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Simple Summary: Major histocompatibility complex molecules are of significant biological and
clinical importance due to their utility in immunotherapy. The prediction of potential MHC binding
peptides can estimate a T-cell immune response. The variable length of existing MHC binding
peptides creates difficulty for MHC binding prediction algorithms. Thus, we utilized a bilateral and
variable long-short term memory neural network to address this specific problem and developed a
novel MHC binding prediction tool.

Abstract: As an important part of immune surveillance, major histocompatibility complex (MHC)
is a set of proteins that recognize foreign molecules. Computational prediction methods for MHC
binding peptides have been developed. However, existing methods share the limitation of fixed
peptide sequence length, which necessitates the training of models by peptide length or prediction
with a length reduction technique. Using a bidirectional long short-term memory neural network, we
constructed BVMHC, an MHC class I and II binding prediction tool that is independent of peptide
length. The performance of BVMHC was compared to seven MHC class I prediction tools and three
MHC class II prediction tools using eight performance criteria independently. BVMHC attained the
best performance in three of the eight criteria for MHC class I, and the best performance in four
of the eight criteria for MHC class II, including accuracy and AUC. Furthermore, models for non-
human species were also trained using the same strategy and made available for applications in mice,
chimpanzees, macaques, and rats. BVMHC is composed of a series of peptide length independent
MHC class I and II binding predictors. Models from this study have been implemented in an online
web portal for easy access and use.

Keywords: major histocompatibility complex; bidirectional long short-term memory neural network;
deep learning

1. Introduction

Major Histocompatibility Complex (MHC) genes code for proteins that recognize
foreign molecules and play an important part in immune surveillance. Due to variation
in molecular structure, function, and distribution, MHC molecules are divided into three
subsets: MHC class I, II, and III. A MHC class I molecule may constitute the MHC heavy
chain (alpha chain), which encompasses three alpha domains (alpha1, alpha2, and al-
pha3) [1]. Alpha1 and alpha2 form the recognition region, with an interval deep groove
capturing the peptide antigen [2]. Alpha3 is adjacent to the transmembrane domain in
the heavy chain and it interacts with antigen transporters to load and express antigens.
A specific type of MHC class I molecules are encoded by the β2-microglobulin gene, and
in MHC they constitute the MHC light chain (beta chain). MHC class I molecules are
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located at the surface of cells to present antigens, which trigger immune responses by
attracting cytotoxic lymphocytes immune cells (TC cells) including CD8+, the cytotoxic
T cells which express CD8+ receptors. These receptors recognize related MHC complexes
at the cell surface: when an antigen peptide of foreign origin is bound, CD8+ immune cells
are activated to trigger programmed apoptosis [1]. An MHC class II molecule encodes two
membrane-spanning chains that are of similar size. While MHC I molecules are located on
the surface of nearly all nucleated cells, MHC II glycoproteins are expressed on the surface
of specialized immune cells (such as B cells, macrophages, and dendritic cells), where they
present processed antigenic peptides to TH cells. MHC class III genes encode various
secreted proteins that have immune functions, including components of the complement
system and molecules involved in inflammation [3].

Of the three MHC classes, class I has attracted great attention in medical research. For
example, reduced abundance in MCH class I is associated with poor prognosis in Hodgkin
lymphoma [4]. Another study [5] demonstrated that cancer cells escape T-cell responses
via losing MHC class I molecules. MHC molecules are highly polymorphic proteins. As
one MHC protein can have many variants, and such variants are commonly referred to
as “MHC alleles” [6], MHC alleles are organized into multiple categories for each MHC
class. For instance, MHC class I proteins in humans are encoded as human leukocyte
antigen (HLA) groups A, B, C, etc. by the gene name, and each HLA group is composed of
many alleles by the variants. From the view of molecular structure, MHC molecules have
pockets, and the antigenic peptides have anchors of which some are determined residues,
and anchors have special properties to lead peptides to enter the pockets [7]. An antigenic
peptide’s MHC binding affinity can be measured experimentally by a variety of assays,
including a competitive binding assay [8].

The accumulated experimentally verified MHC binding peptides have been curated
into various databases during the last three decades. Around 13 MHC binding databases
are currently available [9]. With more than 900,000 entries, the Epitope Database (IEDB) [10]
contains the largest collection of MHC binding peptides, followed by MHCBN [11] curating
25,860 peptides. In addition to the experimental methods, a peptide’s binding potential
with regard to a particular MHC molecule can be estimated through computational al-
gorithms. Computational methods can systematically prioritize credible candidates for
a more favorable study design, thus helping reduce both financial cost and human labor
of the wet-lab assay-based validation experiments. The experimentally verified MHC
binding peptide sequences offer an understructure for the development of computational
approaches to predict the binding affinity between an MHC allele and a novel peptide.
More than 30 MHC binding prediction tools were developed based on the accumulated
MHC binding databases over the years. The majority of these tools [12–24] were developed
for MHC class I and II binding prediction.

A common limitation of the existing MHC binding prediction tools is the necessity
to align all peptides to one fixed length. Specifically, to meet the requirement, developers
must either train different models to tackle peptides of different lengths, or they must
arbitrarily adjust the original peptide. There are two sequence selection strategies in
the model training/predicting process, one of which is to select peptides with a fixed
length, such as selecting 9-mer peptides to train a model for class I [25–27]. The other is
to adjust the peptides sequence to a specific length, such as adjusting the peptide length
of class I to 9-mer/15 mer by inserting “X” symbols (elongating) or deleting amino acids
(shortening) [28–31]. For the first strategy, there are two disadvantages: (1) It is tedious
to train multiple models out of the initial single allele set; (2) When dividing the whole
training set into multiple length-specific training sets, some models of certain lengths
may have insufficient training data and therefore result in undertraining and suboptimal
performance. For the second strategy, one obvious disadvantage is that inserting or deleting
amino acids inevitably leads to a loss of information; specifically, the neighbor amino acids
at a perturbed position will not be the same post the elongating/shortening operation.
To overcome this constraint, we developed BVMHC, a novel MHC binding prediction



Biology 2022, 11, 848 3 of 10

tool based on Bidirectional Long Short-Term Memory (biLSTM) neural network [32,33], a
type of recurrent neural network (RNN), which has the major novelty of offering variable
length MHC binding prediction. BVMHC is designed to make predictions for both MHC
class I and class II alleles in humans, and models for non-human species were also trained
using the same strategy. The performance of BVMHC has been thoroughly compared with
popular MHC class I/II binding prediction tools.

2. Materials and Methods
2.1. Training and Validation Datasets

To establish a sizeable training dataset, we obtained from the IEDB database 122,129
and 45,440 human binding peptide sequences for 48 MHC class I alleles and 27 MHC
class II alleles, respectively. Additionally, 15,740 MHC class I peptide sequences of four
non-human species (mouse, rat, macaque, and chimpanzee) and 1041 MHC class II pep-
tide sequences of mouse were also extracted from the IEDB database. Each peptide was
associated with a binding affinity measured as IC50 in nM. A dichotomization of these
binding affinity values was conducted as follows: peptides with IC50 ≥ 500 nM were
considered as negative binding and peptides with IC50 < 500 nM were considered as
positive binding. All binding affinity values (aff ) were standardized to the interval [0,1]
through a function, i.e., 1 − log (a f f )/ log(50, 000). The initial sequences underwent the
following three aspects of filtration: (1) For sequences that are repeated and have the
same IC50 value, we kept only one instance of the sequences and removed all duplicate
instances. (2) For sequences that are repeated and have different IC50 values, we deleted
all items. (3) For sequences that are repeated and have different allele information, we
kept all items because we would train different predictors for different allele sequences.
Five-fold cross-validation procedures were used on the training datasets to train models.
An independent validation dataset consisting of 320 class I and 131 class II human peptide
sequences was constructed from the databases MHCBN [34] and SYFPEITHI [35], where
we made sure that items co-existing in the IEDB were removed.

2.2. Feature Representation at Evolutionary Level

The BVMHC model involves two major components: feature representation and the
computation model (Figure 1). For a numerical representation of training/testing data,
each peptide sequence was first encoded as a 20 × L matrix through one-hot encoding [36],
where L is the length of the peptide. The dynamic convolutional neural network with
twenty 1 × 20 convolution kernels was used to process one-hot coding matrices. BLOSUM
is a 20 × 20 matrix that represents evolutionary conservation information between amino
acids [37], and we used it to initialize the twenty convolution kernels. The overall method
can be represented with Equation (1), where X denotes the One-hot encoding matrix, i the
index of amino acid in peptide, k the index of kernel, M = 1 the window size, and n = 20 the
number of kernels. Of note, the two indices, i and j, start from an initial value of 0.

Evo(X)i,k = ∑M−1
m=0 ∑m=0

m=0 Wk
m,nXi+m,n (1)

As the kernels were updated in the training process, an updated presentment matrix
in the evolutionary level was obtained and was input into a biLSTM model. After training,
a novel BLOSUM matrix can be obtained by using the twenty trained convolution kernels.
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Figure 1. Overview of BVMHC. One-hot encoding was used to convert a peptide sequence to a
matrix. BLOSUM was applied to initialize kernels in the convolutional neural network that was used
to extract the peptide sequence feature at the evolutionary level. The biLSTMmodel was then applied
to process the merged matrix at the sequential level.

2.3. Feature Representation at Sequential Level

The advantage of biLSTM (Figure 1) is the ability to handle peptides with variable
lengths. Long short-term memory (LSTM) [33] is a type of recurrent neural network and
all connections between units in LSTM form a directed cycle. This cycle is conducive to
modeling dynamic temporal or spatial behavior. LSTM block is dynamically changed
with the sequence length. An LSTM unit includes input, forget, and output gates. The
calculation process is defined as Equations (2)–(6), where, xt denotes the input vector, ft the
forget gate’s activation vector, ot the output gate’s activation vector, ht a 128-dimenstion
hidden state vector, and Ct the cell state vector. In these equations, the common notations
W and U refer to parameter matrices and b designates a bias vector.

ft = σ
(

W f xt + U f ht−1 + b f

)
(2)

it = σ(Wixt + Uiht−1 + bi) (3)

ot = σ(Woxt + Uoht−1 + bo) (4)

Ct = it
◦tanh(Wcxt + Ucht−1 + bc) + ft

◦Ct−1 (5)

ht = ot
◦tanh(Ct) (6)

In our biLSTM model, one set of LSTMs merged the feature matrix from left to right,
and another set of LSTMs merged the feature matrix from right to left. A dropout layer was
applied to avoid over-fitting. A vector with 128 dimensions from biLSTM was obtained
first. Afterward, a regression output value was obtained from two fully-connected layers
and converted into a probability through the sigmoid function. In the process of training,
we chose binary cross-entropy as the loss function and set the learning rate at 0.0001, and
the dropout rate at 0.8.

2.4. Evaluation Criteria

Eight evaluation criteria, including Accuracy, Sensitivity, Specificity, F1, Matthew’s
correlation coefficient (MCC), Precision, Area Under the receiver-operating-characteristic
Curve (AUC), and Area Under the Precision-Recall curve (AUPR), were used to evaluate
the performance of the models. The calculation of the first six criteria is illustrated in
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Equations (7)–(12), where TP represents the number of true positive MHC binders, false
negative represents the number of true negative MHC binders, FP represents the num-
ber of false positive binders, and false negative represents the number of false negative
MHC binders.

Accuracy =
TP + TN

TP + TN + FP + FN
(7)

Sensitivity =
TP

TP + FN
(8)

Specificity =
TN

TN + FP
(9)

F1 =
2 × (Precision × Sensitivity)
(Precision + Sensitivity)

(10)

MCC =
TP × TN − FP × FN√

(TP + FP)× (TN + FN)× (TP + FN)× (TN + FP)
(11)

Precision =
TP

TP + FP
(12)

3. Results
3.1. Human Dataset Description

The numbers of binding (positive examples) and non-binding (negative examples)
peptides for MHC class I and II alleles making up the training and independent validation
datasets are available in Supplementary Table S1. Overall, the human training dataset
consisted of 75 alleles and entailed multiple (n) distinct peptide sequence lengths. For
each of the 75 alleles, traditional approaches would have trained n length-dependent
models to tackle different peptide lengths, or trained one fixed-length model which would
necessitate a pre-procedure of length adjustment. Using the length-independent approach
biLSTM, we trained 75 length-independent models and validated them with five-fold
cross-validation. All 48 models for MHC class I binding and 12 of 27 models for MHC
class II binding achieved over 0.8 accuracy and AUC values (Figure 2A,B). Overall, there
exists a considerable difference in the performance levels between MHC Class I and Class
II models, with the latter exceeding the former. Performances of MHC Class I models are
generally acceptable except for a few outliers, such as HLA-B*15:02.

We identified a few models of extremity performances and went on to characterize the
sequence motifs. Specifically, the performance values of HLA-DQB1*05:01 in Figure 2B and
HLA-A*02:50 in Figure 2A are nearly one. By contrast, the MCC and Specificity associated
with HLA-B*15:02 in Figure 2A are merely 0.25. We analyzed the difference between
motifs of Binders and Non-Binders for HLA-A*02:50, HLA-B*15:02, and HLA-DQB1*05:01
(Figure 2C–E), respectively. Figure 2C,E describe the motifs for the well-performing models
HLA-A*02:50 and HLA-DQB1*05:01, and we can see that the amino acid motifs are distinct
between Binders and Non-Binders. Figure 2D describes the bad-performing model HLA-
B*15:02, which shows non-differential motifs between Binders and Non-Binders. Therefore,
the unsatisfactory prediction performance might be due to the weak distinction in motif
patterns between positive and negative examples, which may hint at the contamination
of binders by many false positives (non-binders). The good performance of BVMHC is
attributed to the exploitation of the positional conservation and the preservation of intact
peptide sequences. The detailed performance evaluation results by peptide length can be
found in Table 1.
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(A,B) The performance of BVMHC on the training dataset for predicting human MHC Class I (A) and
II binders (B) in five-fold cross-validation. (C) The motifs of binders and non-binders for MHC Class
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(E) The motifs of binders and non-binders for MHC Class II allele HLA-DQB1*05:01.

Table 1. Five-fold cross-validation results stratified by peptide length.

Length Accuracy AUC F1 MCC Specificity Sensitivity Precision AUPR Positive 1 Negative 2

Class I

8 mer 0.891 0.924 0.783 0.531 0.887 0.677 0.525 0.785 229 1879
9 mer 0.883 0.915 0.745 0.650 0.902 0.735 0.760 0.800 23,000 72,963
10 mer 0.813 0.850 0.693 0.527 0.842 0.690 0.661 0.725 7263 14,024
11 mer 0.879 0.905 0.768 0.608 0.881 0.756 0.651 0.755 310 1604
Others 0.986 1.000 0.992 0.564 0.750 1.000 0.985 1.000 54 803

Class II

13 mer 0.857 0.879 0.883 0.700 0.833 0.872 0.895 0.923 232 205
14 mer 0.898 0.907 0.880 0.792 0.912 0.880 0.880 0.873 131 239
15 mer 0.868 0.906 0.781 0.687 0.912 0.769 0.794 0.840 16,743 25,683
16 mer 0.776 0.846 0.802 0.545 0.718 0.823 0.782 0.878 563 569
17 mer 0.680 0.673 0.429 0.312 0.933 0.300 0.750 0.643 106 257
18 mer 0.643 0.939 0.706 0.452 1.000 0.545 1.000 0.986 71 40
19 mer 0.875 0.938 0.857 0.775 1.000 0.750 1.000 0.950 55 75
20 mer 0.750 0.900 0.500 0.488 1.000 0.333 1.000 0.886 65 66
Other 0.690 0.640 0.381 0.183 0.758 0.444 0.333 0.566 81 259

1 Number of positives; 2 Number of negatives

3.2. Independent Validation and Comparison with Other MHC Binding Predictors

An independent dataset extracted from MHCBN and SYFPEITHIwas used for vali-
dation and comparison with other MHC binding predictors. Seven popular MHC class
I binding predictors (comblib_sidney2008 [21], ANN [19], SMM [17], NetMHCcons [16],
NetMHCpan [18], PickPocket [20] and NetMHCpan EL [24]) for class I and three well-
accepted MHC class II binding predictors (NETMHCIIPan [23], NN-align [15] and SMM-
align [22]) were selected for the comparison. A common limitation of these existing tools is
that the established model is bounded by a fixed peptide sequence length, which means
that investigators have to distort the sequence structure when they take special actions
(insertion or deletion) to ensure that the peptide length meets the model requirement. More-
over, in the above section, we have demonstrated that a model’s prediction performance
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benefits from the positional conservation, the phenomenon of which is generally neglected
in existing methods. The performance of BVMHC and the other MHC class I/II tools
was measured with the eight aforementioned criteria (Table 2), and the complete results
are displayed in Table S2. Models of HLA-DRB1*03:01 trained to predict MHC class II
binding peptide achieved accuracy and AUC over 0.8 on the five-fold cross-validation;
we downloaded the HLA-DRB1*03:01 peptide data from MHCBN. Of all eight evaluation
indices, BVMHC achieved the best performance in three of the eight criteria for MHC class
I prediction and the best performance in four criteria for MHC class II prediction. For
example, BVMHC obtained the best overall AUC of 0.887 (Figure 3A), and the best average
AUC for 9-mer models in MHC class I prediction (Figure 3B).

Table 2. The comparison results of the BVMHC model against seven other prediction tools on the
independent validation dataset. The best performance value in each comparison track is highlighted
in bold text.

Methods Accuracy Sensitivity Specificity AUC AUPR F1 MCC Precision Positive 1 Negative 2

Class I

BVMHC 0.597 0.371 0.959 0.887 0.866 0.531 0.374 0.936 197 123
NetMHCcons [16] 0.600 0.386 0.943 0.865 0.890 0.543 0.365 0.916 197 123
SMM [17] 0.584 0.350 0.959 0.859 0.891 0.509 0.357 0.932 197 123
NetMHCpan [18] 0.566 0.330 0.943 0.867 0.886 0.483 0.318 0.903 197 123
ANN [19] 0.563 0.325 0.943 0.867 0.880 0.478 0.314 0.901 197 123
PickPocket [20] 0.563 0.345 0.911 0.813 0.833 0.493 0.289 0.861 197 123
NetMHCpan EL [24] 0.553 0.335 0.902 0.816 0.856 0.480 0.269 0.846 197 123
comblib_sidney2008 [21] NAN § NAN § NAN § 0.744 NAN § NAN § NAN § NAN § 68 46

Class II

BVMHC 0.878 0.333 0.965 0.718 0.417 0.429 0.386 0.600 18 113
NN-align [15] 0.863 0.278 0.956 0.866 0.484 0.357 0.303 0.500 18 113
NETMHCIIPan [23] 0.870 0.111 0.991 0.795 0.423 0.190 0.235 0.667 18 113
SMM-align [22] 0.840 0.000 0.973 0.787 0.319 NA § −0.061 0.000 18 113

1 Number of positives 2 Number of negatives § NA: the sum of Sensitivity and Precision is zero, thus F1 is NA.
§ NAN: the evaluation indices cannot be obtained because the original score threshold is not available. The value
in bold are the best for each column.
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NETMHCIIPan [23] 0.870  0.111  0.991  0.795  0.423  0.190  0.235  0.667  18 113 
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Figure 3. Receiver-Operating-Characteristic (ROC) curves of the eight tools for predicting MHC class
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for overall (A), 9-mer (B), 10-mer (C), and 11-mer (D) MHC class I binders, respectively.

3.3. Performance of Non-Human Species

Using the same strategy as in humans, BVMHC models were also trained for MHC
class I prediction for three mouse alleles, eight macaque alleles, five chimpanzee alleles,
and one rat allele; in addition, two mouse MHC class II alleles were also covered. Results
of five-fold cross-validation of these non-human MHC prediction models are available in
Table 3. All 17 MHC class I models achieved greater than 0.8 accuracy and AUC. Both MHC
class II models obtained greater than 0.80 accuracy. Due to the limitations of non-human
data availability, independent validation was not performed.
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Table 3. Performance evaluation results of BVMHC model on non-human species.

Alleles Accuracy AUC F1 MCC Specificity Sensitivity Precision AUPR

Class I

H-2-Db 0.829 0.855 0.573 0.466 0.897 0.564 0.583 0.602
H-2-Dd 0.924 0.870 0.696 0.660 0.975 0.615 0.800 0.751
H-2-Ld 0.814 0.852 0.698 0.564 0.875 0.682 0.714 0.779
Mamu-A07 0.905 0.949 0.854 0.783 0.929 0.854 0.854 0.902
Mamu-A11 0.822 0.899 0.726 0.595 0.880 0.707 0.747 0.805
Mamu-A2201 0.908 0.957 0.854 0.789 0.955 0.814 0.897 0.943
Mamu-B01 0.942 0.865 0.667 0.654 0.988 0.550 0.846 0.767
Mamu-B03 0.857 0.921 0.769 0.666 0.903 0.758 0.781 0.843
Mamu-B08 0.852 0.911 0.690 0.600 0.875 0.769 0.625 0.776
Mamu-B17 0.822 0.882 0.717 0.592 0.838 0.782 0.662 0.710
Mamu-B52 0.827 0.870 0.870 0.617 0.677 0.912 0.832 0.884
Patr-A0101 0.816 0.838 0.619 0.520 0.935 0.520 0.765 0.688
Patr-A0401 0.881 0.904 0.636 0.565 0.929 0.636 0.636 0.616
Patr-A0701 0.825 0.820 0.545 0.438 0.901 0.522 0.571 0.682
Patr-B0101 0.911 0.947 0.794 0.759 0.991 0.675 0.964 0.894
Patr-B1301 0.875 0.917 0.903 0.727 0.824 0.903 0.903 0.951
RT1A 0.893 0.923 0.400 0.352 0.923 0.500 0.333 0.667

Class II H-2-IAb 0.826 0.797 0.489 0.394 0.925 0.423 0.579 0.627
H-2-IAd 0.810 0.810 0.571 0.452 0.896 0.533 0.615 0.632

3.4. Web Server Implementation

A web server for the BVMHC models was developed using the combination of R, PHP,
and Python, which is freely accessible at http://www.innovebioinfo.com/Proteomics/
MHC/home.php. The website can conduct predictions for MHC class I and II binding
peptides of multiple species. For MHC class I prediction, BVMHC covers 48 human alleles,
three mouse alleles, eight macaque alleles, five chimpanzee alleles, and one rat allele; for
MHC class II prediction, BVMHC covers 12 human alleles and two mouse alleles.

4. Discussion

MHC binding prediction is a crucial step toward identifying potential novel thera-
peutic strategies. For example, MHC class I molecules were found to be tumor suppressor
genes [38] and can served as targets for immunotherapy [39]. Similar to MHC class I, the
class II antigens can also serve as targets in cancer immunotherapy [40]. The prediction
of MHC binding peptides is biologically and clinically important because it predicts the
binding affinity of a T-cell immune response. Factors such as the polymorphic nature of
MHC molecules, the variable length of peptides, etc. make it difficult to accurately predict
MHC binding. However, advances in machine learning, especially those based on neural
networks, have propelled substantial advancement in MHC binding prediction research.
In this study, we proposed an approach using the Bilateral and Variable Long-Short Term
Memory Networks to tackle the variable length issue in MHC binding prediction. By
thoroughly comparing to other fixed-length-constrained MHC binding prediction tools, we
show that BVMHC has the advantage in several performance measurements. However,
In this paper, we just use the peptide sequences information to construct predictors. In-
spired by NetMHCpan [18] and NetMHCIIpan [23], in the future we will incorporate the
MHC protein sequence information to augment the feature representation of binders. As
AlphaFold [41] becomes the focus of research about protein structure, we look to discern
the differences between different MHC allele proteins at the protein structure level, which
may hold promises for an even improved prediction of MHC protein binders. Additionally,
a BVMHC predictor can be used to quickly screen potential binders—an effective strategy
is to dissect a complete protein sequence into equal-sized segments and run the predictor
over these segments across the whole span of the protein sequence. Considering the com-
putational time complexity, such screening workflows must be optimized to reduce the
running time to the minimum.

http://www.innovebioinfo.com/Proteomics/MHC/home.php
http://www.innovebioinfo.com/Proteomics/MHC/home.php
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5. Conclusions

BVMHC is an MHC binding prediction tool that supports five species (human, chim-
panzee, macaque, mouse, and rat). Compared to existing MHC prediction tools, BVMHC
can use peptides of variable lengths to train a predictor, which allows for the reservation of
the innate primary structure of the sequence. The combination of analyses at the conser-
vatory level and the sequential level is vital for the superior performance of the resultant
BVMHC model. In independent validation and comparison, BVMHC showed the best
overall performance compared to seven other popular MHC class I predictors and three
well-accepted MHC class II predictors. BVMHC was developed into a web server and can
be accessed freely online.

Supplementary Materials: The following supporting information can be downloaded at: https://
www.mdpi.com/article/10.3390/biology11060848/s1, Table S1: Summary of datasets; Table S2: The
detailed results based on independent dataset.
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