaction in the formation of butyrate. Sulfatase and Alpha-N-acetylgalactosaminidase
break important covalent bonds of mucin.

In cases where several TDGFs could be selected for one functional group, we used the
most specific one. It was verified by aligning the TDGF’s sequence to the reference genomes
of the representatives of functional groups (more details in Table S4 in Document S1).

2.3. Implementation of the Method for Quantitative Assessment of Functional Groups in the
Human Intestinal Microbiome

The presence of the selected TDGFs in the genomes of the representatives of functional
groups was verified by aligning their amino acid sequences against the reference genomes
of representatives of the microbial synthetic community.

De novo assembly of the transcriptomes was performed using the Trinity platform [40].
To estimate the abundance of transcripts, we used the Kallisto program [41]. Pseudo-
alignments were carried out for each sample per previously indexed assembly. The default
parameters were used throughout. The data on the abundance of transcripts are presented
as TPM values [42].

All single TDGFs were aligned against transcriptome assembly. Since each sequence
can align against several contigs, all contigs with score values for alignment less than 250
were excluded from further analysis. This threshold filters out the contigs with low identity.
TPM values for contigs containing TDGFs were selected from Kallisto’s output obtained on
the previous work steps.

Total TPM values for a TDGF were calculated by summing all TPM values of the
TDGF-containing contigs separately for each mouse for different diets. The following single
TDGFs were used for identifying respective functional groups: acet1, sulfat1, but1, and
muc2 (see Table S3 in Document S1).

To adapt the estimates of taxonomic abundance for comparison, we used 16S rRNA-
based relative abundance values for community members from [10]. Functional groups’
abundances were calculated in similar ways for each mouse, the summation was carried
out by the relative abundances of the representatives of these groups. Then, both values
were combined into the samples according to the diets, and the average was calculated (see
Formulas (1) and (2) in Table 1).
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Table 1. Formulae for assessing the abundance of functional groups classified according to used
quantification and normalization methods. Fg is the analyzed functional group, M is the TDGF
selected for analysis, B is the bacteria that belong to the analyzed functional group, C is the isoform
of the transcript to which TDGF aligned, D is the diet, E is the mouse (separate experiment).

Quantification Method

Abundance of the functional group
based on TDGF identification

Abundance of the functional group based
on taxonomic identification (16S rRNA)

Normalization
method

Its proportion to the whole
community 1

k

k

∑
j=1

m

∑
i=1

TPM(M, D, Ci, Ej) (1) 1
k

k

∑
j=1

m

∑
i=1

16SrRNA(Fg, D, Bi, Ej) (2)

Its proportion to the total
abundance of the distinguished

functional groups
1
k

k

∑
j=1

∑m
i=1 TPM(M,D,Ci ,Ej)

∑k
j=1 ∑m

i=1 TPM(Mj ,D,Ci ,Ej)
(3) 1

k

k

∑
j=1

∑m
i=1 16SrRNA(Fg,D,Bi ,Ej)

∑k
j=1 ∑m

i=1 16SrRNA(Fgi ,D,Bi ,Ej)
(4)

In addition, we calculated the relative proportion of abundance of each functional
group in relation to the total abundance of all the distinguished functional groups (see
Formulas (3) and (4) in Table 1).

All scripts that link various stages of the work, as well as the scripts required for the
last stages of the analysis, namely filtration and summation, were written in the Python
programming language (see Document S2).

2.4. Comparing Functional Analysis Results with Humann

The analyzed data were processed within HumanN 3, following its standard proto-
col [18]. We have regrouped the output file, which contains the list of UniRef gene families
and their abundance estimates, to obtain sequence abundance estimates for the correspond-
ing EC (Enzyme Commission) numbers. Further, the CPM values were processed in the
same way as it is described in the previous section.

3. Results
3.1. The Ecological Structure of the Human Intestinal Microbial Community in Terms of
Functional Groups

We integrated information about the structure of the ecosystem from the literature
into the network of metabolic interactions. It includes information on the metabolism
of glycans, long-chain fatty acids, amino acids, sulfates, and various other metabolites
(see Supplementary Material 3). To select functional groups describing key metabolic
processes important for the functioning of the gut microbiota-host system, we settled our
choice on four functional groups: butyrate-producers, acetogens, sulfate-reducers, and
mucin-decomposing bacteria. The division of the community into functional groups and
the most important ecological interactions are summarized in Figure 1.

We formulated hypotheses about how the abundance of functional groups will change
depending on diets and assessed the consistency of the developed method while obtaining
additional information about the functioning of the community, which had not been
previously discussed in [10].

It is known that under the conditions of switching to a fiber-rich diet, the bacteria
decompose fibers, which reduces the intensity of degradation of the mucin layer [10]. This
could cause a decrease in the concentration of sulfate in the system, and sulfate-reducing
bacteria are suppressed. In turn, the suppression of sulfate-reducers could lead to the
dominance of acetogens and to an increase in acetate production.

Since acetogens require a higher concentration of hydrogen for their activity compared
to sulfate-reducers [35], a decrease in the abundance of the latter could lead to an increase
in the concentration of hydrogen in the system, inhibition of fermentation, and an overall
decrease in the production of short-chain fatty acids including butyrate [39]. Additional
production of acetate by acetogens could stimulate the production of butyrate due to its
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conversion from acetate. However, this effect is unlikely to be significant since acetate is
mainly formed as a product of the decomposition of carbohydrates, and not due to the
relatively small number of acetogens in natural communities [20].

Thus, our reconstruction integrates the accumulated knowledge of the metabolic
interactions of bacteria in the studied community and assists further implementation and
verification of our method.

We chose TDGFs that allowed us to assess the abundance of functional groups for the
high-throughput sequencing data of intestinal microbiota communities. Since we exactly
know from the literature the affiliation of the representatives of the synthetic microbial
community to functional groups, we verified that the TDGFs were chosen correctly by
aligning each TDGF against the available reference genomes of the studied microorganisms
(see Table S4 in Document S1).

3.2. The Similarity of the Patterns of Changes in the Abundance of Functional Groups When
Evaluated Based on Different Data

The implementation of the developed method provided us with data on changes in
the abundance of TDGFs depending on three types of diets: fiber-free diet, fiber-rich diet,
and a diet where dietary regimes alternated.

The abundance of functional groups has been assessed based on RNA-seq data and
16s rRNA amplicon data. Figure 2A–D shows the comparison of the relative abundance
of functional groups based on 16S rRNA sequencing data with the abundance of TDGFs
of these functional groups based on RNA-seq data (Formulas (1) and (2) were used).
Comparing these two methods for degrading mucin under different diets, we clearly see
that only a fiber-rich diet leads to a decrease in the activity of mucin-decomposing bacteria
(Figure 2A). This point fully confirms the results that were obtained by [10], which indicates
the correctness of our choice of the TDGF for this functional group.
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Figure 2. Comparison of the abundance of taxonomic groups. F—fiber-free diet, R—fiber-rich diet,
FR—alteration between fiber-free and fiber-rich diets. (A–D)—Comparison of TPM values calculated
based on RNA-seq data and relative abundance of functional groups based on 16S rRNA sequencing
data. TPM values are reduced by 5000 times for the ease of visualization in one figure. The correlation
between the abundance estimated by two different methods is calculated. (E)—total TPM value for
all TDGFs together for different types of diets.
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We see a roughly similar situation for sulfate reducers (Figure 2B). The presence
of their TDGF is greatly reduced only in a fiber-rich diet. This is primarily because the
decomposition of mucin releases sulfate, which leads to an increase in the activity of this
functional group.

If we analyse the abundance of acetogens depending on diets, we see that there is a
significant similarity of the pattern (Figure 2D). However, the situation is not so clear-cut for
switching from an alternating diet to fiber-rich diet. This may be attributed to acetogenesis
being mostly an optional function for acetogens, and the conditions of the fiber-rich diet
presumably do not facilitate the transcription of enzymes for this function. However, the
confidence intervals for these values are large and greatly exceed the difference between the
mean values, and the observed pattern of changes in values is not significant (the p-value
for the Welch test is 0.52). In general, the pattern of changes in values is consistent with our
initial assumptions that acetogenesis will be more active in the absence of sulfate reduction.

The situation is quite interesting for butyrate-producing bacteria (Figure 2C). The
data on the relative abundance of microorganisms based on 16S rRNA sequencing show
that the relative proportion of butyrate-producing bacteria increases dramatically when
switching to a fiber-rich diet. However, the TPM values for this functional group decrease
under the same conditions. The probable reason for the observed discrepancy may be the
difference between the species abundance and the actual expression of the corresponding
TDGF. The taxonomic abundance of butyrate-producers does not guarantee the expression
of the corresponding TDGF. Thus, a change in the expression may occur, with a shift in
fermentation products in favour of other short-chain fatty acids.

Interestingly, total TPM values decrease when shifting to a fiber-rich diet for all TDGFs
taken together (Figure 2E). Apparently, fiber-rich nutrition favors bacteria to use their
metabolic potential more actively; therefore, the share of our TDGFs decreases compared
to the overall expression.

The estimates of functional groups’ abundance, expressed in terms of TPM values
and in terms of relative abundance, mainly correlate with each other. However, in order
to compare these methods adequately, additional normalization is needed. We compared
the proportions of each functional group with all available functional groups, ignoring the
unclassified. This method neutralizes the effect that the expression of different transcripts
can vary according to environmental conditions. This effect can lead to errors in situations
where, for example, depending on changes in environmental conditions, the proportion of
transcripts expressed by the majority of bacteria in the community increases. To avoid this,
we have estimated the abundances according to Formulas (3) and (4) (see Section 2).

These two methods for each functional group determine its relative proportion among
the rest of the functional groups in a different way (see Figure 3) because the taxonomic
abundance of functional groups does not guarantee the corresponding expression of their
TDGFs. The patterns of changes in the abundance of acetogens, sulfate reducers, and mucin-
decomposing bacteria correlate well between the two different quantification methods. The
exception is butyrate-producing bacteria—the correlation is weaker due to the large range
of the confidence intervals.
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Figure 3. Comparison of TPM values calculated based on RNA-seq data and relative abundance of
functional groups based on 16S rRNA data adapted according to the Formulas (3) and (4). F—fiber-
free diet, R—fiber-rich diet, FR—alteration between fiber-free and fiber-rich diets. Acet1 was used as
the TDGF of acetogenesis. The correlation is calculated for the corresponding values between the
two methods.

3.3. Comparing Functional Analysis Results with HumanN and RSEM

We also compared our trait-based quantification method (TBQM) with another wide-
spread functional analysis method—HumanN 3 [18]. In general, the profiles of changes
in values depending on the diet coincide (see Figure 4), however, the HumanN values are
approximately ten times lower than those obtained by our trait-based method for each of
the TDGFs, which is unexpected and requires an explanation.
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Despite the apparent similarities, these two methods are very different in their internal
structure. HumanN performs read alignment and mapping using bowtie2 against pre-
engineered, functionally-annotated pangenomes of strains that were previously identified
using MetaPhlAn2 [43]. Then, for reads that did not match the pangenomes, a translated
search was performed in the complex protein UniRef database [44]. In our pipeline,
alignments are performed against the assembly of the transcriptome, and Kallisto does not
carry out mapping, which ensures the high speed of this algorithm.

To control for a possible bias introduced by different quantification methods, we
decided to replace Kallisto with RSEM [45]. RSEM uses bowtie2 as HumanN does, so the
implementation of the trait-based quantification method in this mode is closer to HumanN.
However, the differences between TPM values when using Kallisto and RSEM are minimal
(see Figure 4).

We assumed that HumanN probably ignores some of the reads that might align against
the TDGF sequences. To test this hypothesis, we analyzed the SAM files obtained as a
result of the pipelines in order to obtain information about the mapping location of the
probably ignored reads in the HumanN databases. We found a large number of Uniref90
sequences annotated with the function of TDGFs, and only a relatively small number of
uncharacterized sequences were found (for more details see Supplementary Material 4). To
conclude, the reason for the differences in abundance estimates between the two compared
methods is that HumanN provides an incomplete list of Uniref90 identifiers for the EC
numbers that are of particular interest for quantifying the activity of the functional groups
investigated in this study.

The two methods also differ in their performance bottlenecks. For HumanN it is
a translated search against the complex protein UniRef database [44] that is the most
computationally demanding procedure. For the trait-based quantification method, the most
arduous part of the work is assembling the transcriptome, which is about two times faster.

However, these two methods can be compared only to a certain extent since, ini-
tially, they have quite different aims and scopes. HumanN is designed as an exploratory
functional analysis tool in the field of metagenomics and metatranscriptomics, and, there-
fore, it has a much broader application and uses most of the known enzymatic functions.
Contrariwise, the method presented in this study has a completely different conceptual
foundation. It suggests focusing on functional groups and filtering the information that
is relevant to the interactions between the major agents of the microbial community. Al-
though, at the moment, the set of functional groups is quite narrow, the method has a wide
space for its further development, taking into account the complexities of the human gut
microbial ecosystem.

4. Discussion

Trait-based approaches have been actively spreading in microbial ecology recently [15,46].
However, a number of problems complicate their use by researchers. Such approaches
have been adopted from macroecology, where the traits of individual organisms can be
easily observed and measured, while microbial ecologists are significantly limited in such
possibilities [47].

The advent of high-throughput sequencing has provided huge data on microorgan-
isms, but the phenotype can be predicted only indirectly on their basis [48]. Meanwhile,
there is no standardized definition of a microbial functional trait and a protocol for their
measurement, and researchers choose the traits depending on their specific interests and
their experience [47].

In our study, we aimed to address this problem by assigning TDGFs to traits and
measuring their abundance at the transcript level. The latter is especially important since
metatranscriptomic data, in comparison with metagenomic data, contain information
on the expression of individual genes and allow for a better assessment of community
functions. Thus, we provide a basis for quantifying the abundance of traits expressed in
the microbial community.
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The verification of the developed method showed that the quantitative assessment of
changes in the functional structure of the ecosystem is consistent with the conclusions of [10].
For instance, we detect a decrease in the functional abundance of mucin-decomposing
bacteria when switching to a fiber-rich diet, which is in accordance with the conclusions
about the positive role of complex plant fibers made in the article.

Moreover, our hypotheses about how changes in the abundance of functional groups
should occur depending on the change in diets are indirectly confirmed. Thus, the closest
connection was found to be between the functional group of mucin-decomposing bacteria
and sulfate-reducers: any decrease in abundance of the former coincides with decrease
in abundance of the latter. Apparently, the resource limitation on sulfate, which sulfate
reducers experience with a decrease in the abundance of mucin-decomposing bacteria, is
very strict.

The inverse relationship between the abundance of sulfate-reducers and acetogens is
also largely observed, with the exception of switching from alternating to a fiber-rich diet.
Since acetogenesis is a facultative function for Marvinbryantia formatexigens [35], it can be
assumed that acetogenesis in such conditions reduces its role in general metabolism.

Additionally, our method showed a general decrease in the activity of all selected
TDGFs under a fiber-rich diet, which is most likely associated with the activation of
transcription of other genes and an increase in the diversity of functions performed by
the microbiome. This observation is of great interest, and the literature has repeatedly
discussed the relationship between taxonomic diversity, diet, and health [1–3]. However, it
has not yet been shown that an increase in functional diversity can occur due to changing
diets in a community where the taxonomic composition is completely the same.

In addition, the decrease in TPM values for the selected TDGFs is associated with a
discrepancy in taxonomic and functional changes in abundance, calculated using formulae
without normalization by the selected functional groups. The activity of functional groups
decreases while switching to a fiber-rich diet, the only exception is acetogens when switch-
ing from a fiber-free diet to a mixed diet. This situation necessitates being very careful when
comparing such data and keeping in mind that their compositional and heterogeneous
nature can significantly affect the analysis results.

There are some prospects and challenges, such as a more accurate assessment of
the functional groups’ abundance in natural communities considering all the variety of
sequences that are responsible for the marked function. The chosen threshold for alignment
on the sequence of TDGFs should be adjusted for natural communities to reduce false
results. Moreover, there are also sequences of non-homologous, isofunctional enzymes
that can duplicate the functions of TDGFs, while their nucleotide sequences are radically
different [49]. Further development of the method involves expanding the sequence
catalogue for each TDGF, which can largely solve the mentioned problems.

We used single TDGFs for the functional groups throughout the study, however, if
there are multiple TDGFs for the process of interest, the following question arises: How
does one derive an activity of a functional group from TPM values of different sequences?
Since the contribution of each of the TDGFs to the expressed function might differ, it
complicates assessment of functional group abundances in the case of multiple TDGFs.
Using single TDGFs for functional groups allows us to bypass this problem but limits
us in distinguishing more complex functional groups; for example, we cannot assess the
total activity of all different specialists in the decomposition of complex polysaccharides,
which also play an important role in the community. Besides, we used only one TDGF for
mucin-decomposing bacteria, while there is a wide range of enzymes that are involved in
its degradation. Undoubtedly, considering the contribution of all this diversity of enzymes
would increase the accuracy of assessing the activity of the functional groups.

5. Conclusions

To conclude, the developed method has bright prospects for the analysis of metatran-
scriptomic data. Its verification was carried out on the synthetic community, and the results
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of the analysis of changes in the ecological community structure under various dietary
regimes are in accordance with the previously published results and with the knowledge
concerning functioning of the human intestinal community discussed in the scientific liter-
ature. Thus, the developed method enables using metatranscriptomic data for a functional
analysis of the human gut microbiome and thereby assessing quantitatively the activity of
the functional groups in this ecosystem.
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sequences on the reference genomes of microbiota representatives); Table S5: Complete scheme of the
reconstructed metabolic interaction network; Table S6: Comparing functional analysis results with
HumanN alignments; Document S2: The source code of the project and the manual for it.; Document
S1: Reasons for choosing functional groups; General principles for selecting TDGFs; Selection of
TDGFs for functional groups; Verification of correct selection of TDGFs for functional groups; Figure
S2: Comparison of the sets of reads that are taken into account when calculating the abundance of
functional groups HumanN and the trait-based method for the F1 diet).

Author Contributions: Conceptualization, A.I.K. (Alexandra I. Klimenko) and S.A.L.; methodology,
A.I.K. (Andrew I. Kropochev) and A.I.K. (Alexandra I. Klimenko); software, A.I.K. (Andrew I.
Kropochev) and A.I.K. (Alexandra I. Klimenko); validation, A.I.K. (Andrew I. Kropochev) and
A.I.K. (Alexandra I. Klimenko); formal analysis, A.I.K. (Andrew I. Kropochev); investigation, A.I.K.
(Andrew I. Kropochev); resources, S.A.L. and Y.G.M.; data curation, A.I.K. (Andrew I. Kropochev),
A.I.K. (Alexandra I. Klimenko) and S.A.L.; writing—original draft preparation, A.I.K. (Andrew I.
Kropochev) and A.I.K. (Alexandra I. Klimenko); writing—review and editing, S.A.L., Y.G.M. and
A.I.K. (Alexandra I. Klimenko); visualization, A.I.K. (Andrew I. Kropochev); supervision, A.I.K.
(Alexandra I. Klimenko); project administration, A.I.K. (Alexandra I. Klimenko), S.A.L. and Y.G.M.;
funding acquisition, A.I.K. (Alexandra I. Klimenko) All authors have read and agreed to the published
version of the manuscript.

Funding: The study was financially supported by Russian presidential grant for support of young
scientists No. MK-3363.2022.1.4.

Institutional Review Board Statement: Not applicable. Our manuscript does describe research on
animals, however, in our study, we only use already published data.

Informed Consent Statement: Not applicable.

Data Availability Statement: The analyzed data were taken from [10] and have the following Bio-
ProjectID identifiers: SRP092478, SRP092476, SRP092461, SRP092458, and SRP092453. All other data
generated or analysed during this study are included in this published article and its supplementary
information files. The code is available at https://github.com/Yasana1990/metacrest accessed on
1 January 2022 and also located in Document S1.

Conflicts of Interest: The authors declare no conflict of interest.

Abbreviations

TDGF trait-determining genetic feature
R fiber-rich diet
F fiber-free diet
FR alternation of a fiber-rich diet and fiber-free diet
P prebiotic diet
FP alternation of a prebiotic and fiber-free diet
TBQM trait-based quantification method method
TPM transcript per million [42]
CPM copies per million [18]
EC Enzyme Commission

https://www.mdpi.com/article/10.3390/biology12010115/s1
https://www.mdpi.com/article/10.3390/biology12010115/s1
https://github.com/Yasana1990/metacrest


Biology 2023, 12, 115 12 of 13

References
1. Ottman, N.; Smidt, H.; de Vos, W.M.; Belzer, C. The Function of Our Microbiota: Who Is out There and What Do They Do?

Front. Cell. Infect. Microbiol. 2012, 2, 104. [CrossRef] [PubMed]
2. Petersen, C.; Round, J.L. Defining Dysbiosis and Its Influence on Host Immunity and Disease. Cell. Microbiol. 2014, 16, 1024–1033.

[CrossRef] [PubMed]
3. Rinninella, E.; Raoul, P.; Cintoni, M.; Franceschi, F.; Miggiano, G.; Gasbarrini, A.; Mele, M. What Is the Healthy Gut Microbiota

Composition? A Changing Ecosystem across Age, Environment, Diet, and Diseases. Microorganisms 2019, 7, 14. [CrossRef]
[PubMed]

4. Eckburg, P.B. Diversity of the Human Intestinal Microbial Flora. Science 2005, 308, 1635–1638. [CrossRef] [PubMed]
5. Lozupone, C.A.; Stombaugh, J.I.; Gordon, J.I.; Jansson, J.K.; Knight, R. Diversity, Stability and Resilience of the Human Gut

Microbiota. Nature 2012, 489, 220–230. [CrossRef]
6. Tanca, A.; Abbondio, M.; Palomba, A.; Fraumene, C.; Manghina, V.; Cucca, F.; Fiorillo, E.; Uzzau, S. Potential and Active Functions

in the Gut Microbiota of a Healthy Human Cohort. Microbiome 2017, 5, 79. [CrossRef]
7. Chen, L.; Zhang, Y.-H.; Huang, T.; Cai, Y.-D. Gene Expression Profiling Gut Microbiota in Different Races of Humans. Sci. Rep.

2016, 6, 23075. [CrossRef] [PubMed]
8. De Roy, K.; Marzorati, M.; Van Den Abbeele, P.; Van De Wiele, T.; Boon, N. Minireview Synthetic Microbial Ecosystems: An

Exciting Tool to Understand and Apply Microbial Communities. Environ. Microbiol. 2014, 16, 1472–1481. [CrossRef]
9. Bodenhausen, N.; Bortfeld-Miller, M.; Ackermann, M.; Vorholt, J.A. A Synthetic Community Approach Reveals Plant Genotypes

Affecting the Phyllosphere Microbiota. PLoS Genet. 2014, 10, e1004283. [CrossRef]
10. Desai, M.S.; Seekatz, A.M.; Koropatkin, N.M.; Kamada, N.; Hickey, C.A.; Wolter, M.; Pudlo, N.A.; Kitamoto, S.; Terrapon,

N.; Muller, A.; et al. A Dietary Fiber-Deprived Gut Microbiota Degrades the Colonic Mucus Barrier and Enhances Pathogen
Susceptibility. Cell 2016, 167, 1339–1353.e21. [CrossRef]

11. Almeida, A.; Nayfach, S.; Boland, M.; Strozzi, F.; Beracochea, M.; Shi, Z.J.; Pollard, K.S.; Sakharova, E.; Parks, D.H.; Hugenholtz,
P.; et al. A Unified Catalog of 204,938 Reference Genomes from the Human Gut Microbiome. Nat. Biotechnol. 2021, 39, 105–114.
[CrossRef] [PubMed]

12. Soucy, S.M.; Huang, J.; Gogarten, J.P. Horizontal Gene Transfer: Building the Web of Life. Nat. Rev. Genet. 2015, 16, 472–482.
[CrossRef] [PubMed]

13. Huang, G.-D.; Liu, X.-M.; Huang, T.-L.; Xia, L.-C. The Statistical Power of K-Mer Based Aggregative Statistics for Alignment-Free
Detection of Horizontal Gene Transfer. Synth. Syst. Biotechnol. 2019, 4, 150–156. [CrossRef]

14. Mcgill, B.J.; Enquist, B.J.; Weiher, E.; Westoby, M. Rebuilding Community Ecology from Functional Traits. Trends Ecol. Evol. 2006,
21, 178–185. [CrossRef]

15. Kiørboe, T.; Visser, A.; Andersen, K.H. A Trait-Based Approach to Ocean Ecology. ICES J. Mar. Sci. 2018, 75, 1849–1863. [CrossRef]
16. Ho, A.; Kerckhof, F.-M.; Luke, C.; Reim, A.; Krause, S.; Boon, N.; Bodelier, P.L.E. Conceptualizing Functional Traits and Ecological

Characteristics of Methane-Oxidizing Bacteria as Life Strategies. Environ. Microbiol. Rep. 2013, 5, 335–345. [CrossRef] [PubMed]
17. Krause, S.; Le Roux, X.; Niklaus, P.A.; Van Bodegom, P.M.; Lennon, J.T.; Bertilsson, S.; Grossart, H.; Philippot, L.; Bodelier, P.L.E.

Trait-Based Approaches for Understanding Microbial Biodiversity and Ecosystem Functioning. Front. Microbiol. 2014, 5, 251.
[CrossRef]

18. Beghini, F.; McIver, L.J.; Blanco-Míguez, A.; Dubois, L.; Asnicar, F.; Maharjan, S.; Mailyan, A.; Manghi, P.; Scholz, M.; Thomas,
A.M.; et al. Integrating Taxonomic, Functional, and Strain-Level Profiling of Diverse Microbial Communities with BioBakery 3.
Elife 2021, 10, e65088. [CrossRef]

19. Nazeen, S.; Yu, Y.W.; Berger, B. Carnelian Uncovers Hidden Functional Patterns across Diverse Study Populations from Whole
Metagenome Sequencing Reads. Genome Biol. 2020, 21, 47. [CrossRef] [PubMed]

20. Bose, S.; Ramesh, V.; Locasale, J.W. Acetate Metabolism in Physiology, Cancer, and Beyond. Trends Cell Biol. 2019, 29, 695–703.
[CrossRef]

21. Corfield, A.P. Mucins: A Biologically Relevant Glycan Barrier in Mucosal Protection. Biochim. Biophys. Acta-Gen. Subj. 2015, 1850,
236–252. [CrossRef] [PubMed]

22. Corfield, A.P.; Wagner, S.A.; O’Donnell, L.J.D.; Durdey, P.; Mountford, R.A.; Clamp, J.R. The Roles of Enteric Bacterial Sialidase,
SialateO-Acetyl Esterase and Glycosulfatase in the Degradation of Human Colonic Mucin. Glycoconj. J. 1993, 10, 72–81. [CrossRef]
[PubMed]

23. Duncan, S.H.; Holtrop, G.; Lobley, G.E.; Calder, A.G.; Stewart, C.S.; Flint, H.J. Contribution of Acetate to Butyrate Formation by
Human Faecal Bacteria. Br. J. Nutr. 2004, 91, 915–923. [CrossRef] [PubMed]

24. Flint, H.J.; Scott, K.P.; Duncan, S.H.; Louis, P.; Forano, E. Microbial Degradation of Complex Carbohydrates in the Gut.
Gut Microbes 2012, 3, 289–306. [CrossRef] [PubMed]

25. Hamer, H.M.; Jonkers, D.; Venema, K.; Vanhoutvin, S.; Troost, F.J.; Brummer, R.-J. The Role of Butyrate on Colonic Function.
Aliment. Pharmacol. Ther. 2007, 27, 104–119. [CrossRef] [PubMed]

26. Johansson, M.E.V.; Sjövall, H.; Hansson, G.C. The Gastrointestinal Mucus System in Health and Disease. Nat. Rev. Gastroenterol. Hepatol.
2013, 10, 352–361. [CrossRef]

27. Lan, W.; Yang, C. Ruminal Methane Production: Associated Microorganisms and the Potential of Applying Hydrogen-Utilizing
Bacteria for Mitigation. Sci. Total Environ. 2019, 654, 1270–1283. [CrossRef]

http://doi.org/10.3389/fcimb.2012.00104
http://www.ncbi.nlm.nih.gov/pubmed/22919693
http://doi.org/10.1111/cmi.12308
http://www.ncbi.nlm.nih.gov/pubmed/24798552
http://doi.org/10.3390/microorganisms7010014
http://www.ncbi.nlm.nih.gov/pubmed/30634578
http://doi.org/10.1126/science.1110591
http://www.ncbi.nlm.nih.gov/pubmed/15831718
http://doi.org/10.1038/nature11550
http://doi.org/10.1186/s40168-017-0293-3
http://doi.org/10.1038/srep23075
http://www.ncbi.nlm.nih.gov/pubmed/26975620
http://doi.org/10.1111/1462-2920.12343
http://doi.org/10.1371/journal.pgen.1004283
http://doi.org/10.1016/j.cell.2016.10.043
http://doi.org/10.1038/s41587-020-0603-3
http://www.ncbi.nlm.nih.gov/pubmed/32690973
http://doi.org/10.1038/nrg3962
http://www.ncbi.nlm.nih.gov/pubmed/26184597
http://doi.org/10.1016/j.synbio.2019.08.001
http://doi.org/10.1016/j.tree.2006.02.002
http://doi.org/10.1093/icesjms/fsy090
http://doi.org/10.1111/j.1758-2229.2012.00370.x
http://www.ncbi.nlm.nih.gov/pubmed/23754714
http://doi.org/10.3389/fmicb.2014.00251
http://doi.org/10.7554/eLife.65088
http://doi.org/10.1186/s13059-020-1933-7
http://www.ncbi.nlm.nih.gov/pubmed/32093762
http://doi.org/10.1016/j.tcb.2019.05.005
http://doi.org/10.1016/j.bbagen.2014.05.003
http://www.ncbi.nlm.nih.gov/pubmed/24821013
http://doi.org/10.1007/BF00731190
http://www.ncbi.nlm.nih.gov/pubmed/8358229
http://doi.org/10.1079/BJN20041150
http://www.ncbi.nlm.nih.gov/pubmed/15182395
http://doi.org/10.4161/gmic.19897
http://www.ncbi.nlm.nih.gov/pubmed/22572875
http://doi.org/10.1111/j.1365-2036.2007.03562.x
http://www.ncbi.nlm.nih.gov/pubmed/17973645
http://doi.org/10.1038/nrgastro.2013.35
http://doi.org/10.1016/j.scitotenv.2018.11.180


Biology 2023, 12, 115 13 of 13

28. Louis, P.; Young, P.; Holtrop, G.; Flint, H.J. Diversity of Human Colonic Butyrate-Producing Bacteria Revealed by Analysis of the
Butyryl-CoA: Acetate CoA-Transferase Gene. Environ. Microbiol. 2010, 12, 304–314. [CrossRef]

29. Praharaj, A.B.; Dehury, B.; Mahapatra, N.; Kar, S.K.; Behera, S.K. Molecular Dynamics Insights into the Structure, Function, and
Substrate Binding Mechanism of Mucin Desulfating Sulfatase of Gut Microbe Bacteroides Fragilis. J. Cell. Biochem. 2018, 119,
3618–3631. [CrossRef]

30. Muyzer, G.; Stams, A.J.M. The Ecology and Biotechnology of Sulphate-Reducing Bacteria. Nat. Rev. Microbiol. 2008, 6, 441–454.
[CrossRef]

31. Pierce, E.; Xie, G.; Barabote, R.D.; Saunders, E.; Han, C.S.; Detter, J.C.; Richardson, P.; Brettin, T.S.; Das, A.; Ljungdahl, L.G.; et al.
The Complete Genome Sequence of Moorella Thermoacetica (f. Clostridium Thermoaceticum). Environ. Microbiol. 2008, 10,
2550–2573. [CrossRef] [PubMed]

32. McGuckin, M.A.; Lindén, S.K.; Sutton, P.; Florin, T.H. Mucin Dynamics and Enteric Pathogens. Nat. Rev. Microbiol. 2011, 9,
265–278. [CrossRef] [PubMed]

33. Ragsdale, S.W. Enzymology of the Wood-Ljungdahl Pathway of Acetogenesis. Ann. N. Y. Acad. Sci. 2008, 1125, 129–136.
[CrossRef]

34. Rakoff-nahoum, S.; Coyne, M.J. An Ecological Network of Polysaccharide Utilization among Human Intestinal Symbionts.
Curr. Biol. 2014, 24, 40–49. [CrossRef] [PubMed]

35. Rey, F.E.; Faith, J.J.; Bain, J.; Muehlbauer, M.J.; Stevens, R.D.; Newgard, C.B.; Gordon, J.I. Dissecting the in Vivo Metabolic Potential
of Two Human Gut Acetogens. J. Biol. Chem. 2010, 285, 22082–22090. [CrossRef]

36. Rey, F.E.; Gonzalez, M.D.; Cheng, J.; Wu, M.; Ahern, P.P.; Gordon, J.I. Metabolic Niche of a Prominent Sulfate-Reducing Human
Gut Bacterium. Proc. Natl. Acad. Sci. USA 2013, 110, 13582–13587. [CrossRef] [PubMed]

37. Sengupta, S.; Muir, J.G.; Gibson, P.R. Does Butyrate Protect from Colorectal Cancer? J. Gastroenterol. Hepatol. 2006, 21, 209–218.
[CrossRef] [PubMed]

38. Vital, M.; Howe, A.C.; Tiedje, J.M. Revealing the Bacterial Butyrate Synthesis Pathways by Analyzing (Meta)Genomic Data. MBio
2014, 5, e00889-14. [CrossRef]

39. Wolin, M.J.; Miller, T.L. Interactions of Microbial Populations in Cellulose Fermentation. Fed. Proc. 1983, 42, 109–113.
40. Haas, B.J.; Papanicolaou, A.; Yassour, M.; Grabherr, M.; Blood, P.D.; Bowden, J.; Couger, M.B.; Eccles, D.; Li, B.; Lieber, M.; et al.

De Novo Transcript Sequence Reconstruction from RNA-Seq Using the Trinity Platform for Reference Generation and Analysis.
Nat. Protoc. 2013, 8, 1494–1512. [CrossRef]

41. Bray, N.L.; Pimentel, H.; Melsted, P.; Pachter, L. Near-Optimal Probabilistic RNA-Seq Quantification. Nat. Biotechnol. 2016, 34,
525–527. [CrossRef] [PubMed]

42. Wagner, G.P.; Kin, K.; Lynch, V.J. Measurement of MRNA Abundance Using RNA-Seq Data: RPKM Measure Is Inconsistent
among Samples. Theory Biosci. 2012, 131, 281–285. [CrossRef] [PubMed]

43. Segata, N.; Waldron, L.; Ballarini, A.; Narasimhan, V.; Jousson, O.; Huttenhower, C. Metagenomic Microbial Community Profiling
Using Unique Clade-Specific Marker Genes. Nat. Methods 2012, 9, 811–814. [CrossRef] [PubMed]

44. Suzek, B.E.; Wang, Y.; Huang, H.; McGarvey, P.B.; Wu, C.H. UniRef Clusters: A Comprehensive and Scalable Alternative for
Improving Sequence Similarity Searches. Bioinformatics 2015, 31, 926–932. [CrossRef] [PubMed]

45. Li, B.; Dewey, C.N. RSEM: Accurate Transcript Quantification from RNA-Seq Data with or without a Reference Genome.
BMC Bioinform. 2011, 12, 323. [CrossRef]

46. Ackerly, D.D.; Cornwell, W.K. A Trait-Based Approach to Community Assembly: Partitioning of Species Trait Values into within-
and among-Community Components. Ecol. Lett. 2007, 10, 135–145. [CrossRef]

47. Lajoie, G.; Kembel, S.W. Making the Most of Trait-Based Approaches for Microbial Ecology. Trends Microbiol. 2019, 27, 814–823.
[CrossRef]

48. Inkpen, S.A.; Douglas, G.M.; Brunet, T.D.P.; Leuschen, K.; Doolittle, W.F.; Langille, M.G.I. The Coupling of Taxonomy and
Function in Microbiomes. Biol. Philos. 2017, 32, 1225–1243. [CrossRef]

49. Omelchenko, M.V.; Galperin, M.Y.; Wolf, Y.I.; Koonin, E.V. Non-Homologous Isofunctional Enzymes: A Systematic Analysis of
Alternative Solutions in Enzyme Evolution. Biol. Direct 2010, 5, 31. [CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

http://doi.org/10.1111/j.1462-2920.2009.02066.x
http://doi.org/10.1002/jcb.26569
http://doi.org/10.1038/nrmicro1892
http://doi.org/10.1111/j.1462-2920.2008.01679.x
http://www.ncbi.nlm.nih.gov/pubmed/18631365
http://doi.org/10.1038/nrmicro2538
http://www.ncbi.nlm.nih.gov/pubmed/21407243
http://doi.org/10.1196/annals.1419.015
http://doi.org/10.1016/j.cub.2013.10.077
http://www.ncbi.nlm.nih.gov/pubmed/24332541
http://doi.org/10.1074/jbc.M110.117713
http://doi.org/10.1073/pnas.1312524110
http://www.ncbi.nlm.nih.gov/pubmed/23898195
http://doi.org/10.1111/j.1440-1746.2006.04213.x
http://www.ncbi.nlm.nih.gov/pubmed/16460475
http://doi.org/10.1128/mBio.00889-14
http://doi.org/10.1038/nprot.2013.084
http://doi.org/10.1038/nbt.3519
http://www.ncbi.nlm.nih.gov/pubmed/27043002
http://doi.org/10.1007/s12064-012-0162-3
http://www.ncbi.nlm.nih.gov/pubmed/22872506
http://doi.org/10.1038/nmeth.2066
http://www.ncbi.nlm.nih.gov/pubmed/22688413
http://doi.org/10.1093/bioinformatics/btu739
http://www.ncbi.nlm.nih.gov/pubmed/25398609
http://doi.org/10.1186/1471-2105-12-323
http://doi.org/10.1111/j.1461-0248.2006.01006.x
http://doi.org/10.1016/j.tim.2019.06.003
http://doi.org/10.1007/s10539-017-9602-2
http://doi.org/10.1186/1745-6150-5-31

	Introduction 
	Methods 
	Metagenomic and Metatranscriptomic Data from a Synthetic Community Modelling the Core Microbiome of the Human Gut 
	Methodology for Identification of the Key Functional Groups and Their Trait-Determining Genetic Features (TDGFs) 
	Implementation of the Method for Quantitative Assessment of Functional Groups in the Human Intestinal Microbiome 
	Comparing Functional Analysis Results with Humann 

	Results 
	The Ecological Structure of the Human Intestinal Microbial Community in Terms of Functional Groups 
	The Similarity of the Patterns of Changes in the Abundance of Functional Groups When Evaluated Based on Different Data 
	Comparing Functional Analysis Results with HumanN and RSEM 

	Discussion 
	Conclusions 
	References

