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Simple Summary: Plant growth-promoting rhizobacteria (PGPR) have significant potential to en-
hance the tolerance of biotic and abiotic stresses and the productivity of crops. However, the
mechanism of PGPR in improving plant resistance to pathogens is unclear. Recently, the newly
isolated Paenibacillus polymyxa strain NSY50 was shown to considerably suppress the Fusarium wilt
of cucumber plants. This study was carried out to explore the underlying mechanism of NSY50
in improving plant resistance to pathogen invasion via target metabolite profiling, and the results
indicated that strain NSY50 was able to alleviate Fusarium wilt stress by activating GSH metabolism
and improving redox balance. Our research findings enable a deeper understanding of P. polymyxa
NSY50-induced enhanced defense against F. oxysporum in cucumber.

Abstract: To gain insights into the roles of beneficial PGPR in controlling soil-borne disease, we
adopted a metabolomics approach to investigate the beneficial impacts of P. polymyxa NSY50 on
cucumber seedling roots under the pathogen of Fusarium oxysporum f. sp. cucumerinum (FOC). We
found that NSY50 pretreatment (NSY50 + FOC) obviously reduced the production of reactive oxygen
species (ROS). Untargeted metabolomic analysis revealed that 106 metabolites responded to NSY50
and/or FOC inoculation. Under FOC stress, the contents of root osmotic adjustment substances,
such as proline and betaine were significantly increased, and dehydroascorbic acid and oxidized
glutathione (GSH) considerably accumulated. Furthermore, the contents of free amino acids such
as tryptophan, phenylalanine, and glutamic acid were also significantly accumulated under FOC
stress. Similarly, FOC stress adversely affected glycolysis and the tricarboxylic acid cycles and
transferred to the pentose phosphate pathway. Conversely, NSY50 + FOC better promoted the accu-
mulation of α-ketoglutaric acid, ribulose-5-phosphate, and 7-phosphosodiheptanone compared to
FOC alone. Furthermore, NSY50 + FOC activated GSH metabolism and increased GSH synthesis and
metabolism-related enzyme activity and their encoding gene expressions, which may have improved
redox homoeostasis, energy flow, and defense ability. Our results provide a novel perspective to
understanding the function of P. polymyxa NSY50, accelerating the application of this beneficial PGPR
in sustainable agricultural practices.

Keywords: Fusarium wilt; P. polymyxa NSY50; metabolomics; GSH cycle; cucumber

1. Introduction

As one of the most important vegetable crops worldwide, cucumber (Cucumis sativus L.)
is seriously threatened by Fusarium wilt caused by the soil-borne fungal pathogen Fusarium
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oxysporum f. sp. cucumerinum (FOC) [1], a ruinous vascular disease that typically leads
to reduced cucumber yield and has incurred huge economic losses [2,3]. The pathogen is
difficult to control due to its broad host range and its ability to survive in soil and seeds for a
number of years or decades [4]. Given the lack of available effective chemical products and
resistant cultivars, the non-target impacts of pesticides are harmful to the environment and
pose potential health risks [5]. These challenges have prompted research into ecofriendly
cropping strategies, with a strong emphasis on utilizing cost-effective and environmentally
friendly farming methods to improve crop endurance and stress tolerance [6–8].

To date, the biological control of plant diseases utilizing the disease-suppressive effects
of plant growth-promoting rhizobacteria (PGPR) has been efficiently documented and
suggested to control diseases and improve growth parameters in a diverse of vegetable
crops [9–13]. Paenibacillus polymyxa is a soil-dwelling, nonpathogenic, endospore-forming
bacterium frequently associated with the roots of higher plants [14]. This Bacillus species
is important due to its ability to activate plant growth-promoting hormones, enhance
phosphorus and iron absorption in plants, and induce systemic resistance in plants [15–17].
Furthermore, P. polymyxa strains are capable of producing diverse hydrolytic enzymes and
antibiotics, such as cellulases, xylanase, proteases, β-1,3-glucanases, chitinases, polymyxins,
and fusaricidins, which act in essential roles in the eradication of plant pathogens [18–20].
Due to their wide range of plant hosts, these strains have significant potential as biological-
control agents against a diverse array of pathogens such as Botrytis cinerea, Fusarium oxyspo-
rum, Phytophthora palmivora, Pseudomonas syringae and Ralstonia solanacearum [14,21–24].

Multiple genomics techniques have recently been applied to comprehensively eluci-
date the mechanisms of plant–PGPR interactions [9,25–28]. As the end-products of gene
expression, metabolites delegate all levels of regulation between genes and enzymes, and
they can be applied to gain a comprehensive dataset on a plant’s response to both PGPR
and stress [9]. So far, little attention has been paid to the metabolomic changes in cucumbers
inoculated with P. polymyxa under an FOC attack.

In our previous studies, we demonstrated the ability of P. polymyxa NSY50 to reduce
disease severity. Various effective mechanisms, such as the induction of systemic resis-
tance [21], the regulation of the rhizospheric microbial community [3], and the activation of
defense-associated proteins [26], may contribute an important role in the efficacy of biocon-
trol against Fusarium wilt of cucumber. Therefore, the objectives of this research were to
gain insight into the metabolomic response of cucumber plants inoculated with P. polymyxa
NSY50 under Fusarium wilt stress and to highlight the inherent defense mechanism of
cucumber plants by stimulating metabolic pathways. Here, we identified a total of 108
metabolites that are down- or up-regulated by the treatment of P. polymyxa NSY50 and/or
FOC through the utilization of liquid chromatography (LC)–MS and gas chromatography–
mass spectrometry (GC–MS) analyses. To strengthen the metabolic findings, we determined
physiological parameters, such as biomass, soluble protein content, and lipid peroxidation.
We also tested the different types of enzymes activities along with their encoding gene
expressions in cucumber plants. Our results provide new insights into the metabolomic
mechanisms of P. polymyxa NSY50 function, accelerating the application of this beneficial
PGPR in sustainable agricultural practices.

2. Materials and Methods
2.1. Microbial Culture Conditions, Plant Material and Treatments

P. polymyxa-NSY50 was cultured in LB broth for 72 h at 28 ◦C. Cell density in suspen-
sions were set to 108 cells per mL. The cucumber Fusarium wilt pathogen FOC was isolated
and prepared according to our previous work [3,21].

Uniform cucumber seeds (Cucumis sativus L. cv. “Jinchun NO.4”) were surface-
sterilized with 5% ethanol and placed in the dark for germination. The germinated seeds
were sown in a 50-hole tray filled with vermiculite growth substrate. The seedlings were
transplanted into 4 L plastic containers after their cotyledons had fully expanded, at which
point we added a half-strength Hoagland solution. In each container, three seedlings were
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placed. The seedlings were cultivated in an artificial-light growth chamber at Henan Agri-
cultural University, and the growth environments were maintained as follows: 28/25 ◦C
(day/night) temperature, relative humidity of 65–75%, light intensity of 200 µmol m−2 s−1,
and a 14/10 h day/night photoperiod. Cucumber seedlings at the two-leaf stage were used
for the following treatments. (1) Control: cucumber seedlings grown in Hoagland solution;
(2) NSY50: cucumber seedlings grown in 100 mL of a 1.0 × 108 CFU/mL NSY50 cell
suspension containing a half-strength Hoagland nutrient solution; (3) FOC: a pre-cultured
(6 days) 100 mL cell suspension of FOC (1 × 107 conidia/mL) was added into the tanks;
and (4) NSY50+ FOC: a pre-cultured (3 days) 100 mL NSY50 (1 × 108 CFU/mL) solution
was inoculated and 3 days later again inoculated with a 100 mL cell suspension of FOC
(1 × 107 conidia/mL). Each treatment contained four container seedlings, which were
assembled in a completely randomized design with repetition in triplicates, yielding a total
of 36 seedlings per treatment. The nutrient solution was constantly aerated with an air
pump and replaced every three days. Cucumber roots were harvested at 1-, 3- and 5-days
post-inoculation (dpi) with the pathogen. Following 7 days of FOC treatment, the fresh
weight of plant was measured with three biological replicates after washing and drying
with gauze. To calculate the dry weights, the plant samples were first dried at 105 ◦C for
15 min and then kept at 75 ◦C until their constant weights.

2.2. Estimation of MDA Content and O2
.- Production Rate

Roots were collected at 1-, 3- and 5-days following treatment with FOC. The content
of MDA in the roots of cucumber was determined as thiobarbituric acid reactive substance
formation, as described by Liu et al. [29]. The rate of superoxide anion formation was
calculated using the hydroxylamine reaction method developed by Elstner and Heupel [30].
The generation rate of O2

.- is expressed in nmol min−1 g−1 FW.

2.3. Determination of H2O2 and Soluble Protein Contents and Histochemical Detection of H2O2
and O2

.- in Roots

The content of H2O2 in roots of cucumber was determined as described by Yuan et al. [31]
with some modifications. Briefly, 0.5 g root tissues were macerated in 2 mL of ice-cold ace-
tone before being centrifuged at 10,000× g at 4 ◦C for 10 min. Around 1 mL of supernatant
was then mixed with 0.2 mL of concentrated ammonia and 0.1 mL of 20% TiCl4 followed
by centrifugation at 8000× g for 15 min. Finally, 2 mL of 2 M H2SO4 was added in the
deposition, and absorbance was read at 415 nm. The content of H2O2 in root is expressed
in µmol·g−1 FW.

For the measurement of the soluble protein content of the roots, fresh roots (0.5 g)
were ground with 5 mL of a 0.05 M phosphate buffer (pH 6.7) before being centrifuged at
10,000× g for 10 min at 4 ◦C. Then and the collected supernatant was then used for protein
analysis according to the method of Bradford [32], and the protein content was measured
using a standard curve made from bovine serum albumin.

The histochemical staining analysis of cucumber roots was carried out 3 days after the
infection with FOC. For O2

.- visualization, roots were cut into small pieces including the root
tip (1 cm) and infiltrated with a 10 mM K-citrate buffer (pH 6.0) solution containing 0.5 mM
nitroblue tetrazolium (NBT) following the method described by Frahry and Schopfer [33].
Likewise, H2O2 accumulation was visualized via 3,3-diaminobenzidine (DAB) staining, as
previously described by Guo et al. [34], and the stained roots were photographed with a
Leica DM2500 camera (Leica Microsystems, Wetzlar, HE, Germany).

2.4. Metabolite Analyses

Both GC–MS and ultrahigh-performance LC (UPLC)–MS (LC–MS) techniques were
used for untargeted metabolomic analysis. The roots of cucumber seedlings were prepared
for metabolism analysis at 3 dpi of FOC. For GC–MS metabolite analyses, six independent
biological replications were randomly selected. Cucumber root samples (60 mg each) were
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separately extracted with 40 µL of L-2-chlorophenylalanine (0.3 mg/mL stock in methanol)
and 360 µL of cold methanol, as described by Liu et al. [35].

For LC–MS metabolism analysis, three independent biological replications of each
treatment were analyzed. We transferred 30 mg samples to 1.5 mL centrifuge tubes, to which
580 µL of a mixed solution (methanol/water= 6:4 (v/v)) and 20 µL 2-chloro-l-phenylalanine
(0.3 mg/mL, dissolved in methanol) were then added, and the samples were homogenized
with a TissueLyser (TissueLyser-192, Shanghai Jingxin Industrial Development CO., Ltd,
Shanghai, China). Next, the tissue homogenate was obtained by sonication in an ice-
water bath for 10 min, followed by the addition of 150 µL of chloroform and vortexing
for 1 min. Next, the samples were stored in a refrigerator at −20 ◦C for 30 min followed
by centrifugation at 13,000× g rpm for 10 min (4 ◦C). We transferred 500 µL aliquots to
new tubes, then dried the aliquots using a freeze concentration centrifugal dryer. The
dried pellets were re-dissolved with 250 µL of a mixed solution (water/methanol = 1:1
(v/v)). Following centrifugation for 15 min (4 ◦C) at 13,000 g rpm, we transferred (180 µL)
supernatants to LC vials and kept them at −20 ◦C until LC–MS analysis.

LC–MS analysis was carried out on a Waters UPLC I-class system mechanized with a
binary solvent delivery manager and a sample manager connected to a Waters VION IMS
Q-TOF Mass Spectrometer with an electrospray interface (Waters Corporation, Milford, CT,
USA). Each 3 µL supernatant of the derivatized solution was injected, followed by separa-
tion on an Acquity UPLC BEH C18 column (100 mm× 2.1 mm i.d., 1.7 µm; Waters, Milford,
CT, USA). The temperature of the column was maintained at 45 ◦C, and separation was
accomplished through the utilization of the following gradients: 5–25 % B over 0–1.5 min,
25–90 % B over 1.5–10.0 min, and 90% B over 10–13 min. The concentration was retained
at 5% B for 2 min at a flow rate of 0.40 mL/min, where B is 10 mM ammonium acetate
(pH = 9), and A is acetonitrile–10 mM ammonium acetate (pH = 9) (v/v = 9:1). The mass
spectrometric data were extracted with a Waters VION IMS Q-TOF Mass Spectrometer
equipped with an electrospray ionization source working in either the positive or negative
ion mode. The source and desolvation temperatures were set at 120 ◦C and 500 ◦C, respec-
tively, and the flow rate of desolvation gas was 900 L/h. Centroid data were collected from
50 m/z to 1000 m/z with a scan time of 0.1 s and an interscan delay of 0.02 s over a 13 min
analysis time.

The acquired MS data from GC–MS and LC–MS were analyzed with the metabolomics
processing software Progenesis QI v2.3 software (Waters Corporation, Milford, CT, USA)
for baseline filtering, peak identification, integration, and retention, as described by
Zhang et al. [36]. Briefly, the main parameters were as follows: precursor tolerance of
5 ppm, product tolerance of 10 ppm, product ion threshold of 5%, and retention time
tolerance of 0.02 min. The processed data were identified and annotated with libraries of QI
and public databases including the Human Metabolome Database (http://www.hmdb.ca/
(accessed on 5 February 2020)) and LIPID MAPS (http://www.lipidmaps.org/ (accessed
on 5 February 2020)). Internal standard peaks, as well as any known false-positive peaks
(including noise, column bleed, and derivatized reagent peaks), were removed from the
data matrix, and the peaks from the same metabolite were combined. The criterion for the
screening of differential metabolites was arbitrarily set as the following standard: p < 0.05
and fold change > 1.5.

2.5. Measurements of GSH Content and Enzyme Activities

The GSH content was determined in accordance with the work of Zhong et al. [37].
Approximately 300 mg of composite cucumber root tissue was ground in 2 mL of 6%
metaphosphoric acid containing 2 mM Ethylene Diamine Tetraacetic Acid (EDTA) followed
by centrifugation at 12,000× g and 4 ◦C for 10 min. Then, the supernatant was collected
for the measurement of the total GSH and oxidized GSH (GSSG) by the 5,5′-dithio-bis (2-
nitrobenzoicacid)-GSSG reductase recycling method. The GSH content was then calculated
by subtracting total GSH from GSSG.

http://www.hmdb.ca/
http://www.lipidmaps.org/
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For the measurement of GSH reductase (GR) activity, composite root samples (0.3 g)
were ground in 3 mL of an ice-cold 25 mM HEPES buffer (pH 7.8). The homogenates
were then centrifuged at 12,000× g for 20 min (4 ◦C), and the collected supernatants were
used to evaluate the enzymatic activity. GR activity was estimated in accordance with the
method of Halliwell and Foyer [38] method, and the rate of decrease NADPH absorbance
at 340 nm was used to finally estimate the GR activity. The activity of GSH peroxidase
(GPX) was measured following the method established by Quessada and Macheix [39].
Thioredoxin reductase (TrxR) activity was measured as described by Dhindsa et al. [40].
The γ-glutamylcysteine ligase (GCL) activity was determined from the rate of formation of
inorganic phosphate (assumed to be equal to the rate of formation of ADP) using a GCL
assay kit (Comin Biotechnology Co., Ltd. Suzhou, China) according to the manufacturer’s
instructions, and the absorbance was measured at 660 nm.

2.6. RNA Extraction, and Gene Expression Analysis by qRT-PCR

A Quick RNA isolation kit (Hua Yue Yang, Beijing, China) was used to extract the
total RNA from ground cucumber roots following the company’s instructions. Then,
1 µg of total RNA was reverse-transcribed into the cDNA template with the HiScript™ Q
RT SuperMix (Vazyme, Nanjing, China) following the company’s instructions. A SYBR
Green PCR Master Mix (Takara, Chiga, Japan) was used to perform reverse transcription
(RT)-qPCR experiments. The RT-qPCR reaction time was maintained as: 3 min at 95 ◦C,
followed by 40 cycles of 30 s at 95 ◦C, 30 s at 58 ◦C, and 1 min at 72 ◦C. The actin gene was
employed as the internal control gene. The primer sequences were designed based on the
corresponding gene sequence by searching the database of NCBI (https://www.ncbi.nlm.
nih.gov/tools/primer-blast/ (accessed on 7 September 2020)), and Beacon Designer 7.9
(Premier Biosoft International, Palo Alto, CA, USA) was used to design the primers that are
listed in Supplemental Table S1. Relative gene expressions were evaluated as described by
Livak and Schmittgen [41].

2.7. Statistical Analysis

Prior to data analysis, the heat maps of all metabolites based on the relative peak area
and other analytical data were normalized using SPSS 20.0 software. Hierarchical cluster
analysis was performed with cluster software, and Java Treeview was used to visualize the
resulting heat map. All experimental data were statistically analyzed with three biological
replications, and results were statistically analyzed using SPSS 20.0 software (SPSS Inc.,
Chicago, IL, USA) and GraphPad Prism software version 5.0. The significant differences
among the treatments were evaluated using Duncan’s multiple comparison test at the level
of p < 0.05.

3. Results
3.1. Characteristics of Plant Growth under Different Treatments

The growth biomass of cucumber seedlings was evaluated after seven days post-
inoculation (dpi) of the pathogen. As shown in Figure 1, without FOC inoculation, the
addition of NSY50 promoted the growth of cucumber seedlings to a certain extent, and the
fresh and dry weights were increased by 6.98% and 5.00%, respectively, compared to the
untreated plant, but the difference was not statistically significant. However, inoculation
with FOC markedly slowed the growth indices of cucumber seedlings and decreased fresh
and dry weights by 59.64% and 45.91%, respectively, compared to the control. Cucumber
seedlings pretreated with NSY50 and then inoculated with FOC (NSY50 + FOC) presented
increased the growth attributes compared to those under the FOC treatment, revealing the
significantly alleviated inhibitory effect of FOC on cucumber plant growth.

https://www.ncbi.nlm.nih.gov/tools/primer-blast/
https://www.ncbi.nlm.nih.gov/tools/primer-blast/
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1 

 

 

 

 

Figure 1. Effects of plant-growth-promoting bacteria-NSY50 on the growth of cucumber seedlings
under Fusarium wilt stress. (A) Phenotypes images, (B) Fresh and dry weight. Values are the
means ± SD, n = 3 (biological replicates), and different letters (a > b > c) indicate a significant
difference at p < 0.05, as determined by Duncan’s multiple-range test.

3.2. Lipid Peroxidation

FOC stress alone significantly elevated the MDA content and O2
.- production rate

compared to the control (Figure 2). At 1, 3 and 5 dpi, the root MDA contents of cucumber
seedlings treated with FOC were 1.77, 2.07, and 1.52 times greater than the untreated plants,
respectively, and the O2

.- production rates were 0.65, 1.27, and 2.11 times greater than the
untreated and other treatments, respectively. Under NSY50 + FOC at 3 and 5 dpi, the MDA
content of cucumber seedlings significantly decreased by 11.68% and 22.20%, respectively,
compared to the FOC treatment. The O2

.- production rate also significantly decreased
by 14.01% (3 dpi) and 23.65% (5 dpi). However, inoculation with NSY50 alone had no
significant effects on the root MDA content and O2

.- production rate of cucumber seedlings.

1 

 

 

 

 

Figure 2. Effects of NSY50 on MDA content (A) and O2
.- generation rate (B) of cucumber seedling

roots at 1-, 3- and 5-days post-inoculation (dpi) with FOC in different treatments. Each value
is means ± SE of three independent experiments. Values are the means ± SD, n = 3 (biological
replicates), and different letters (a > b > c) indicate a significant difference at p < 0.05, as determined
by Duncan’s multiple-range test.
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To further elucidate the effect of NSY50 on the oxidative damage of cucumber roots
under Fusarium wilt stress, we measured H2O2 and soluble protein contents in cucumber
roots at 3 dpi with FOC, and the results were further verified by NBT and DAB. The results
were consistent with the findings of the MDA content and rate of O2

.- production (Figure 3).
The concentrations of soluble protein and H2O2 in the FOC treatment increased by 122.68%
and 61.30%, respectively, compared to those of the control treatment. Furthermore, the
soluble protein and H2O2 contents in the NSY50 + FOC treatment decreased by 18.77% and
16.46%, respectively, compared to the FOC treatment. 

2 

 
Figure 3. Effects of NSY50 on oxidative damage and soluble protein content in cucumber roots under
Fusarium wilt stress at 3 days post-inoculation. (A) Histochemical staining by nitroblue tetrazolium
(NBT) of O2

.-, (B) Histochemical staining by 3, 3-Diaminobenzidine (DAB) of H2O2, (C) Soluble
protein contents. (D) H2O2 contents. Values are the means ± SD, n = 3 (biological replicates), and
different letters (a > b > c) indicate a significant difference at p < 0.05, as determined by Duncan’s
multiple-range test.

3.3. Metabolomic Analysis

For untargeted metabolomic analysis, we selected a total of 140 structural metabolite
identities (46 detected with GC–MS and 94 detected with LC–MS), and 106 of those metabo-
lites (36 identified with GC–MS and 70 with LC–MS) exhibited significant variations at a
p < 0.05 level between different treatment samples (Figure 4, Supplemental Tables S2 and S3).
Compared to the control, NSY50 inoculation alone had a lesser effect on root metabo-
lites, with eight metabolites showing increased levels and 11 presenting decreased levels
(Supplemental Table S2). Furthermore, in the F. oxysporum treatment (FOC), the contents
of 74 metabolites increased and the contents of 26 metabolites decreased compared to the
control. The contents of 73 metabolites and 20 increased and decreased, respectively, in
the NSY50 + FOC treatment compared to the control. Eight functional groups were clus-
tered from the significantly different metabolites: amino acids, carbohydrates and energy,
lipids, cofactors, nucleotides, peptides, hormones, and secondary metabolites (Figure 4 and
Supplemental Table S2).
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3 

 
Figure 4. Heatmap of all of the metabolites based on relative peak area in the control and NSY50
and/or FOC-applied cucumber roots. Green (low) to red (high) represents the increase in relative
area of each peak among the four treatments. This figure corresponds to Supplemental Table S2.
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A total of 30 metabolites of amino acids and their derivatives were detected (17 with
LC–MS and 13 with GC–MS). Except for hydroxyproline, the levels of almost all other
29 amino acids and their derivatives (such as glycine, L-cysteine, phenylalanine, methionine,
proline, 4-aminobutyric acid, and GSSG) were significantly up-regulated by FOC, with
values 1.57–85.18 times higher than those of the control treatment. Compared to inoculation
with FOC alone, the inoculation of FOC after pretreatment with NSY50 further increased
the relative contents of L-glutamine, hydroxyproline, dimethyl-L-arginine, GSSG, and
oxoproline, among which hydroxyproline (NSY50 + FOC/FOC = 1.87, p-value = 0.08) and
oxoproline (NSY50 + FOC/FOC = 1.69, p-value < 0.001) reached significant levels. On the
contrary, under the conditions of the NSY50 + FOC treatment, glycine, serine, L-cysteine,
phenylalanine, tryptophan, alanine, aspartic acid, lysine, threonine, proline, 2-oxoarginine,
4-aminobutyric acid, L-histidine, N-acetylornithine, L-isoleucine, and L-valine contents
markedly decreased at p < 0.05 (Supplemental Table S2).

In addition to significant amino acid changes, differences in the response of the two
strains to carbohydrate metabolism were observed. In particular, the pentose phosphate
pathway (PPP), glycolysis, the tricarboxylic acid (TCA) cycle, and organic acid metabolites
were significantly changed (Figure 4 and Supplemental Table S2). Specifically, compared
to the control, the inoculation of NSY50 alone increased the contents of D-ribulose 5-
phosphate, galactonic acid, and dithioerythritol, whereas the inoculation of FOC caused
significant changes in the contents of 34 substances related to glycolysis, the TCA cycle,
and organic acids, of which the contents of 20 substances markedly increased compared to
those of the control. These 20 substances included glucose-1-phosphate, D-glucose, and
pyruvic acid which are involved in glycolysis; citric acid, and alpha-ketoglutarate, which
are involved in the TCA cycle; gluconic acid, 6-phosphogluconic acid gluconolactone, and
D-ribulose 5-phosphate, which are involved in PPP; and several organic acids, such as
phenylpyruvic acid, D-2-hydroxyglutaric acid, galactonic acid, alpha-aminoadipic acid,
ethyl glucuronide, glucosamine, and galactitol (p < 0.05; Figure 4, Supplemental Tables
S2 and S3). Furthermore, FOC significantly decreased the contents of 13 substances, such
as fructose 6-phosphate, fumaric acid, L-malic acid, lactic acid, 2-ketobutyric acid, and
D-maltose, indicating that FOC significantly inhibited the TCA cycle pathway, whereas
PPP was enhanced compared to the control. Compared to inoculation with FOC alone,
the NSY50 + FOC treatment significantly increased the contents of fructose 6-phosphate,
D-ribulose, alpha-ketoglutarate, alpha-aminoadipic acid, 5-phosphate D-sedoheptulose-
7-phosphate, dithioerythritol, and D-maltose and significantly decreased the contents of
D-glucose, pyruvic acid, 6-phosphogluconic acid, and gluconolactone, indicating that
pretreatment with NSY50 and inoculation with FOC further enhanced glycolysis, the TCA
cycle, and the PPP and accelerated carbohydrate metabolism compared to inoculation with
FOC alone.

In terms of other differential metabolites, such as lipids, cofactors, nucleotides, pep-
tides, hormone metabolites, and secondary metabolites, the contents of 42 significantly
changed in response to the inoculation of the two strains. Briefly, in contrast to the control,
FOC inoculation markedly elevated the contents of lipids (such as glycerol and D-glycerol 1-
phosphate), ascorbate metabolites (dehydroascorbic acid and threonic acid), peptides (such
as epsilon-(gamma-glutamyl)-lysine, gamma-glutamyl, glutamine, D-alanyl-D-alanine, L-
aspartyl-L-phenylalanine, and glycylproline), auxin metabolites (such as 3-indolepropionic
acid indoleacetic acid (IAA), and secondary metabolites (such as 4-hydroxybenzoic acid,
betaine, and putrescine) and decreased the contents of nicotinate and nicotinamide metabo-
lites (such as niacinamide, nicotinic acid, and nicotinuric acid) and most of the contents of
nucleotide metabolites (such as adenine, 1-methyladenosine, guanosine monophosphate,
1-methylguanosine, cytidine, uridine, deoxyuridine, and pseudouridine). FOC stress ob-
servably increased the contents of ADP and NAD to values 36.13 and 6.28 times (p < 0.05,
Supplemental Tables S2 and S3) higher than those of the control, respectively. Furthermore,
relative to the FOC treatment, NSY50 + FOC markedly increased the contents of most of
the substances in nucleotide metabolism, such as riboflavin, threonic acid, pyridoxam-
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ine, adenosine monophosphate, guanosine, deoxycytidine, and cytosine and significantly
decreased the contents of peptide metabolites. In contrast, NSY50 + FOC markedly in-
creased the content of IAA, 4-hydroxybenzoic acid, and putrescine in cucumber seedling
roots, in which the contents of IAA, 4-hydroxybenzoic acid, and putrescine increased by
39.3%, 52.7%, and 30.6%, respectively, compared to those of the FOC treatment (p < 0.05,
Supplemental Table S2).

3.4. GSH Content and Activities of GSH-Related Enzymes in Response to NSY50 and
FOC Inoculation

As depicted in Figure 5, the contents of reduced GSH and GSSG in cucumber roots
significantly increased under FOC stress, with values reaching 14.21% and 180.19%, respec-
tively, in comparison to the control. In contrast, the inoculation of FOC after NSY50 + FOC
further increased GSH and GSSG contents, with values 7.23% and 13.27% higher than those
inoculated with FOC alone, respectively. The primary enzymes implicated in the GSH
redox cycle, such as GCL, GPX, GR, and TrxR, responded to FOC stress. Under FOC stress,
the activities of GR, GPX, and TrxR were considerably greater than those of the control, in-
creasing by 102.75%, 11.48% and 444.57%, respectively. The activity of GCL was noticeably
reduced compared to that of the control group, decreasing by 56.78%. With the inoculation
of FOC after NSY50 + FOC, the activities of GCL, GR, GPX and TrxR increased by 20.90%,
25.49%, 59.94%, and 18.38%, respectively, compared to those under FOC inoculation alone.
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Figure 5. Effects of P. polymyxa and/or F. oxysporum inoculation on glutathione (GSH) redox status 
in the roots of cucumber seedlings. (A) GSH content, (B) GSSG content, (C) Activity of GCL, (D) 
Activity of GR, (E) Activity of GPX, (F) Activity of TrxR. Values are the means ± SD, n = 3 (biological 
replicates), and different letters (a > b > c > d) indicate a significant difference at p < 0.05, as deter-
mined by Duncan’s multiple-range test. 
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Figure 5. Effects of P. polymyxa and/or F. oxysporum inoculation on glutathione (GSH) redox status in
the roots of cucumber seedlings. (A) GSH content, (B) GSSG content, (C) Activity of GCL, (D) Activity
of GR, (E) Activity of GPX, (F) Activity of TrxR. Values are the means± SD, n = 3 (biological replicates),
and different letters (a > b > c > d) indicate a significant difference at p < 0.05, as determined by
Duncan’s multiple-range test.

3.5. Expression Levels of Genes Related to GSH Metabolism

The further analysis of the expression of GSH cycle-related genes (see Figure 6) showed
that compared to the control, GCL and GSH2 genes involved in GSH synthesis were
markedly up-regulated after the inoculation with FOC, increasing by 101.26% and 33.53%,
respectively. Furthermore, the addition of FOC after NSY50 pretreatment further induced
their expressions, increasing them by 14.65% (GCL) and 20.37% (GSH2) compared to the
FOC treatment. The gene expressions of GR, GPX, and TrxR were markedly up-regulated,
increasing by 153.91%, 130.91%, and 202.96%, respectively, in FOC inoculation seedlings
compared to those of the control. During the inoculation of FOC after pretreatment with
NSY50, compared to the inoculation with FOC alone, the gene expressions of GPX and
TrxR increased in varying degrees, though the difference was not significant. However, the
gene expression of GR significantly decreased by 14.29%.



Biology 2022, 11, 1028 11 of 18

Biology 2022, 11, x FOR PEER REVIEW 11 of 19 
 

 

were markedly up-regulated after the inoculation with FOC, increasing by 101.26% and 
33.53%, respectively. Furthermore, the addition of FOC after NSY50 pretreatment further 
induced their expressions, increasing them by 14.65% (GCL) and 20.37% (GSH2) compared 
to the FOC treatment. The gene expressions of GR, GPX, and TrxR were markedly up-
regulated, increasing by 153.91%, 130.91%, and 202.96%, respectively, in FOC inoculation 
seedlings compared to those of the control. During the inoculation of FOC after pretreat-
ment with NSY50, compared to the inoculation with FOC alone, the gene expressions of 
GPX and TrxR increased in varying degrees, though the difference was not significant. 
However, the gene expression of GR significantly decreased by 14.29%. 

Con
tro

l

NSY50
FO

C

NSY50
+FO

C

0

1

2

3
a

b

cc

G
C
L

 r
el

at
iv

e 
ex

p
re

ss
io

n

Con
tro

l

NSY50
FOC

NSY50
+FOC

0.0

0.5

1.0

1.5

2.0
a

b

c
c

G
SH

2
 r

el
at

iv
e 

ex
p

re
ss

io
n

Con
tro

l

NSY50
FOC

NSY50
+FOC

0

1

2

3
a

b

cc

G
R

 r
el

at
iv

e 
ex

p
re

ss
io

n

Con
tro

l

NSY50
FO

C

NSY50
+FO

C

0

1

2

3 a

a

b
b

G
P
X

 r
el

at
iv

e 
ex

p
re

ss
io

n

Con
tro

l

NSY50
FOC

NSY50
+FO

C

0

1

2

3

4
a

a

b
b

T
rx
R

 r
el

at
iv

e 
ex

p
re

ss
io

n

A B C

D E

 
Figure 6. Expression of GSH biosynthesis and metabolism related genes in cucumber roots. (A) ex-
pression of γ-glutamylcysteine ligase, GCL; (B) expression of glutathione synthetase, GSH2; (C) ex-
pression of glutathione reductase, GR; (D) expression of Glutathione peroxidas, GPX; (E) expression 
of Thioredoxin reductase, TrxR. Root samples were harvested at three days post-inoculation (dpi) 
with FOC in different treatments. Each value is means ± SE of three independent experiments. Val-
ues are the means ± SD, n = 3 (biological replicates), and different letters (a > b > c) indicate a signif-
icant difference at p < 0.05, as determined by Duncan’s multiple-range test. 
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pression of γ-glutamylcysteine ligase, GCL; (B) expression of glutathione synthetase, GSH2; (C) ex-
pression of glutathione reductase, GR; (D) expression of Glutathione peroxidas, GPX; (E) expression
of Thioredoxin reductase, TrxR. Root samples were harvested at three days post-inoculation (dpi)
with FOC in different treatments. Each value is means± SE of three independent experiments. Values
are the means ± SD, n = 3 (biological replicates), and different letters (a > b > c) indicate a significant
difference at p < 0.05, as determined by Duncan’s multiple-range test.

4. Discussion

Numerous studies have reported the capability of PGPB to enhance plant growth
under various conditions and to alleviate biotic stresses including Fusarium wilt [3,8,42–44].
Plants inoculated with these bacteria have been shown to develop long roots, increased
biomass production, and enhanced resistance to the adverse effects of diverse environmen-
tal events [45]. The inhibition of growth is the most common and significant effect when
plants suffer biotic and abiotic stressors [46]. In this study, the fresh and dry weights of
cucumber seedlings under FOC stress were found to be significantly decreased; however,
pretreatment with P. polymyxa NSY50 was able to effectively alleviate the growth inhibition
caused by FOC stress (Figure 1).

ROS are highly reactive and toxic substances for plants. Various antioxidative de-
fense mechanisms have been found to effectively nullify excess ROS production under
steady-state conditions [47]. The balance between ROS production and scavenging can be
disrupted by a variety of biotic and abiotic stressors [48–50]. Then, excess ROS production
causes oxidative injury in plant tissues, namely the cell membrane along with proteins and
DNA and RNA molecules [51]. Infection by pathogens leads to the over-production of
ROS, the destruction of cell structures, and oxidative damage [52,53]. In this study, DAB
and NBT staining revealed that excessive ROS accumulated in cucumber seedling roots
under FOC stress (Figure 3A,B), resulting in oxidative stress and membrane lipid damage
(Figure 2); these results are consistent with those of previous studies. Recently, researchers
have focused their efforts on controlling Fusarium wilt through the use of plant rhizosphere
growth-promoting bacteria [46]. PGPR can improve the tolerance to pathogen infections
by improving the antioxidant mechanism and reducing the accumulation of ROS [3,54].
Chen et al. [55] reported that Trichoderma harzianum could balance the excessive production
of ROS by enhancing the antioxidant capacity, reducing the H2O2 and MDA contents,
and reducing the rate of O2

.- production in the roots of cucumber seedlings infected by
F. oxysporum. Yuan et al. [56] revealed that Pseudomonas aeruginosa could reduce ROS accu-
mulation and increase antioxidant enzyme activity in seedling leaves under NaCl stress.
Trichoderma inoculation was shown to improve cucumber seedlings’ resistance to Fusarium
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wilt by promoting growth, boosting the antioxidant defense system, and reducing the
permeability of plasma membrane and the MDA content [57]. In this study, the application
of NSY50 (NSY50 + FOC) was able to markedly reduce the accumulation of MDA and O2

.-

in roots under FOC stress (Figure 2), suggesting that P. polymyxa NSY50 could alleviate
FOC-induced oxidative stress and growth inhibition in plants (Figure 1).

Biotic or abiotic stress can affect plant metabolic composition [58,59], and the ability of
plant rhizosphere growth-promoting bacteria to alleviate stress is closely related to plant
metabolism [60,61]. He et al. [62] indicated that phosphorus-solubilizing bacteria improved
the tolerance to cadmium by regulating amino acid, organic acid, and carbon metabolism
in Solanum nigrum roots. According to Cai et al. [63], plant rhizosphere growth-promoting
bacteria can resist tomato root rot by regulating metabolic components. Our results showed
that the alleviation of cucumber Fusarium wilt by the plant rhizosphere growth-promoting
strain NSY50 is related to the regulation of central carbon metabolism, amino acids, and
other derivative metabolites (Figure 4).

The three important components of central carbon metabolism are glycolysis, the
TCA cycle, and the PPP, which are the main sources of energy for organisms and provide
precursors for other metabolisms in the body [64]. Under oxidative stress conditions, plants
unable to prevent the formation of ROS by adjusting central metabolic fluxes continue to
maintain the biosynthesis of essential metabolites, and initiate the generation of protective
compounds [65]. During stress conditions, disaccharides are hydrolyzed to glucose, which
is then used in glycolysis and the TCA cycle to improve plant metabolism and resistance to
stress [66,67]. In this study, the contents of xylose, inositol, and galactosyl were substantially
higher in plants with Fusarium wilt stress than those of the control, and this result may
have been related to plant-induced disease resistance. However, the decrease in maltose
content may have been due to the hydrolysis of more maltose into glucose, which entered
glycolysis, the TCA cycle, and the PPP. Under a stress environment, the carbon skeleton
of glycolysis may enter into the PPP to generate NADPH for antioxidation [35,68]. The
PPP-mediated recycling of NADPH is an essential antioxidant process for preventing
salt-induced oxidative damage [69,70]. This finding is strongly supported by our present
study, in which we observed that the content of fructose 6-phosphate (a key metabolite
in glycolysis pathway) was significantly lower in plants with Fusarium wilt stress plant
than that of the control. However, the contents of 6-phosphate gluconic acid, 5-phosphate
ribose, and 7-phosphate heptanose in PPP significantly increased, indicating that the
glycolysis pathway transferred to the PPP under Fusarium wilt stress. The pre-inoculation
of NSY50 (NSY50 + FOC) further increased the accumulation of intermediate metabolites
in the glycolysis pathway and the PPP, providing more energy for cucumber seedlings
to resist Fusarium wilt. Most TCA cycle intermediates, as well as the organic acids, have
been shown to be are increased in plants exposed to different abiotic stresses including
low-temperature stress [71] and drought [67]. In our experiment, plants inoculated with
F. oxysporum showed markedly increased citric acid and α-ketoglutaric acid contents,
whereas the contents of fumaric acid and malic acid significantly decreased. However,
the TCA cycle has duplicity (or amphibolic catabolism and anabolism features), and its
intermediates are closely associated with a wide range of biosynthetic pathways [35]; citric
acid may be more involved in the synthesis of other biological pathways, thus reducing the
synthesis of fumaric acid and malic acid. The result suggested that a potential mechanism
of pretreatment with NSY50 (NSY50 + FOC) on resistance improving was TCA cycle
acceleration, which could provide more energy for self-defense.

Amino acids are essential for protein synthesis and act as precursors for numerous
metabolites with diverse functions [72]. They significantly contribute to an increase plant
stress tolerance through the promotion of the higher level accumulation of compatible
osmolytes [73]. The inoculation of PGPR will lead to an increased amino acid metabolism,
thus hastening plant growth [74,75]. Cai et al. [63] observed that increasing amino acid
metabolism played a key role in regulating the tomato plants growth caused by plant
rhizosphere growth-promoting bacteria and their resistance to pathogens. Our study
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revealed that numerous kinds of amino acids, especially glutamic acid, ornithine, cysteine,
and glycine, significantly increased under F. oxysporum stress than those of control groups.
However, the contents of glutamate and ornithine significantly decreased after inoculation
with growth-promoting strain NSY50. This outcome may be attributed to the functional
roles of glutamate metabolism in attenuating nitrogen flux, as it continues to increase carbon
availability and to regulate cytosolic pH to assist plant growth [76]. Under environmental
stress, glutamic acid and ornithine can be further decomposed into proline, putrescine, and
other metabolites to improve resistance to the effects of adverse environment [35,77,78].
Proline is involved in the response to multiple environmental stresses [79,80]. Proline
content increases after a plant becomes susceptible to diseases, and it is used as an osmotic
regulator to alleviate stress [81]. This finding is also supported by our present observations,
as the proline content in our study was markedly higher in F. oxysporum stress plants than
that of the control. However, after pre-inoculation with NSY50 (NSY50 + FOC), the proline
content significantly decreased, a finding that may be related to the conversion of proline
to hydroxyproline. Hydroxyproline is ubiquitous in plants and plays a critical role in plant
defense [82,83]. In addition, cysteine metabolism is an important pathway related to GSH
synthesis, and GSH metabolism is significantly involved in plant antioxidation [84,85].
GSH accumulation is related to plant susceptibility [86], a condition supported by our
results suggesting that the content of cysteine markedly increased under the infection of F.
oxysporum but significantly decreased after inoculation with NSY50 (NSY50 + FOC). These
results may be related to the increased inflow of cysteine into the GSH cycle.

The AsA-GSH cycle is a crucial element of the ROS homeostasis mechanism in
plants [87], and it also plays contributes vital role in adjusting plant-pathogen interac-
tions. Recently, special attention has been paid to explore the regulatory functions of
the AsA–GSH cycle in plant defense against biotic stress [88]. As an antioxidant, GSH is
essential for plant signal transduction during biotic stress [89]. Previous studies revealed
that muskmelon and tomato plants’ resistance to pathogen infection was strictly related to
increases in GSH and GSSH activity [90,91]. In addition, GSH is likely to exert a critical
function in the regulation of various gene expressions [86,92]. However, during pathogen
infection, the action mechanisms of GSSH and key enzymes (GCL, GPX, and GR) involved
in the GSH redox cycle in plant defense have not been fully explored. GSH biosynthesis
is controlled by the transcriptional and post-translational regulatory frameworks of GCL.
Dubreuil-Maurizi et al. [93] showed that the GSH deficiency of Arabidopsis pad2-1 mutants
is related to decreases in the GCL protein level. In addition, PGPR can induce plants to
resist Fusarium wilt and increase the GSH content [55,90]. Ren et al. [94] reported that
PGPR could increase the contents of antioxidants, including AsA and GSH, under stress.
Chen et al. [55] stated that the enhancement of cucumber root resistance to F. oxysporum
by Trichoderma was due to increases in the contents of AsA and GSH in cucumber roots
and the activity and gene expression of key enzymes, such as GR and MDHAR. In this
study, P. polymyxa NSY50, a plant-rhizosphere growth promoter, induced resistance to FOC
by increasing the GSH and GSSG contents in cucumber seedling roots and the activities
and expressions of key enzymes (GR, GPX and GCL) involved in the GSH redox cycle.
Thus, the increases in GSH and GSSG contents induced by NSY50 under FOC infection are
related to the acceleration of the GSH redox cycle rate.

5. Conclusions

In summary, our results demonstrated that the supplementation of P. polymyxa NSY50
to cucumber alleviated the inhibitory effect of F. oxysporum on growth and enhanced the
tolerance of plants to Fusarium wilt. Metabolomic analysis revealed that root glycolysis and
the PPP transferred to the TCA cycle under Fusarium wilt stress, whereas NSY50 + FOC re-
duced the adverse effects of glycolysis and the TCA cycle and promoted energy metabolism.
In addition, NSY50 pretreatment activated the GSH cycle and increased the antioxidant
capacity (Figure 7). This study enriches our understanding of PGPR-mediated plant stress
response mechanism and promotes the protection of plants against pathogens.
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peak among the four treatments. This figure corresponds to Table S2. Significant difference at p < 0.05.
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peroxidase; TrxR, thioredoxin reductase.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11071028/s1. Supplementary Figure S1. Effect of GSH
biosynthesis inhibitor buthionine sulfoximine (BSO) on Fusarium wilt responses in cucumber
seedlings pretreated with NSY50. (A) and (B) Phenotype of cucumber seedlings. (C) Disease
index for 2 works post-inoculation. (D) Fresh weight. (E) and (F) H2O2 and MDA contents for
3 days post-inoculation. (G) GSH contents for 3 days post-inoculation. (H) GR activity for 3 days
post-inoculation. Values are the means ± SD, n = 3 (biological replicates). Reference [95] is men-
tioned in Supplementary Materials. Supplementary Table S1. Sequences of gene-specific primers
in quantitative real-time polymerase chain reaction (qRT-PCR) analysis. Supplementary Table S2.
Heatmap and tabular presentation of all metabolites based on relative peak area in the control and
NSY50 and/or FOC-applied cucumber roots. Supplemental Table S3. Functional classification and
quantitative analysis of major metabolites in the control and NSY50 and/or FOC-applied cucumber
roots using GC-Ms and HPLC-MS. Metablites exhibiting exhibited significant quantitative changes
were highlighted in yellow.
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