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Simple Summary: Due to most traditional high-throughput experiments are tedious and labori-
ous in identifying potential protein–protein interaction. To better improve accuracy prediction in
protein–protein interactions. We proposed a novel computational method that can identify unknown
protein–protein interaction efficiently and hope this method can provide a helpful idea and tool for
proteomics research.

Abstract: Protein–protein interactions (PPIs) play an essential role in many biological cellular func-
tions. However, it is still tedious and time-consuming to identify protein–protein interactions through
traditional experimental methods. For this reason, it is imperative and necessary to develop a compu-
tational method for predicting PPIs efficiently. This paper explores a novel computational method
for detecting PPIs from protein sequence, the approach which mainly adopts the feature extraction
method: Locality Preserving Projections (LPP) and classifier: Rotation Forest (RF). Specifically, we first
employ the Position Specific Scoring Matrix (PSSM), which can remain evolutionary information of
biological for representing protein sequence efficiently. Then, the LPP descriptor is applied to extract
feature vectors from PSSM. The feature vectors are fed into the RF to obtain the final results. The
proposed method is applied to two datasets: Yeast and H. pylori, and obtained an average accuracy of
92.81% and 92.56%, respectively. We also compare it with K nearest neighbors (KNN) and support
vector machine (SVM) to better evaluate the performance of the proposed method. In summary, all
experimental results indicate that the proposed approach is stable and robust for predicting PPIs and
promising to be a useful tool for proteomics research.

Keywords: locality preserving projections; rotation forest; PSSM; SVM; KNN

1. Introduction

Protein–protein interactions (PPIs) play a crucial role in almost all cellular processes
and functions, such as DNA transcription and replication, immune response, signal trans-
duction, and gene expression [1,2]. Thus, detecting and characterizing potential protein
interactions correctly are significant for understanding the properties of biological processes.
Recently, a number of innovative high-throughput biological experimental technologies,
including yeast two-hybrid screen (Y2H) [3,4], protein chip [5], and tandem affinity purifi-
cation tagging (TAP) [6], and other methods have been proposed to detect the interaction
between proteins systematically. With the development of biotechnology, the number of PPI
data is quickly accumulating. For this reason, multiple databases have been built to record
PPI data efficiently. Biomolecular Interaction Network Database (BIND) [7], Database of
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Interacting Proteins (DIP) [8], and the Molecular Interaction database (MINT) [9] are mainly
used databases by researchers. However, there still exist some drawbacks to traditional
high-throughput methods, such as being costly and labor-intensive and it will raise a high
rate of false positives. The known PPI pairs which have been validated through biological
experiment methods only account for a small portion of the whole PPI network [10,11]. As
a result, developing a novel computational method is conducive to inferring potential PPIs.

Up to now, a great number of computational techniques have been proposed for
predicting potential PPIs [12–14]. Generally, some existing methods for predicting PPIs
typically can be treated as binary classification problems which adopt different features
to represent protein pairs [15–17]. Different feature sources or protein attributes like
protein domains, phylogenetic profiles, and protein structure information are employed to
detect potential protein interactions. There are also exist methods that utilize interaction
information from several different protein features [18,19]. However, these approaches are
not easy to implement unless pre-knowledge of protein pairs can be available.

Recently, a couple of computational methods mainly based on protein sequences have
been proposed since protein sequences are the easiest to obtain [20–22]. Many researchers
have engaged in the development of a sequence-based method for detecting potential
PPIs [23–26], and a variety of experimental results indicated that it is sufficient to predict
PPI using the information of amino acid sequences alone [27–31]. For instance, Xia et al. [32]
proposed that the Moran autocorrelation descriptor can effectively depict the level of the
correlation between two protein sequences of specific physicochemical property and use
rotation forest to predict PPIs. Shen et al. [33] proposed a computational method that
extracts features by utilizing the conjoint triad (CT) which considered the local environ-
ments of residues, and then using a support vector machine (SVM) to predict PPIs; this
method achieved the result of average accuracy of 83.9%. You et al. [34] developed a novel
computational method that used multi-scale continuous and discontinuous (MCD) to repre-
sent protein sequence and achieved an excellent result in the Yeast dataset. Chen et al. [35]
reported an approach that uses XGBoost to reduce feature noise and adopts StackPPI
that several ensemble classifiers to detect the interaction of protein pairs. Zhao et al. [36]
proposed an ensemble method and the results of the proposed method obtained good
performance. Yousef et al. [37] developed a sequence-based, fast, and adaptive PPIs pre-
diction method, which employed principal component analysis (PCA) as a proper feature
extraction method and utilized adaptive learning vector quantization (LVQ) to predict
different PPI datasets. This method achieved an average accuracy of 93.88% and 90.03%
on S. cerevisiae and H. pylori, respectively. Wang et al. [38] reported an approach only
using the information of protein sequence; the approach combined continuous and discrete
wavelet transforms and weight sparse representation-based classifier for predicting PPIs.
Zahiri et al. [39] proposed a novel evolutionary-based algorithm called PPIevo, which ex-
tracts features from PSSM for predicting protein–protein interactions. In general, previous
works illustrate that the feature extraction method and classification are the two most
important steps to predicting PPIs.

In this paper, by fully using evolutionary information of protein sequence, we report
a novel computational method, which obtaining numerical representation by Position
Specific Scoring Matrix (PSSM), extracting feature vector by using locality preserving
projections (LPP), and predicting by rotation forest (RF) classifier. More Specifically, the
first step is transforming protein sequence into numerical representation, PSSM. Second,
each PSSM can be extracted by LPP, and obtained a low-dimensional feature vector. Finally,
the feature descriptors are fed into the RF classifier for inferring potential protein–protein
interactions. Two datasets, Yeast and H. pylori, are applied in our proposed method; the five-
fold cross-validation results of average accuracy are 92.81% and 92.56%, respectively. The
performance of our proposed approach is better than the support vector machine (SVM),
K nearest neighbors. We also performed extensive experiments on four cross-species
independent datasets. Experimental results show that the proposed method outperforms
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other existing methods and we hope this approach can provide a solution for inferring
potential PPIs.

2. Materials and Methods
2.1. Datasets

The dataset can help us know whether the performance of the proposed method is
good or not. In this study, we adopt two benchmark datasets to evaluate the model. Firstly,
from the DIP database [8], the Yeast PPI dataset was collected. For enhancing credibility,
the length of protein pairs that were less than 50 residues and protein pairs that have more
than forty percent sequence identity will be directly removed. Thus, the Yeast dataset was
constructed by 11,888 protein pairs, including a positive dataset of 5594 protein pairs and a
negative dataset of 5594 protein pairs. The second dataset—the H. pylori PPI dataset—is
described by Martin et al. [40]; the whole dataset is constructed by 2916 protein pairs
(1458 interacting pairs and 1458 non-interacting pairs).

2.2. Position Specific Scoring Matrix

Position-Specific Scoring Matrix (PSSM) [41] is widely used for transform biological
sequence into numerical representation [42,43]. Given a protein sequence with length N,
The PSSM can be represented as follows:

D =


α1,1 α1,2 · · · α1,20
α2,1 α2,2 · · · α2,20

...
...

. . .
...

αN,1 αN,2 · · · αN,20

 (1)

where αi,j means the probability of the ith residue being mutated into type j of 20 native
amino acids during the evolutionary process of the protein from multiple sequence align-
ments. In this step, employing the tool mentioned in [44] can convert each protein sequence
into PSSM.

2.3. Locality Preserving Projections

We aim to extract the feature vectors, which mainly reduce the dimensional of the
original matrix to reduce the influence of noise. In this section, Locality Preserving Projec-
tions (LPP) algorithm [45] is adopted for extracting feature vectors in each PSSM. It adopts
a linear approximation to the Laplace characteristic map for obtaining the structure feature
between neighboring. Thus, it is widely used for data processing and analysis application.
Given a training sample X = [x1, x2, . . . , xn]

T ∈ RD, where D is the feature dimension, and
n denotes the feature vectors of each sample. Then for projecting the high-dimensional
input dataset X into a low-dimensional dataset Y = [y1, y2, . . . , yn], it is necessary to seek a
projection matrix W. The objective function of LPP is defined as

argmin
m

∑
i,j=1

(
yi − yj

)2Pij (2)

where

Pij =

 exp
(
− ‖xi−xj‖2

t

)
, xi and xj is linked

0, xi and xj is not linked
(3)

yi = wTxi (4)

where Pij is the heat kernel, w denotes a transformation vector, and in Equation (3), the
parameter t means scale size. Thus, we can define the distance formula is shown as follows:

d
(

xi, xj
)
= ‖xi − xj‖ (5)
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Then, it is necessary to minimize the projection matrix W. The steps are defined as:

1
2 ∑

i,j

(
yi − yj

)2Pij =
1
2 ∑

i,j

(
wTxi − wTxj

)2Pij

= wTX(D−W)XTw = wTXLXTw
(6)

where D is a diagonal matrix, Dii = ∑n
j=1 Wij and L = D −W represent the Laplacian

matrix. The constraint is:
wTXDXTw = 1 (7)

Finding a transfer matrix w, the following generalized eigenvalue problem:

XLXTw = λXDXTw (8)

Solving the question in Equation (8), we can obtain all the eigenvalues and eigen-
vectors corresponding, k eigenvalues: λ0, λ1, . . . , λk−1 are sorted from small to large.
{w0, w1, . . . , wk−1} denotes the corresponding characteristic vectors. First, l eigenvec-
tors are selected to form the projection matrix W = [w0, w1, . . . , wl−1]. As a result, the
embedding descriptors are

xi → yi = WTxi (9)

2.4. Rotation Forest

Rodriguez et al. [46] proposed rotation forest (RF) is a typical ensemble learning
algorithm that is widely used in the classification task. In the RF algorithm, it first divides
the feature set into K subsets by randomly combining the features of the sample. Principal
component analysis (PCA) is then used to transform the data and retain the accuracy of
the original data. As a result, RF improves classification performance by amplifying the
differences between base classifiers.

Let training sample set S be an M×m matrix. m represents the feature vector length of
each training sample. Let X be the feature set, and Y = (y1, y2, . . . , yn)

T are corresponding
labels. Assuming L decision tree, which can be denoted as [Q1, Q2, . . . , QL], respectively. In
this algorithm, the complete feature set will be divided into K subsets equally and randomly.
A single classifier Qi of processing steps can be summarized as follows:

(1) Set X is randomly divided into K disjoint subsets; each subset contains the number of
features is C = M/K.

(2) Form a new matrix Si,j by choosing the corresponding column of the feature in the sub-
set Qi,j from the training dataset S. And applying a bootstrap sampling technique from
seventy-five percent of the original training dataset S to generate a new matrix S′j,j.

(3) Employ C feature by adopting the PCA method in matrix S′j,j. The principal compo-

nent coefficients are stored in Ti,j, which can be represented as γ
(1)
ij , . . . , γ

(Cj)

ij .

(4) Construct a sparse rotation matrix Fi, in which matrix Si,j contain coefficients. The
matrix Fi can be defined as:

Fi =


γ
(1)
ij , . . . , γ

(Cj)

ij 0 · · · 0

0 γ
(1)
ij , . . . , γ

(Cj)

ij · · · 0
...

...
. . .

...

0 0 · · · γ
(1)
ij , . . . , γ

(Cj)

ij

 (10)

Given a test sample x in the prediction phase, di,j
(
xFa

i
)

is the probability. The confi-
dence of a class can be computed by the average combined method, and the formula is
shown as:

µj =
1
L ∑L

i=1 di,j(xFa
i ) (11)
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Thus, the greatest possible can be easily assigned, and the final predicted label can
be obtained.

3. Results and Discussion
3.1. Evaluation Criteria

To more intuitively evaluate the predictive performance of the model, the criteria were
evaluated using the classification precision (Prec.), accuracy (Accu.), Matthews correlation
coefficient (MCC) and sensitivity (Sen.) these are defined respectively by

Accu. =
TP + TN

TP + TN + FP + FN
(12)

Prec. =
TN

TN + FP
(13)

Sen. =
TP

TP + FN
(14)

MCC =
TP× TN − FP× FN√

(TP + FN)× (TN + FP)× (TN + FN)× (TP + FP)
(15)

where FP is false positive, TN is true negative, FN is false negative, and TP is true positive.
The ROC curve is a curve that describes relative trade-offs between TP and FP. The x-axis
of the ROC curve is defined as the false positives rate (FPR) or 1-specificity, and the y-axis
is defined as the true positives rate (TPR) or sensitivity.

TPR =
TP

(TP + FN)
(16)

FPR =
FP

(FP + FN)
(17)

The ROC curve of the best possible contains a point very close to coordinate (0,1) or
in the upper left corner of the ROC space, which represents the highest specificity and
sensitivity. In our paper, the area under the ROC curve (AUC) is computed, which shows
the performance of the proposed method in numerical form.

3.2. Prediction Ability Assess

In this section, we carried out our proposed method on two datasets: Yeast and
H. pylori. Meanwhile, the 5-fold cross-validation method is also adopted to assess the
reported method and avoid over-fitting in the experiments. By doing this, five training
models would be generated on five groups of training datasets. To obtain the best feature
vector representation in the LPP algorithm, we implement a variety of feature vectors with
different dimensions (40-dimensional, 60-dimensional, 80-dimensional, 100-dimensional,
120-dimensional, and 140-dimensional) to predict protein interactions to obtain the best
feature representation. We repeat this experiment several times and the optimization results
can be seen in Table 1. When adopting 40-dimensional feature vectors in the Yeast dataset,
the result of accuracy achieved 92.81%, and when employing 80-dimensional feature vectors
in the H. pylori dataset, the result of accuracy yielded 92.56%. We also plotted the accuracy
performance of the Yeast and H. pylori datasets in Figure 1, which clearly illustrate that the
best performance can be obtained by using 40-dimensional feature vectors on Yeast dataset
and 80-dimensional feature vectors on the H. Pylori dataset. However, it is worth noting
that there has been a decrease from 80-dimensional to 100-dimensional in the Yeast dataset.
We thought that when we extract feature vectors from PSSM, 100-dimensional feature
vectors have more redundant and noise information than 80-dimensional feature vectors.
The accuracy gap between 80-dimensional and 100-dimensional is 0.70%. Moreover, the
accuracy score is the main criteria we focused on. Thus, 40-dimensional feature vectors
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are selected on the Yeast dataset and 80-dimensional feature vectors are adopted on the H.
pylori dataset.

Table 1. The results of different feature vectors on the Yeast and H. pylori datasets.

Feature Vectors Dataset Acc. (%) Prec. (%) Sen. (%) MCC. (%)

40
Yeast 92.81 ± 0.66 96.80 ± 0.68 88.55 ± 0.95 86.61 ± 1.15

H. pylori 92.18 ± 0.70 93.66 ± 2.21 90.56 ± 1.52 85.54 ± 1.15

60
Yeast 92.55 ± 0.32 96.56 ± 0.53 88.25 ± 0.81 86.16 ± 0.31

H. pylori 92.49 ± 2.18 94.59 ± 2.13 90.12 ± 2.59 86.16 ± 3.67

80
Yeast 92.60 ± 0.32 96.37 ± 0.55 88.51 ± 0.54 86.23 ± 0.57

H. pylori 92.56 ± 0.86 94.11 ± 0.99 90.82 ± 0.93 86.22 ± 1.47

100
Yeast 91.90 ± 0.44 94.94 ± 0.90 88.52 ± 0.46 85.08 ± 0.73

H. pylori 92.21 ± 1.19 94.10 ± 1.74 90.12 ± 2.31 85.63 ± 2.03

120
Yeast 92.56 ± 0.75 96.44 ± 0.79 88.40 ± 0.93 86.19 ± 1.27

H. pylori 91.90 ± 1.66 93.94 ± 1.14 89.56 ± 2.56 85.14 ± 2.81

140
Yeast 92.52 ± 0.48 95.96 ± 0.32 88.77 ± 0.79 86.12 ± 0.81

H. pylori 91.46 ± 1.09 92.74 ± 2.54 89.89 ± 1.84 84.34 ± 1.84
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In the rotation forest algorithm, there are two main parameters in the rotation forest
classifier: K and L. where K represents the number of feature subsets, L denotes the number
of decision trees. We select the best parameter after the experiment and set K, L as 5, 5,
respectively. The results of the two datasets were shown in Tables 2 and 3.

Table 2. Prediction performance of the Yeast dataset based on five-fold cross-validation method.

Testing Set Acc. (%) Prec. (%) Sen. (%) MCC. (%) AUC

1 92.58 97.34 88.14 86.23 0.9509
2 92.80 96.24 88.78 86.58 0.9502
3 92.85 97.39 88.35 86.68 0.9511
4 92.00 95.91 87.44 85.20 0.9472
5 93.83 97.13 90.02 88.37 0.9535

Average 92.81 ± 0.66 96.80 ± 0.68 88.55 ± 0.95 86.61 ± 1.15 0.9506 ± 0.0023

When predicting the PPIs of the Yeast dataset, the proposed method yielded results of
average accuracy is 92.81%, precision is 96.80%, sensitivity is 88.55%, and MCC is 86.61%,
respectively. The corresponding standard deviations are 0.66%, 0.68%, 0.95%, and 1.15%,
respectively. When predicting the H. pylori, the average accuracy, precision, sensitivity, and
MCC are 92.56%, 94.11%, 90.82%, and 86.22%, with the corresponding standard deviations
of 0.86%, 0.99%, 0.93%, and 1.47%, respectively. Meanwhile, the values of AUC were also



Biology 2022, 11, 995 7 of 14

computed. The ROC curves of the two datasets are shown in Figures 2 and 3. As shown in
Figures 2 and 3, for the dataset Yeast, the AUC value is 0.9506. For the dataset H. pylori, we
could clearly see that the AUC value is 0.9463. In conclusion, promising results demonstrate
that the method we proposed is stable and effective for predicting PPIs.

Table 3. Prediction performance of the H. pylori dataset based on five-fold cross-validation method.

Testing Set Acc. (%) Prec. (%) Sen. (%) MCC. (%) AUC

1 92.80 93.50 91.52 86.61 0.9449
2 91.77 93.19 89.97 84.87 0.9373
3 91.60 93.49 90.10 84.59 0.9364
4 93.65 95.02 92.07 88.10 0.9564
5 92.97 95.32 90.44 86.91 0.9565

Average 92.56 ± 0.86 94.11 ± 0.99 90.82 ± 0.93 86.22 ± 1.47 0.9463 ± 0.0098
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Figure 3. ROC curves yielded by RF on H. pylori.

3.3. Performance Comparison of RF with Other Models

We compare the proposed method with K nearest neighbor (KNN) and support vector
machine (SVM) classifier for further evaluating the proposed method. The algorithm of
KNN is widely used in machine learning due to its efficiency and simplicity. The parameter
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k of KNN needs to be optimized to obtain the best performance. Here, the k is set to 2.
When training the SVM model, the LIBSVM tool is adopted to predict PPIs. There are two
corresponding parameters of c and g that need to be optimized in the SVM classifier. When
we carried out the experiment using the same feature vectors, 40-dimensions in Yeast and
80-dimensions in H. pylori, in the SVM classifier, we optimized several parameters to find
the best performance of the classifier. Thus, in the Yeast dataset, parameters c and g are
set 1 and 4. In the H. pylori dataset, we optimize the parameter and finally, we set c = 5
and g = 0.1, respectively. The performance results of SVM can be seen in Tables 4 and 5.
When using SVM for predicting the Yeast PPI dataset, the performance result of average
accuracy is 80.72%, precision is 81.39%, sensitivity is 79.66%, MCC is 68.87%, and AUC
becomes 0.8804, respectively. The corresponding standard deviations are 0.81%, 1.16%,
0.98%, 0.98%, and 0.0067, respectively. When the SVM is adopted to predict H. pylori, the
prediction results of average accuracy, precision, sensitivity, MCC, and AUC are 88.71%,
91.86%, 85.06%, 79.91%, and 0.9438, respectively. The ROC curves of the SVM classifier on
the Yeast and H. pylori datasets are shown in Figures 4 and 5.

Table 4. Prediction performance of the Yeast dataset based on five-fold cross-validation method.

Testing Set Acc. (%) Prec. (%) Sen. (%) MCC. (%) AUC

1 81.27 83.41 79.90 69.53 0.8866
2 81.18 81.28 80.02 69.42 0.8802
3 79.48 80.85 78.37 67.37 0.8700
4 80.33 80.54 79.07 68.37 0.8791
5 81.36 80.88 80.95 69.65 0.8860

Average 80.72 ± 0.81 81.39 ± 1.16 79.66 ± 0.98 68.87 ± 0.98 0.8804 ± 0.0067
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Furthermore, the prediction experiment of KNN has been carried out and the average
results are obtained by adopting the same feature extraction method. Table 6 summarizes
the prediction result of the different prediction models. The results of RF are significantly
better than SVM and KNN on the Yeast dataset. For example, the accuracy gaps between
RF and SVM are 12.09% in the Yeast dataset and 3.85% in the H. pylori dataset. Similarly,
the accuracy gaps between RF and KNN are 18.08% in the Yeast dataset and 1.51% in the
H. pylori dataset. As a result, we can conclude that the RF classifier is more accurate and
outstanding than SVM and KNN.

Table 6. The experimental results compared with other prediction models in the Yeast and H.
pylori datasets.

Dataset Model Accu. (%) Prec. (%) Sen. (%) MCC. (%) AUC

Yeast
RF 92.81 ± 0.66 96.80 ± 0.68 88.55 ± 0.95 86.61 ± 1.15 0.9506 ± 0.0023

SVM 80.72 ± 0.81 81.39 ± 1.16 79.66 ± 0.98 68.87 ± 0.98 0.8804 ± 0.0067
KNN 74.73 ± 1.38 76.57 ± 2.18 71.28 ± 1.18 62.15 ± 1.31 0.7472 ± 0.0139

H. pylori
RF 92.56 ± 0.86 94.11 ± 0.99 90.82 ± 0.93 86.22 ± 1.47 0.9463 ± 0.0098

SVM 88.71 ± 0.80 91.86 ± 2.42 85.06 ± 1.76 79.91 ± 1.21 0.9384 ± 0.0097
KNN 91.05 ± 1.01 91.85 ± 1.72 90.12 ± 0.94 83.70 ± 1.64 0.9104 ± 0.0101

To evaluate the method performance more intuitively, we plotted the ROC curves
of RF, SVM, and KNN, which can be seen in Figure 6. It can be known that the higher
the AUC value, the better the performance of the experimental method. For instance, the
AUC values gaps between RF and SVM are 0.0702 in the Yeast dataset and 0.0025 in the H.
pylori dataset. Similarly, the AUC values gaps between RF and KNN are 0.2034 in the Yeast
dataset and 0.0359 in the H. pylori dataset.

Given more thinking in this section, we adopt the same feature vectors in different
classifiers: KNN, SVM, and RF. SVM shows many unique advantages in solving small
samples and nonlinear and high-dimensional pattern recognition. It always shows the
state-of-the-art performance in many previous works. In addition, KNN is a commonly
supervised learning method in which K is usually selected manually. In this study, RF
obtained better accuracy results than KNN and SVM; it also demonstrates when predicting
the protein–protein interactions, RF can capture more useful information and have less
noise influence than SVM and KNN. Thus, we conclude that the method we proposed has
better prediction performance for predicting PPIs.
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Figure 6. Comparison of ROC curves for different classifiers of RF, SVM, and KNN on two datasets:
Yeast and H. pylori.

3.4. Performance on Independent Dataset

Although our method has achieved satisfactory results, we carried out an extensive
experiment on our proposed method. Four independent PPI datasets, including H. pylori,
H. sapiens, C. elegans, and M. musculus, were selected to evaluate the predictive capacity
of the proposed model. The experiment is based on the hypothesis that a large number of
interacting proteins in an organism evolve in a related way, and their respective orthologs
in other organisms also interact. Specially, we first adopted the Yeast PPI dataset as the
training set after optimizing the parameters. The same feature extraction method was
applied to four independent PPI datasets, and then these feature vectors of the independent
dataset would be treated as test data. The results are summarized in Table 7.

Table 7. Prediction results were obtained on four independent datasets.

Species Test Pairs Accu. (%)

H. sapiens 1412 88.60
M. musculus 313 97.44

H. pylori 1420 94.44
C. elegans 4013 93.60

When applying our proposed method to predict PPIs on four cross-species, we
achieved the average values of accuracy varying from 88.60% to 97.44% in Table 7. More-
over, based on our hypothesis, the accuracy result for the H. sapiens dataset is 88.60% and
97.44% for M. musculus dataset. We can suppose that when we employ the Yeast dataset as
the training set, the H. sapiens dataset shows a lower correlation; on the contrary, the M.
musculus dataset shows a higher correlation. All in all, it demonstrates that our proposed
model has good predictive and generalization capabilities in predicting PPIs and can be
applied to different protein interaction prediction problems.

3.5. Comparison with Other Methods

There have been proposed many related works for improving the prediction perfor-
mance. To compare whether our method is efficient or not, we make a comparison between
our method and the previous works on the Yeast and H. pylori PPI datasets. Tables 8 and 9
list the comparison result on two datasets.
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Table 8. Comparison results of different methods on H. pylori.

Model Acc. (%) Prec. (%) Sen. (%) MCC. (%)

Ensemble of HKNN [47] 86.60 85.00 86.70 N/A
HKNN [48] 84.00 84.00 86.00 N/A

Ensemble ELM [49] 87.50 88.95 86.15 78.13
Signature products [40] 83.40 85.70 79.90 N/A

Phylogenetic bootstrap [50] 75.80 80.20 69.80 N/A
Boosting [51] 79.52 81.69 80.37 70.64

Proposed method 92.56 94.11 90.82 86.22

Table 9. Comparison results of different methods on Yeast.

Method Model Acc. (%) Prec. (%) Sen. (%) MCC. (%)

You’s work [49] PCA-EELM 87.00 ± 0.29 87.59 ± 0.32 86.15 ± 0.43 77.36 ± 0.44
Zhou’s work [52] SVM+LD 88.56 ± 0.33 89.50 ± 0.60 87.37 ± 0.22 77.15 ± 0.68

Yang’s work [53]

Cod1 75.08 ± 1.13 74.75 ± 1.23 75.81 ± 1.20 N/A
Cod2 80.04 ± 1.06 95.44 ± 0.30 96.25 ± 1.26 N/A
Cod3 80.41 ± 0.47 65.50 ± 1.44 97.90 ± 1.06 N/A
Cod4 86.15 ± 1.17 90.24 ± 1.34 81.03 ± 1.74 N/A

Guo’s work [54]
ACC 89.33 ± 2.67 88.87 ± 6.16 89.93 ± 3.68 N/A
AC 87.36 ± 1.38 87.82 ± 4.33 87.30 ± 4.68 N/A

Proposed method RF 92.81 ± 0.66 96.80 ± 0.68 88.55 ± 0.95 86.61 ± 1.15

Table 8 clearly illustrates that our proposed method achieved the best results in
accuracy, precision, sensitivity, and MCC, respectively. Especially in the criteria of the MCC,
our method is 8.09% higher than the ensemble ELM method, and our model is 5.06% higher
in accuracy than ensemble ELM. Generally, the result of our method is ranked first that our
model obtained the highest prediction accuracy on the H. pylori.

In Table 9, the results of previous work are listed. Our approach achieved the highest
result in several criteria. Specifically, the proposed method achieved 92.81% on accuracy,
which is 3.48% higher than the first highest in Guo’s work. The results yielded from our
model on sensitivity only achieved 88.55%, which was 9.35% lower than the third-highest
in Yang’s work. It is worth noting that the feature extraction method and classifier make a
great contribution to achieving excellent performance. Generally speaking, the performance
of the method we proposed is superior to other methods in the table and is effective in
predicting PPIs.

4. Conclusions

In this article, we reported a novel computational method by combining locality-
preserving projections and rotation forest for inferring potential PPIs. It is worth noting
that the feature extraction method is conducive to predicting PPIs. The main improvement
in this work is that the locality preserving projections (LPP) are insensitive to anisotropic
values and can better maintain fixed local structure information internally. Then obtaining
the final prediction result by employing rotation forest. The method achieved an average
prediction accuracy of 92.81% on Yeast and 92.56% on H. pylori. We also further compare the
prediction performance among the rotation forest, support vector machine, and K nearest
neighbor. Extensive experiments were also carried out on four independent datasets. The
experiment results show that the performance of our model is appropriate. However, the
computational method still has some drawbacks, the feature vectors extracted by LPP have
potential noise, and evolutionary information cannot be retained completely. In future
studies, we will continue to study the use of more efficient descriptors to predict PPIs.
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