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Simple Summary: The origin of complex morphological structures is explained mainly by direct
pathways fusing adjacent modules, while the independent effect of parallel pathways acting on
different areas of a morphogenetic field is less well-known. The palimpsest model that explains the
cephalothoracic structural complexity of decapod crustaceans is composed of two hox-regulatory
parallel pathways that tagmatize the anterior metameres early, followed by a direct pathway that fuses
the tagmata forming the developmental modules. The cephalothoracic geometry of Aegla araucaniensis
shows a marked sexual dimorphism; its adaptive causes also promote dimorphic variations in the
evolvability of developmental modularity. We found areas of instability in the variance of the
asymmetry in both developmental modules. The direct pathway presents intermediate levels of
canalization in the covariation of the developmental modules, although significantly higher in males.
This low restrictive potential promotes expressions of gonadic modularity in females and agonistic
modularity in males, which differ significantly from developmental modularity. The cephalothoracic
palimpsest model of decapods allows studying modularity in an explicit evo–devo context.

Abstract: The integration of complex structures is proportional to the intensity of the structural fusion;
its consequences are better known than the covariational effects under less restrictive mechanisms.
The synthesis of a palimpsest model based on two early parallel pathways and a later direct pathway
explains the cephalothoracic complexity of decapod crustaceans. Using this model, we tested
the evolvability of the developmental modularity in Aegla araucaniensis, an anomuran crab with an
evident adaptive sexual dimorphism. The asymmetric patterns found on the landmark configurations
suggest independent perturbations of the parallel pathways in each module and a stable asymmetry
variance near the fusion by canalization of the direct pathway, which was more intense in males.
The greater covariational flexibility imposed by the parallel pathways promotes the expression of
gonadic modularity that favors the reproductive output in females and agonistic modularity that
contributes to mating success in males. Under these divergent expressions of evolvability, the smaller
difference between developmental modularity and agonistic modularity in males suggests higher
levels of canalization due to a relatively more intense structural fusion. We conclude that: (1) the
cephalothorax of A. araucaniensis is an evolvable structure, where parallel pathways promote sexual
disruptions in the expressions of functional modularity, which are more restricted in males, and (2) the
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cephalothoracic palimpsest of decapods has empirical advantages in studying the developmental
causes of evolution of complex structures.

Keywords: covariation; palimpsest model; developmental pathway; asymmetry; canalization

1. Introduction

Inferences in morphological evolution generally tend towards structuralist expla-
nations if they are based on factors of origin and development or towards functional
explanations if they respond to natural selection [1]. However, when combining both
points of view, it is possible to obtain a fuller understanding of the role of the origin and
development on the capacity for evolutionary change (evolvability) of the morphological
traits [2,3]. A synthesis emerges from this, described in three corollaries of the developmen-
tal fundamentals of the morphological modularity and their ecological and evolutionary
implications: (1) body plans are formed by subsets of internally integrated structures (mod-
ules) variably cohesive among themselves; (2) there is a pervasive relationship between
higher intra-module cohesion and lower inter-module cohesion regulated by the develop-
mental precursors (developmental modularity), and (3) such precursors tend to reduce the
co-variability of the modules by canalization. Therefore, the developmental precursors (or
pathways) constitute drivers of stabilizing selection, restricting the covariational expression
and/or optimizing the functional performance of developmental modularity [4–6]. This
principle is widely supported by the effect of direct developmental pathways that regulate
the fusion of components in complex morphological structures, where the canalization
of developmental modularity is proportional to the intensity of the structural fusion [7,8].
However, the response of developmental modularity is poorly understood when processes
that generate complex structures with less cohesion between modules are involved, such
as the differentiation of a morphogenetic field by the independent regulation of different
parallel developmental pathways [6].

The origin of the cephalothoracic structural complexity of decapod crustaceans is
explained by the early action of two parallel Hox regulatory pathways responsible for
the tagmatization of the cephalon and pereon (Figure 1A). During metamorphosis or late
embryogenesis in species with direct development, a change in Hox regulation occurs in
the anterior metameres of the pereon that fuses both tagmata functionally (Figure 1B). The
pereonic appendages, or maxillipeds, affected by this direct developmental pathway change
from large locomotor to small perioral appendages highly coordinated with the functional-
ity of cephalonic structures such as the mouth, mandible, maxillule and maxilla [9,10]. The
cervical groove emerges, anatomically delimiting the developmental modules (Figure 1C).
This model fits a simple palimpsest, where the effect of parallel developmental pathways,
as promoters of modularity, reduce or compete with the canalization imposed by the direct
developmental pathway [11]. The lower restrictive potential involved in this regulatory
system suggests signals of evolvability for developmental modularity, reflected in the
ability to change the covariation structure and express patterns of functional modularity
with the fitness value [12,13].

This prediction was evaluated here by estimating the intensity of the expression of
the direct developmental pathway and its effect on the evolvability of developmental
modularity in the adult cephalothorax of Aegla araucaniensis, an endemic and abundant
freshwater anomuran crab from South-Central Chile that has a marked adaptive sexual
dimorphism in the shape of its carapace [14]. The greater cephalothoracic width towards the
caudal end of females provides internal space to cover the variations in ovarian size during
the gonadic cycle and favor the well-being of the embryos during external incubation
under the pleon. Both functions optimize the quantity and quality of the new progeny,
favoring population fitness by natural selection [15,16]. The greater anterior amplitude and
prominence of the latero-frontal spines in males determine the performance of agonistic
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confrontations between males and copulatory behavior [17–19] These responses favor
the individual fitness of males through mating success, which involves an important
component of sexual selection [16,20,21]. We hypothesize that these divergent adaptive
causes also influence the sexually dimorphic expression of functional modularity, because
the direct developmental pathway is a weak driver of cephalothoracic canalization, which
implies a low correlation in the asymmetry of the developmental modules and significant
changes in the covariation structure that defines its modularity.
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Figure 1. Palimpsest model explaining the origin of the structural complexity of the cephalothorax of
decapod crustaceans. (A) Parallel developmental pathways regulating the early tagmatization of the
cephalon and pereon. (B) Change of the Hox regulation as a direct developmental pathway promoting
the fusion of the tagmata. (C) Structure resulting from the fusion of the developmental modules.
Cg: cervical groove, lab: labial, Dfd: Deformed, pb: proboscipoidea, Scr: Sex comb reduced, Antp:
Antennapedia, ab-A: abdominal-A and Ubx: Ultrabithorax. (Synthesized from Klingenberg [5,6]
and Abzhanov & Kaufman [9,10]). Abbreviations for appendages: A: Antennae, mn: mandible, mx:
maxillae, T: toracopodite and mxp: maxilliped.

The Hox regulation model that explains the cephalothoracic structural complexity
in decapod crustaceans offers important advantages as a study model in evo–devo [22].
The developmental pathways approach captures the more general features of these ge-
netic regulation processes [23], allowing a palimpsest model formed by two sequential
mechanisms of structural complexity with antagonistic covariational effects [11]. The
rigidity and compartmentalization of the decapod body plan offer multiple homologies
that morphologically define and delimit developmental modules [24], which is ideal to
measure the modularity and infer developmental interactions from landmark covariations
and correlations of bilateral asymmetry [25,26]. The intensity of the direct developmental
pathway was inferred by correlating the asymmetry generated by common regulatory
perturbations that coordinately deviate from the bilateral symmetry of the modules [27–29].
The evolvability of developmental modularity was inferred by contrasting the strength
of the expression of its covariation structure and that of additional modularity models
attributable to the functional and anatomical factors [26,30–32]. The study model and
the empirical framework proposed will contribute to understanding the covariational
evolution of complex phenotypes beyond the constraints imposed by a particular type of
developmental factor.

2. Materials and Methods

We analyzed the landmark configurations from the dorsal surface of the adult cephalotho-
rax of a sample of 55 female and 48 male of A. araucaniensis (Figure 2A). This sample
collected in 2006 using a manual trawl net was behaviorally characterized [33] and the
landmarks of this data set were digitized twice with the tpsDig2 program [34] and have
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been ecomorphologically analyzed in previous studies that described the capture, sexing,
size, photographing, location of landmarks and fate of the individuals [14,16,33]. This
configuration is composed of 33 homologous landmarks: 30 paired landmarks that describe
the bilateral geometry of the anterolateral spines and the anatomical areas formed by the
intersection of the dorsal lines, plus three unpaired landmarks located over the axis of
bilateral symmetry (Figure 2B). This sample was subjected to a Procrustes superimposi-
tion fitted by Generalized Least Squares (GLS) and aligned on an axis of symmetry [35]
to decompose the shape variations into symmetric and asymmetric components [36,37].
The variability of both components was evaluated with a Procrustes ANOVA, where the
symmetric component represents the among-individual variability, the asymmetric com-
ponent is explained by within-individual factors determining asymmetry (we nested sex
within both effects), the interaction within-among individuals measures the fluctuations
of the individual asymmetry with respect to the mean of the total asymmetry (fluctuat-
ing asymmetry) and the error term is the residual variance, which includes the effects
of both replicas [36,38]. Procrustes superimposition was performed with MorphoJ 1.06d
software [39], and the Procrustes ANOVA was computed in the geomorph 3.3.2 R pack-
age [40,41], which constructs distributions with Randomized Residuals in a Permutation
Procedure using the RRPP 0.6.2 library [42].
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Figure 2. Morphological analysis applied to the dorsal cephalothoracic surface of Aegla araucaniensis.
(A) Paratype of A. araucaniensis (bar = 5 mm). (B) Configuration of landmarks used in this study
(landmark names described in Table 1 of Barría et al [14]. (C) Simplest model of isotropic covariation
among landmarks. (D) Three additional bi-modularity models, including the disposition of the
developmental modules. (E) Two functional models associated with the gonadic modularity in
females. (F) The agonistic modularity of males. (G–I) Anatomical multi-modularity models, including
all relations among the anatomical areas of the dorsal surface of the cephalothorax.

The deviation from the perfect symmetry of the paired landmarks organized through
the cephalocaudal axis was measured from the matrix of Procrustes coordinates of the
asymmetric component. The area of the right triangle formed by the union of landmark
1 and each paired landmark was measured, and the percentage difference between the
sides was used as a descriptor of the left–right asymmetry (L–RAssym), being a negative
value if the asymmetry is skewed to the left. Longitudinal L–RAssym profiles were com-
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pared within and among sexes. The deviation from the perfect symmetry of each pair
of landmarks (L–RAssym = 0) was compared with a Z-test performed in the BSDA1.2.0 R
package [43], and the sexual differences in L–RAssym were tested with paired comparisons
based on a Student’s t-test [44], performed with the base 4.0.3 R package. The intensity of
the expression of the direct developmental pathway (Figure 1B) was inferred by correlating
the directional asymmetry of the shape of both developmental modules. A Mantel test was
applied for each sex on the matrices of the Procrustes coordinates of the asymmetric compo-
nent of both developmental modules. This analysis was performed with the ecodist 2.0.7 R
package using Euclidean distances among the Procrustes coordinates and 5000 bootstrap
iterations [45,46]; the differences between the sexes in the distribution of the correlation
values obtained were compared with an additional paired Student’s t-test.

We compared the intensity of the expression of seven hypothetical models of cephalotho-
racic modularity. First was a simple model of uniform covariation that considers the
cephalothorax as a unitary structure (Figure 2C). Three additional models of bi-modularity
were considered: (1) developmental modularity proposes the maximum covariation be-
tween the landmarks within each cephalothoracic module and the minimum covariation
between landmarks of different modules (Figure 2D), (2) a model of gonadic modularity
suggests a greater covariation between landmarks that include the anatomical space oc-
cupied by the reproductive system of the females (Figure 2E) and (3) a model of agonistic
modularity proposes more covariations among the landmarks that describe the set of
frontal and lateral spiny processes (Figure 2F). Three models of anatomical modularity
were included, which combined all possible subdivisions in the map of dorsal lines dis-
played over the thoracic module (Figure 2G–I). For this, the landmark configurations were
subjected to superimposition based on the Generalized Procrustes Analysis (GPA), aligned
by the centroid and optimized by the Procrustes distance [47] in tpsRelw 1.71 [48]. From
the submatrices of Procrustes coordinates that summarize the parameters of each model,
we estimated the Covariance Ratio (CR), a descriptor of modularity that relates to the
total covariance of the elements between modules to the paired covariance of the elements
within each module, and the force of the modular signal of each model was estimated as the
CR effect size (ZCR). Since the modularity increases with the intra-module cohesion, greater
modularity and a greater intensity of modular signal occur when CR tends toward zero and
ZCR is negative [31,32]. Distributions of ZCR values for each modularity hypothesis were
obtained by RRPP [49], the absolute value of the paired differences between the means of
these distributions was estimated (|Ẑ12|) and the overlap ratio of the ZCR distributions
measured the statistical significance (p-value) of the models compared [32]. Estimations
of CR, ZCR and paired comparisons based on |Ẑ12| were performed in the geomorph
3.3.2 R package [41] and the RRPP 0.6.2 library to construct the ZCR distributions [42].
We compared 19 possible additional variants of covariation from the seven modularity
models proposed based on the correlations within and between modules (Figure S1). The
log-likelihood support for each covariation model and the subsequent fit by AICc were
estimated in the EMMLi 0.0.3 R package [27]. Since this analysis is extensive, the method-
ological details of this procedure are described in a Supplementary File S1.

To assess the degree of modular structure of both developmental modularity and the
best-fitting model of modularity of each sex, we applied modularity tests based on the CR
values. The residuals matrix of the Procrustes coordinates of the symmetric components
obtained by GLS superimposition and regressed on the centroid size [50] were partitioned
according to the different modularity models. The relative frequency distributions of the CR
values of the original partitions were compared to a distribution of the CR values estimated
for a sample of arbitrary partitions with the same number of landmarks per module. The
CR values in both distributions were obtained with 10,000 permutation rounds, changing
landmarks randomly in the hypothetical modules in the original partitions and among the
different modules in the arbitrary partitions. The proportion of CR values of the arbitrary
partitions lower than the CR values of the original partitions was considered as an estimator
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of the statistical significance [31]. All procedures involved in the modularity test were
performed in the geomorph 3.3.2 R package [40,41].

3. Results

The output of the Procrustes ANOVA indicated significant sexual dimorphism in
the shape of the symmetric component and the directional asymmetry but not in the
fluctuating asymmetry (Table 1). The shape longitudinal profile asymmetry showed a
marked directional skew to the left in females (Figure 3A). Most of the paired landmarks had
asymmetry values significantly less than zero (L–RAssym < −0.20; Z-test < −2.0; p < 0.005).
Only the landmarks of the tip of the anterolateral spines (pair 26-04), and the intersections
of the branchial line and the linea aeglica lateralis (pair 18-12) were significantly skewed to
the right (L–RAssym > 0.33; Z-test: 3.5; p < 0.05), while the paired landmarks of both hepatic
lobules 1 (pair 25-05) had a better fit to perfect symmetry (L–RAssym = 0.014; Z-test = 0.146;
p = 0.883). In males, 73% of the paired landmarks (11 pairs) were significantly skewed to the
right (mean L–RAssym from 0.37 to 2.77; Z-test from 4.92 to 20.66; p < 0.001; Figure 3B). The
asymmetry of hepatic lobules 1 (pair 25-05), the tip of the anterolateral spine in the anterior
extreme (pair 26-04) and the distal extremes of the branchial area (pair 17-13) did not differ
from the perfect symmetry (L–RAssym between −0.5 and 0.06; Z-test between −0.33 and
0.63; p > 0.05). The landmarks located at the intersections of the branchial line and the
línea aeglica lateralis (pair 18-12) were the only ones with a significant asymmetry skewed
to the left (mean −0.53; Z-test = −5.265; p < 0.0001). As a reflection of the fluctuating
asymmetry, the paired landmarks of all individuals grouped did not differ significantly
from perfect symmetry (mean L–RAssym between −0.084 and 0.28; Z-test between 4.02 and
1.20; p > 0.05; Figure 3C). The asymmetry of the orbital sinuses (pair 28-02) was generally
the most variable in the cephalic module, while the asymmetry of the inflection in the
cervical groove (pair 31-29) was the most variable in both the thoracic module and for all
cephalothorax (Figure 3). The most significant sexual differences in directional asymmetry
were found on the tip of hepatic lobe 2 (pair 23-07; t-test = −2.470; p < 0.05) and the tip of
hepatic lobe 3 (pair 22-08; t-test = −2.808; p < 0.01), both located at the posterior extreme
of the cephalic module, and the tip of the epibranchial spine (pair 20-10; t-test = −2.372;
p > 0.05), located at the anterior extreme of the thoracic module (Figure 3A,B). Both sexes
expressed positive and significant correlations in the asymmetry of the developmental
modules, although with intermediate magnitudes of association (Mantel’s r between 0.45
and 0.67), which was significantly higher in males (Figure 3D).

Table 1. Output of two-way Procrustes ANOVA applied to the symmetric and asymmetric shape
components. Sex was nested in the variations of both components. df: degrees of freedom, SS: sum of
squares, MS: Mean squares, F: F-ratio, p-value: probability of significance estimated by Randomized
Residuals in a Permutation Procedure (RRPP).

Source of Variation df SS MS F p-Value
(RRPP)

Among individuals
(Symmetry component) 1 0.025 0.025 18.632 <0.0001

Within individuals
(Directional asymmetry) 1 0.024 0.024 17.681 <0.0001

Among×Within individual interaction
(Fluctuating asymmetry) 1 0.001 0.001 1.019 0.408

Error 408 0.53 0.001
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Figure 3. Longitudinal profiles of the directional asymmetry of females (A), males (B) and the
fluctuating asymmetry (C) (mean ± 95% CI). Paired landmarks with and without bold represent the
cephalic and thoracic modules, respectively. The box includes the paired landmarks that showed
significant differences in the asymmetry of males and females. (D) Female–male comparison in
the distributions of Mantel r obtained by correlating the asymmetric shape components of the
developmental modules.

The values of the modular signal observed in the gonadic modularity of females and
agonistic modularity of males were significantly higher than in the remaining bi-modularity
models (including developmental modularity), which formed a cluster with intermediate
ZCR values, and the multi-modularity anatomical models with a significantly lower modu-
lar signal (Figure 4). A similar response was obtained applying EMMLi, where the gonadic
modularity of females and agonistic modularity of males, both with similar within-module
correlations, had the highest log-likelihood and AICc support (Table S1, Supplementary
Materials). The developmental modularity of both sexes showed a covariance structure
with a greater relative independence between modules than expected for any arbitrary
partition, although the developmental modules of females (Figure 5A) showed signifi-
cantly less cohesion than the developmental modules of males (Figure 5B). However, the
functional modules selected in both sexes showed even more relative independence than
the expression of developmental modularity. In fact, based on the CR value, the gonadic
modularity in females (Figure 5C) and the gonadic modularity in males (Figure 5D) were
14.10% and 10.11% greater than their respective expressions of developmental modularity.
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Figure 5. Modularity test showing the variations in the expression of the developmental modularity
of females (A) and males (B) with respect to the best-supported models of gonadic modularity in
females (C) and agonistic modularity in males (D) of A. araucaniensis. The mean and distribution
of the observed partitions (arrow and red box, respectively) were contrasted with a distribution of
arbitrary partitions (grey curves).

4. Discussion

The direct developmental pathway partially influences the canalization of the devel-
opmental modularity in the adult cephalothorax of A. araucaniensis, promoting evolvability
through sexually dimorphic expressions of functional modularity. This response is consis-
tent with the proposed hypothesis and establishes that the sex of adults (and its adaptive
implications) constitutes a factor that affects not only the variation of the cephalothoracic
morphology [14,16] but also the structural covariation from its developmental causes,
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which contributes to understanding the potential evolvability of a complex morphological
structure originated by a developmental system of lower restrictive potential.

The adult cephalothorax of A. araucaniensis presents a particular pattern of subtle asym-
metry explained by developmental determinants. Through the longitudinal cephalothoracic
axis of all individuals, the cephalic module has a nucleus of greater variance of the asymme-
try associated with the base of the rostral spine, at least three points of greater variance of
asymmetry in the center of the thoracic module and an area of least variance in the middle
of the cephalothorax. However, between the sexes, there was a significant divergence in
the direction of the asymmetry, biasing it towards the left in females and towards the right
in males. The maintenance of sign and magnitude observed within each sex was described
as constant asymmetry by Chippindale & Palmer [51], who demonstrated its persistence
during the growth of the brachyuran crab Hemigrapsus nudus and attributed it to the action
of early developmental precursors. Our results empirically demonstrate this interpretation,
based on asymmetry being a response of phenotypic instability generated by developmen-
tal perturbation [52,53]. The difference in the number of centers of instability in the head
and thorax suggests the impact of sources of perturbation that independently influenced
the developmental modules. In contrast, in the intermediate zone of the cephalothorax, a
precursor seemed to intervene that favored the stabilization of the asymmetry variance.
The palimpsest model synthesized from developmental pathways [11,23] explained this
response in the cephalothorax of decapod crustaceans, where the early direct developmen-
tal pathways promote independent perturbations in each developmental module, and the
latter direct developmental pathway influenced the canalization in zones adjacent to the
structural fusion. The asymmetry of the developmental modules of A. araucaniensis also
showed intermediate levels of correlation, although significantly higher in males, which
indicated that the direct developmental pathway partially coordinates the covariation of
the developmental modularity [53–55] generating a more intense cohesion in males.

The independent action of the parallel developmental pathways and the weak canal-
ization of the direct developmental pathway reduced the cohesion between the studied
developmental modules. This allowed the set of selection pressures that explain sexual
dimorphism to act on the covariation structure of developmental modularity and express
patterns of functional modularity relevant to the fitness of each sex, where the landmarks of
the ovarian area acquire greater internal cohesion. This favors the per-offspring investment
of females, while, in males, there is more orchestrated covariation in the more prominent
frontal and lateral morphological attributes, which maximize the anterior muscular per-
formance, mobility and strength of the chelipods and the reduction of damage due to
confrontations [15,16,56]. Additionally, the implicit evolvability in this developmental
system has a high component of natural selection that directly influences changes in ex-
pression due to the low correlation between parts, facilitating selective disruptions due
to functional specialization [57]. The marked delimitation of the developmental modules
in A araucaniensis is not only a conspicuous taxonomic synapomorphy [58] but also an
anatomical imprint generated by development, which also supports the synthesis of the
palimpsest model [11].

The highest modular signal and best likelihood support of gonadic modularity in
females and agonistic modularity in males is a response in which two different procedures
converged (ZCR and EMMLi) due to the robustness of our sampling design, where the
number of specimens was greater than the number of variables [30,32]. The magnitude
of the modular signal, the likelihood support and the CR values in the modularity tests
showed less difference between the expressions of developmental modularity and agonistic
modularity in males compared to the difference between developmental modularity and
gonadic modularity in females. This lower flexibility observed in the covariation structure
is coherently linked to the greater intensity of cohesion exerted by the direct developmental
pathway on the developmental modularity of males. Therefore, our approach based on
an asymmetry and modularity analysis allows us to understand that the cephalothoracic
palimpsest of A. araucaniensis favors an evolvable scenario of adaptive covariation but
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with sexually divergent levels of subtle developmental restrictions, which are more intense
in males.

Sexual dimorphism in bilateral asymmetry is a morpho-adaptive pattern widely
recognized in decapod crustaceans, for example, the heterochely in the cutter and crusher
claws and its consequences in sexual selection, the asymmetry in the female pleopods
as a reproductive character and the pleonal asymmetry of hermit crabs facilitating the
habitability of gastropod shells [59–62]. We report significant sexual dimorphism in the
cephalothoracic asymmetry of A. araucaniensis, which is explained by two factors of origin
with antagonistic covariational effects whose interactions have consequences in the capacity
for adaptive change of the developmental modularity. The developmentally explicit and
empirically reproducible synthesis involved in the cephalothoracic structural complexity
of decapod crustaceans offers advantages as a study model [22], which could improve
our understanding of the ecological and evolutionary consequences of the origin and
development of complex morphological structures and, particularly, explain the evolution
of the body planes of decapod crustaceans from a developmental basis. For example, it
may help us to understand how this developmental system has influenced carcinization,
the greatest diversification of brachyuran crabs within a conservative body plan, and/or
the greatest morphological disparity in the least diverse group of anomuran crabs [63–65].

5. Conclusions

Covariation models based on asymmetry and modularity allow the construction of
adaptive contexts to understand the patterns of change in structural complexity from its
developmental causes. Within the palimpsest model that explains the cephalothoracic
structural complexity of decapod crustaceans, the adults of A. araucaniensis showed an
important influence of parallel developmental pathways. This condition reduced the
canalization potential of the direct developmental pathway with a sexually differentiated
effect, where the developmental modules of the males showed a greater integration. The
influence of the parallel developmental pathways was evidenced by the variability in the
number of nuclei and the intensities of the variance perturbations observed in both modules
through the longitudinal axis. While the canalization effect of the direct developmental
pathway was reflected in the stability of the asymmetry variance observed in the area
of structural fusion. The greater relative independence implicit in the expression of the
developmental modularity promoted functional changes in its covariance structure. Thus,
the models of gonadic and agonistic modularity displayed higher values of the modular
signal and likelihood in females and males, respectively. The greater similarity between the
expressions of developmental modularity and agonistic modularity of males constituted
additional evidence of the greater canalization in the cephalothorax of males. Consequently,
the cephalothorax of A. araucaniensis is a complex evolvable structure, because the effect
of parallel developmental pathways promotes adaptive remodeling toward the sexually
dimorphic expressions of functional modularity. The asymmetry and modularity analyses
applied to the development of the cephalothorax offer a study model with theoretical value
and empirical significance to understand how the mechanisms of origin influenced the
ecological and evolutionary consequences of the structural complexity.

Supplementary Materials: The following supporting information can be downloaded at https://
www.mdpi.com/article/10.3390/biology11070958/s1: File S1: Modeling expressions of cephalotho-
racic modularity with EMMLi. Figure S1: Models of bi- and multiple cephalothoracic modularity
tested in this study. A brief structural and parametric characterizations of each type of model
is included. Table S1: Results of the different modularity models compared under a maximum
likelihood approach. Bold indicates the best fit model in each comparison group (MPP: Model
Posterior Probability).
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