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Simple Summary: Biological control of plant diseases caused by fungal pathogens using antagonistic
microorganisms including Bacilli has been considered to be an effective and safe alternative to
chemical fungicides. Fusarium crown rot of wheat is a serious fungal disease affecting yield and grain
quality. In this study, a newly isolated strain of Bacillus subtilis YB-15 from soil of wheat rhizosphere
significantly inhibited Fusarium crown rot as well as improved growth of wheat seedlings. Multiple
potential biocontrol and growth-promoting attributes of Bacillus subtilis YB-15 were determined
in vitro and according to the whole genome sequencing analysis. Overall, the results demonstrated
that Bacillus subtilis YB-15 has great potential for practical application in controlling plant fungal
diseases and improving plant growth.

Abstract: Fusarium crown rot caused by Fusarium pseudograminearum is one of the most devastating
diseases of wheat worldwide causing major yield and economic losses. In this study, strain YB-15
was isolated from soil of wheat rhizosphere and classified as Bacillus subtilis by average nucleotide
identity analysis. It significantly reduced Fusarium crown rot with a control efficacy of 81.50% and
significantly improved the growth of wheat seedlings by increasing root and shoot fresh weight by
11.4% and 4.2%, respectively. Reduced Fusarium crown rot may have been due to direct antagonism
by the production of β-1, 3-glucanase, amylase, protease and cellulase, or by the ability of B. subtilis
YB-15 to induce defense-related enzyme activities of wheat seedlings, both alone and in seedlings
infected with F. pseudograminearum. Improved plant growth may be related to the ability of B. subtilis
YB-15 to secrete indole acetic acid and siderophores, as well as to solubilize phosphorus. In addition,
the genome of strain YB-15 was determined, resulting in a complete assembled circular genome
of 4,233,040 bp with GC content of 43.52% consisting of 4207 protein-encoding genes. Sequencing
the B. subtilis YB-15 genome further revealed genes for encoding carbohydrate-active enzymes,
biosynthesis of various secondary metabolites, nutrient acquisition, phytohormone production,
chemotaxis and motility, which could explain the potential of strain YB-15 to be plant growth-
promoting bacteria and biological control agent. B. subtilis YB-15 appears to be a promising biocontrol
agent against Fusarium crown rot as well as for wheat growth promotion.

Keywords: Bacillus subtilis; Fusarium pseudograminearum; wheat; biocontrol agent; genome
characterization; growth promotion
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1. Introduction

Wheat (Triticum aestivum L.) is one of the most important food crops in the world [1].
However, in many wheat-producing countries, yields are significantly reduced by Fusarium
crown rot predominantly caused by Fusarium graminearum, Fusarium pseudograminearum
and Fusarium culmorum [2]. However, F. pseudograminearum is more common in drier
and warmer areas [3]. At present, the application of chemical fungicides is the principal
approach to controlling Fusarium crown rot, but long-term use of fungicides can lead to
negative environmental effects and reduced effectiveness due to fungicide resistance [4].
More sustainable and ecologically friendly alternatives are needed for Fusarium crown rot
management [5]. Recently, there have been a number of studies on the biocontrol of wheat
Fusarium crown rot as an alternative strategy [6–9].

Bacillus species, such as Bacillus velezensis and Bacillus subtilis, have been widely studied
for their strong antagonistic activities against many plant pathogens and their abilities to
promote growth [10–14]. They can protect crops against a broad range of fungal pathogens
by both indirect and direct mechanisms, including secretion of antimicrobial compounds
such as antibiotics and hydrolytic enzymes, competition for resources and triggering
induced systemic resistance (ISR) [11,12]. Moreover, Bacillus species can promote plant
growth through improving nutrient availability, reducing the severity of environmental
stresses and altering plant growth hormone homeostasis [10,12,15]. There have been several
reports of growth promotion of wheat by Bacillus species [16–18]. There have also been a
few reports of Bacillus species biologically preventing F. pseudograminearum from causing
crown rot on wheat and sorghum [19,20].

With the rapid progress of DNA sequencing technology, high-throughput sequencing
has been applied to assemble and analyze many bacterial genomes. For example, the
genome of B. subtilis PMB102 isolated from leaf of tomato has been sequenced, and genes
related to growth promotion, including acetoin and siderophore production, and genes
related to disease control, such as exopolysaccharide synthesis and cell wall-degrading
enzymes, were found [21]. Another example is an analysis of the 13 genomes of B. subtilis
strains from soil where the production of non-ribosomal peptides was different among
the strains, and in vitro antagonism assays showed that plipastatin alone was enough to
inhibit Fusarium spp., but both surfactin and plipastatin were required to inhibit Botrytis
cinerea [22]. Sequencing the B. subtilis EA-CB0575 genome revealed that it has homologous
genes involved in plant growth promotion, such as the release of volatile compounds,
solubilizing phosphate, fixing nitrogen, and producing indole and siderophore [23]. Thus,
whole-genome sequencing of biological control agents (BCA)s and plant growth-promoting
bacteria (PGPB) is a valuable resource for exploring the characteristics responsible for
biocontrol and growth promotion.

In this study, strain YB-15 was isolated from rhizospheric soil of wheat and investigated
for its ability to inhibit Fusarium crown rot caused by F. pseudograminearum as well as to
improve the growth of wheat seedlings. To understand its effects, five wheat defense-
related enzyme activities were examined following inoculation with strain YB-15 alone,
F. pseudograminearum alone and the combination of strain YB-15 and F. pseudograminearum.
In addition, the genome of B. subtilis YB-15 was sequenced and assembled by Nanopore
and Illumina sequencing, resulting in a complete circular genome of 4,233,040 bp with
GC content of 43.52% consisting of 4207 protein-encoding genes. Sequencing the genome
of strain YB-15 was used to conduct an average nucleotide identity (ANI) analysis to
determine the species as well as identify a number of genes for traits commonly associated
with PGPB and BCA.

2. Materials and Methods
2.1. Bacteria and Pathogens Used in this Study

Five rhizospheric soil samples were collected from a commercial wheat field in Lushan,
Henan Province, China, and strain YB-15 was isolated from wheat rhizospheric soil at-
tached to roots at 5 cm beneath the soil surface as previously described [24]. An isolate of
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F. pseudograminearum, WZ001, was obtained from the Institute of Plant Protection Research,
Henan Academy of Agricultural Sciences, Zhengzhou, China.

2.2. Detection of In Vitro Plant Growth Promotion and Biocontrol Traits

IAA production was detected with strain YB-15 colonies grown in L-tryptophan
nutrient broth [25]. Colonies of strain YB-15 were grown on Chrome Azurol S blue agar
to determine siderophore production [26], phosphorus agar to determine phosphorus
solubilization [27], β-glucan agar to determine β-glucanaseactivity [28], starch agar to
determine amylase activity [29], skim milk agar to determine protease activity [30] and
carboxymethylcellulose agar to determine cellulase activity [28].

2.3. Growth Promotion and Biocontrol Assay of Strain YB-15 against Fusarium Crown Rot of
Wheat Seedlings

F. pseudograminearum isolate WZ001 was grown on PDA for 5 days at 28 ◦C, and
then six 5 mm agar plugs were transferred from the growing edge to a 1000 mL flask
with 200 g sterilized boiled wheat grain and sand (3:1, v/v) and incubated at 28 ◦C for
7 days [31,32]. Strain YB-15 was grown in 100 mL LB broth with 180 rpm shaking at 37 ◦C
until an OD595 nm of 0.8. Wheat cultivar zhengmai 366 seeds were surface-sterilized in 75%
ethanol (v/v) for 30 s, rinsed three times with sterile distilled water and air-dried at room
temperature [33]. The seeds were then soaked with strain YB-15 suspension for 12 h at
28 ◦C. A total of 25 seeds were sown per pot (10 cm diameter,10 cm high) containing 350 g
mixture of sterile soil with or without 5% inoculum (w/w), and the pots were maintained
in a greenhouse at 25 ◦C under a 12 h light/12 h dark photoperiod. The treatments were:
(1) seeds soaked with YB-15 and planted in sterile soil without pathogen inoculum; (2) seeds
not soaked with YB-15 and planted in sterile soil without pathogen inoculum; (3) seeds
soaked with YB-15 and planted in sterile soil with pathogen inoculum; and (4) seeds not
soaked with YB-15 and planted in sterile soil with pathogen inoculum. The Fusarium crown
rot disease severity was assessed using scale of 0–4 at 20 days post-planting, and disease
index (DI) was calculated using DI = [(0 × S0) + (1 × S1) + (2 × S2) + (3 × S3)]/A, where
S is the number of wheat seedlings for each disease class and A is total number of tested
wheat seedlings [34]. Control efficacy (CE) was calculated using CE= [(DI of control−DI
of treatment)/DI of control] ×100% [24]. Each treatment had 20 wheat seedlings with
six replicates. At 20 days post-planting, shoot height and root length were determined
manually with a ruler, and root and shoot fresh weights were weighted with an electronic
analytical balance (ME203E, Mettler Toledo, Changzhou, China).

2.4. Wheat Defense-Related Enzyme Activities

After 20 days post-planting, wheat leaves were harvested into liquid nitrogen and
stored at −80 ◦C. Firstly, 1 g leaves of wheat seedlings were ground in pre-chilled mortar,
and then transferred into a new 1.5 mL Eppendorf tube with 1 mL extraction buffer. After
centrifugation for 10 min at 8000× g, the supernatant was transferred to another new 1.5 mL
Eppendorf tube for detecting enzyme activities. Enzyme activities were measured by using
commercially available assay kits of LOX (Cat. No. BC0325), PAL (Cat. No. BC0215), CAT
(Cat. No. BC0205), PPO (Cat. No. BC0195) and POD (Cat. No. BC0095) accordingto the
manufacturer’s instructions (Solarbio, Beijing, China). Absorbance was recorded with a
plate reader (Tecan Spark, Tecan, Männedorf, Switzerland).

2.5. DNA Preparation, Genome Sequencing, Assembly and Annotation of Strain YB-15

Strain YB-15 was grown in NB medium on a rotary shaker (QYC-200, Fuma, Shanghai,
China) with shaking speed of 180 rpm at 28 ◦C for 18 h. Genomic DNA of strain YB-15 was
extracted by using the Mini-BEST Bacterial Genomic DNA Extraction Kit Ver. 3.0 (Takara,
Beijing, China) according to the manufacturer’s directions. Two separate genomic DNA
libraries were constructed for the Oxford Nanopore and Illumina NovaSeq sequencing
systems. Genome assembly was conducted by Unicycler v0.4.9 [35]. A circular map of



Biology 2022, 11, 778 4 of 13

the strain YB-15 genome was generated by CGView server [36]. Nanopore and Illumina
sequencing reads were mapped to the genome using Minimap2 (2.17-r974-dirty) [37] and
BWA (0.7.17-r1198-dirty) [38], respectively. The depth of genome coverage was estimated
with SAMtools [39]. Annotation of strain YB-15 genome was performed with Prokka
(1.13) [40], and protein-coding, tRNA and rRNA genes were predicted using Prodigal
(v2.6.3) [41], Aragorn (v1.2.38) [42] and RNAmmer (v1.2) [43], respectively.

2.6. Molecular Identification of Strain YB-15

The genome sequences of Bacillus velezensis FZB42, Bacillus subtilis H1, Bacillus velezen-
sis FJAT-45028, Bacillus subtilis 168, Bacillus licheniformis ATCC 14580, Bacillus altitudinis
GQYP101, Bacillus licheniformis SRCM103583, Bacillus altitudinis CHB19, Bacillus pumilus
ZB201701 and Bacillus pumilus SF-4 were obtained from the NCBI genome database (Gen-
Bank Accession Nos: CP000560.2, CP026662.1, CP047157.1, NC_000964.3, CP034569.1,
CP040514.1, CP035404.1, CP043559.1, CP029464.1 and CP047089.1, respectively). ANI
among the above genomes was analyzed with ANI calculator [44].

2.7. Analysis of CAZymes and Genes Associated with Growth Promotion and Secondary
Metabolites of Strain YB-15

Annotated protein-coding sequences of strain YB-15 were aligned against the carbohydrate-
active enzyme (CAZy) database using dbCAN2 with the threshold of E-value1e-15 [45].
Signal peptide was predicted by SignalP (v4.1) [46]. Gene clusters for synthesis of secondary
metabolite were identified by antiSMASH [47]. Local BLASTP was used to identify genes
associated with plant growth promotion.

2.8. Statistical Analysis

Statistical analysis was performed using SPSS v21.0 software according to the one-
way analysis of variance. The differences among means were determined usingDuncan’s
multiple range tests with p value ≤ 0.05.

3. Results
3.1. Isolation of Strain YB-15 and Its Antagonism against F. pseudograminearum

A number of 78 bacterial strains were isolated and screened from wheat rhizospheric
soil by dilution plating. Out of the 78 strains, 59 showed varying levels of antagonism
against F. pseudograminearum in dual PDA culture (data not shown). Strain YB-15 was
selected for further investigation because it showed the greatest antagonism against
F. pseudograminearum on PDA (Figure 1A,B). Strain YB-15 colonies were opaque white
with rod-shaped and Gram-positive (data not shown).

3.2. Plant Growth Promotion and Antifungal Traits of Strain YB-15 in Culture

Possible plant growth promotion traits of strain YB-15 detected in culture were the
production of indole acetic acid (IAA) (Figure 2A), siderophore (Figure 2B) and phosphorus
solubilization (Figure 2C). Potential antifungal traits detected in culture were secretion
of β-1, 3-glucanase (Figure 2D), amylase (Figure 2E), protease (Figure 2F) and cellulase
(Figure 2G).
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Figure 2. PGP and Antifungal traits of strain YB-15: (A) The upper indicating IAA production by pink
coloration; (B) Yellow-orange halos indicating siderophore production; (C) Phosphorus solubilization
indicated by a halo zone around strain YB-15 colonies; (D) β-1, 3-glucanase activity indicated by a
zone around strain YB-15 colonies; (E) Amylase activity indicated by a clear zone around strain YB-15
colonies; (F) Protease activity indicated by an obvious hydrolytic zone around strain YB-15 colonies;
(G) Cellulase activity indicated by a zone of hydrolysis around strain YB-15 colonies.

3.3. Effects of Strain YB-15 on Fusarium Crown Rot of Wheat Seedlings

Typical Fusarium crown rot symptoms with brown lesions on the stems were observed
in F. pseudograminearum inoculated seedlings at 20 days post-planting, but no disease
symptoms were observed in seedlings with both F. pseudograminearum and strain YB-15 or
control treatments not inoculated with F. pseudograminearum (Figure 3). The disease severity
of wheat seedlings infected with F. pseudograminearum was 2.63 ± 0.03, whereas it was
only 0.48 ± 0.02 with the combination of strain YB-15 and F. pseudograminearum. Disease
incidence was 91.67 ± 1.67% infected with F. pseudograminearum, but only 15.00 ± 2.89%
with the combination of strain YB-15 and F. pseudograminearum. Control efficacy was
81.50 ± 0.76% with seed treatment of strain YB-15 compared to non-treated control seeds
infected with F. pseudograminearum (Table 1).
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Figure 3. Effect of strain YB-15 against Fusarium crown rot caused by F.pseudograminearum and on
growth of wheat seedlings: (A,E) seeds soaked with YB-15 and planted in sterile soil without pathogen
inoculum; (B,F) seeds not soaked with YB-15 and planted in sterile soil without pathogen inoculum;
(C,G) seeds soaked with YB-15 and planted in sterile soil with pathogen inoculum; (D,H) tseeds not
soaked with YB-15 and planted in sterile soil with pathogen inoculum.

Table 1. Disease index, disease incidence and control efficacy of B. subtilis YB-15 against Fusarium
crown rot of wheat.

Treatments Disease Incidence (%) Disease Index Control Efficacy (%)

FPS 91.67 ± 1.67 a 2.63 ± 0.03 a
FPS + YB-15 15.00 ± 2.89 b 0.48 ± 0.02 b 81.50 ± 0.76

Note: Data in the table are mean ± standard deviation; the column distribution of different letters was significantly
different with the level of p < 0.05.

3.4. Growth Promotion of Wheat Seedlings by Strain YB-15

After 20 days post-planting, the shoot and root fresh weight of seedlings treated
with strain YB-15 was significantly increased by 4.2% and 11.4%, respectively; although,
root length and shoot height were not significantly affected (Table 2). Inoculation with
F. pseudograminearum resulted in significantly lower shoot height and weight as well as
root length and weight, compared to the control. Most notable was the reduction in
root fresh weight by 46.7%. Inoculation with both strain YB-15 and F. pseudograminearum
resulted in significantly higher shoot height and weight as well as root weight and length,
compared to that of the F. pseudograminearum inoculated wheat seedlings. There was no
significant difference in shoot height and root length between the non-treated control and
seedlingsinoculated with both strain YB-15 and F. pseudograminearum; although, the fresh
weights remained lower.

Table 2. Effects of B. subtilis YB-15 on the growth of wheat seedlings.

Treatments Shoot Height
(cm)

Root Length
(cm)

Root Fresh
Weight (g)

Shoot Fresh
Weight (g)

CK 27.98 ± 0.76 a 8.74 ± 1.11 a 1.05 ± 0.02 b 5.32 ± 0.06 b
YB-15 28.33 ± 0.77 a 8.87 ± 0.97 a 1.17 ± 0.03 a 5.54 ± 0.03 a
FPS 25.52 ± 2.73 b 7.1 ± 0.98 b 0.56 ± 0.03 d 4.01 ± 0.03 d

FPS + YB-15 27.7 ± 0.79 a 8.96 ± 1.39 a 0.94 ± 0.02 c 4.56 ± 0.04 c
Note: Data in the table are mean ± standard deviation; the column distribution of different letters (a–d) was
significantly different with the level of p < 0.05.

3.5. Defense-Related Enzyme Activities of Wheat Seedlings

Wheat seedlings with strain YB-15 treatment exhibited significantly higher activities
of PAL, POD, CAT and PPO, but not LOX, compared to non-treated control seedlings
(Table 3). Inoculation with F. pseudograminearum resulted in significantly higher PAL, POD,
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CAT, PPO and LOX activities, compared to non-treated seedlings, but the enzyme activities
were significantly higher with the combination of strain YB-15 and F. pseudograminearum
compared to only F. pseudograminearum inoculation. The activities with the combination of
strain YB-15 and F. pseudograminearum were also significantly higher compared to strain
YB-15 alone, except for POD activity, which was significantly lower.

Table 3. Activities of defense-related enzymes in wheat leaves.

Treatments LOX (U/g) PAL (U/g) CAT (U/g) PPO (U/g) POD (U/g)

CK 574.76 ± 4.48 c 28.57 ± 0.54 d 213.07 ± 1.39 d 22.25 ± 0.87 d 8173.10 ± 47.64 d
YB-15 733.42 ± 7.04 c 32.30 ± 0.74 c 274.24 ± 0.90 c 32.98 ± 0.90 c 14,955.53 ± 131.38 b
FPS 6581.31 ± 72.21 b 34.64 ± 0.55 b 373.10 ± 1.21 b 41.61 ± 0.82 b 8657.33 ± 47.98 c

FPS + YB-15 7457.08 ± 69.68 a 41.61 ± 0.60 a 597.35 ± 0.96 a 49.71 ± 0.89 a 12,425.40 ± 172.51 a

Note: Data in the table are mean ± standard deviation; the column distribution of different letters (a–d) demon-
strated significant difference at p values < 0.05 level.

3.6. Genome Assembly and Annotation of Strain YB-15

A total of 21,392 long reads containing 1,000,070,603 bases with a mean length of
46,749.7 bp and an N50 of 45,733 bp were obtained by Nanopore sequencing, and
13,740,276 reads containing 2,061,041,400 bases were generated by Illumina sequencing.
These were used to assemble the genome of strain YB-15 with 238.54X and 486.61X genome
coverage for the Nanopore and Illumina sequencing data, respectively. The completed
assembled genome of strain YB-15 was deposited at GenBank with Accession number
CP092631. The strain YB-15 genome was a 4,233,040 bp single circular chromosome with
43.52% GC content (Figure 4). There were 4207 protein-encoding genes, 86 tRNAs and
27 rRNAs, which were annotated (Table S1).
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3.7. Species Identification of Strain YB-15

ANI values of the genome of strain YB-15 to those of ten other Bacillus strains ranged
from 71.02 to 98.76% (Figure 5). The ANI values between strain YB-15 and Bacillus subtilis
strain 168 was 98.76% and between strain YB-15 and Bacillus subtilis strain H1 was 98.70%,
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both of which were above the thresholds of 95–96% for recognizing prokaryotic species
boundaries [48]. Thus, strain YB-15 was identified as Bacillus subtilis.
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3.8. Predicted Genes for CAZymes

The B. subtilis YB-15 genome had 122 putative genes encoding CAZymes, including
48 glycoside hydrolases (GHs), 19 carbohydrate esterases (CEs), 7 polysaccharide lyases
(PLs), 43 glycosyltransferases (GTs), 7 carbohydrate-binding modules (CBMs) and 4 auxil-
iary activities (AAs) (Table S2). Among those, six genes are classified to be both GHs and
CBMs. There were 28 genes predicted to have signal peptides, and most belonged to the
GHs (17) followed by CBMs (5), PLs (5), CEs (4) and GTs (1) with 4 of them having both
GHs and CBMs.

3.9. Predicted Genes for Secondary Metabolites

The B. subtilis YB-15 genome had 11 putative gene clusters for secondary metabolites
(Table 4). For antimicrobial compound synthesis, there were five predicted gene clusters
with 100% similarity to clusters for the synthesis of bacillibactin, fengycin, bacillaene,
subtilosin A and bacilysin. There was also one gene cluster with 82% similarity to the
gene cluster for surfactin synthesis and one gene cluster with 60% similarity to the gene
cluster for paenibacterin synthesis. Four other predicted gene clusters were only identified
to type with no highly similar known clusters in the antiSMASH database. Two were for
terpenes, one was for a type III polyketide synthase, and one was for atRNA-dependent
cyclodipeptide synthase.
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Table 4. The putative gene clusters for synthesis of secondary metabolites in B. subtilis YB-15 genome
analyzed by antiSMASH.

Clusters Types From To Most Similar
Known Clusters Similarity

Cluster 1 NRPS 359,999 423,558 surfactin 82%
Cluster 2 terpene 1,127,798 1,148,314
Cluster 3 NRPS 1,557,678 1,624,493 paenibacterin 60%
Cluster 4 NRPS 1,770,137 1,875,386 bacillaene 100%
Cluster 5 NRPS, betalactone 1,969,943 2,047,024 fengycin 100%
Cluster 6 terpene 2,119,954 2,141,852
Cluster 7 T3PKS 2,318,835 2,359,932
Cluster 8 NRPS 3,262,252 3,309,388 bacillibactin 100%
Cluster 9 CDPS 3,592,205 3,612,951
Cluster 10 sactipeptide 3,842,693 3,864,304 subtilosin A 100%
Cluster 11 other 3,871,089 3,912,507 bacilysin 100%

3.10. Predicted Genes for Plant Growth Promotion

In the B. subtilis YB-15 genome, there were genes possibly involved in plant growth
promotion related to nutrient acquisition, phytohormone production, chemotaxis and
motility (Table S3). Genes associated with nutrient acquisition were all the genes in the
nasABCDEF operon for nitrate/nitrite assimilation, KtrAB and KtrCD for potassium up-
take, phoP and phoR in the phoPR operon as well as phoB, phoA and phoD for phosphate
assimilation and all the genes in the PstABCS operon for an ABC-type phosphate transport
system (Table S3). Genes associated with phytohormone production were all the genes in
the trpABCDEF operon as well as yclC for IAA biosynthesis; miaA and miaB for cytokinin
biosynthesis; speA and speB for putrescine biosynthesis; speD and speE for spermidine
biosynthesis; and alsS, alsD, ilvB, ilvH and bdhA for acetoin and butanediol biosynthesis.
For chemotaxis, there were cheA, cheB, cheD, cheR, cheY, and cheW genes related to the
two-component sensor kinase, MCP-glutamate methylesterase, protein deaminase, chemo-
taxis protein methyltransferase, two-component response regulator and CheA modulator
chemotaxis, respectively. For motility, there were genes associated with biosynthesis and
regulation of flagellum assembly. These were flgD, flgE(flgG), flgK, flgL, hag (fliC), fliD for
the hook and filament; fliH, fliP, fliI, fliR, fliQ, flhB and flhA for flagellar protein secretion;
flgB, flgC and fliE for the proximal rod; fliF, fliG, fliM and fliN(fliY) for the MS and C ring;
flgM, flgN, fliK, fliJ, flit and fliS for other flagellar proteins; and motA and motB for the
rotary motor.

4. Discussion

In this study, B. subtilis YB-15, isolated from wheat rhizospheric soil, significantly
reduced Fusarium crown rotcaused by F. pseudograminearum with a control efficacy of
81.50%. B. subtilis YB-15 also increased shoot fresh weight by 13.7% and root fresh weight
by 70.3% relative to F. pseudograminearum inoculated wheat seedlings. This was similar to
the control efficacy of 80.33% for F. pseudograminearum crown and root rot of wheat seeds
with B. subtilis strain UTBMS7 inoculation, which also significantly increased wheat stem
length and root dry weight by 68 and 64%, respectively, compared to F. pseudograminearum
inoculated wheat seedlings [19]. For F. pseudograminearum crown rot of sorghum, Bacillus
velezensis N54 significantly decreased crown rot incidence by 55.6%, which was the most
among the rhizobacterial isolates tested. However, it did not improve plant growth as
infected plants and strain N54 had significantly lowers hoot and root weight by 14 and
35%, respectively, compared to plants infected with only F. pseudograminearum [20].

In addition, B. subtilis YB-15 also promoted plant growth in the absence of infection
by F. pseudograminearum. Shoot fresh weight was increased by 4.2% and root fresh weight
increased by 11.4% at 20 days in this study, which was less than the increase in wheat with
B. subtilis strain UTBMS7, where the strain significantly increased wheat stem and root
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dry weight by 117 and 107%, respectively, without F. pseudograminearum [19]. However,
neither this study nor that of Sasani and Ahmadzadeh (2021) showed a significant increase
in stem height or root length. For other studies of Bacillus species in promoting wheat
growth, Chanway et al. (1988) showed a significant increase in root dry weight of 37.8%
and shoot height of 2.8% but not shoot dry weight in wheat cv.Katepwa with Bacillus
strain 5A1; Akinrinlola et al., (2018) showed a significant increase in shoot height of 36.5%
but no significant increase in root and shoot fresh weights with Bacillus megaterium strain
R181; Ku et al., (2018) showed a significant increase in shoot fresh weight of 77% and
root fresh weight of 177% with Bacillus cereus strain YL6; and Rojas Padilla et al., (2020)
showed a significant increase of 27% in shoot dry weight and 30% in root dry weight with
B. megaterium strain TRQ8. Thus, there is considerable variation among Bacillus strains for
their ability to improve wheat growth, which could be due to differences in the strains as
well as in the types of wheat used in each study as Chanway et al., (1988) showed a plant
genotypic effect on plant growth promotion with Bacillus isolates being able to enhance root
growth of cv. Katepwa but having no effect on root growth of the parental cv. Neepawa.

The biocontrol potential of B. subtilis against plant pathogens could be due to its direct
effects on a pathogen, such as by producing antimicrobial compounds and hydrolytic en-
zymes, or indirect effects on the pathogen by inducing host systemic resistance [12,49–51].
For antimicrobial compounds, B. subtilis YB-15 has genes to produce the antimicrobial
compounds bacillaene, fengycin, bacillibactin, surfactin, subtilosinA, bacilysin and paeni-
bacterin. For biocontrol agents of Fusarium species, there are many examples of them having
genes for the production of such compounds, such as B. velezensis LM2303 for the cyclic
lipopeptides fengycin and surfactin [52], and B. subtilis SEM-2 for fengycin and surfactin
as well as the polyene bacillaene, catechol-based siderophore bacillibactin, cyclic peptide
subtilosin A, and dipeptide bacilysin [53]. A gene cluster also with 60% similarity to paeni-
bacterin biosynthesis was found in Paenibacillus polymyxa WLY78, which was a biocontrol
agent of Fusarium wilt of cucumber [54]. Although found in several Paenibacillus species,
this appears to be the first report of this type of lipopeptide possibly produced by a Bacillus
species. For hydrolytic enzymes, B. subtilis YB-15 was able to secrete β-1, 3-glucanase,
amylase, protease and cellulase, which are able to degrade various cell wall components of
fungal pathogens [55]. Furthermore, 122 putative genes encoding CAZymes were found in
the B. subtilis YB-15 genome, some of which could act against fungal pathogens [12]. Bacil-
lus species are well-known inducers of systemic resistance in plants [56,57], and B. subtilis
YB-15 also appears to be able to induce systemic host resistance as indicated by seed inocu-
lation resulting in significant increases in the activities of several defense enzymes in leaves
of wheat seedlings, which may contribute to the control of Fusarium crown rot in this study.

For the promotion of plant growth, Bacillus subtilis possesses several mechanisms,
such as the production of phytohormones and siderophores, increasing tolerance to abiotic
stresses and improved nutrient acquisition [11,12,15,50]. Production of IAA by B. subtilis
YB-15 could increase cell elongation and production of cytokinin could increase cell divi-
sion, both of which result in increased size of plant roots and shoots [11]. Improved plant
growth and root development could be due to the production of the polyamines putrescine
and spermidine that can act by regulating expansin and ethylene levels, and the production
of the related C4 compounds acetoin and butanediol that can act through altering auxin
and cytokinin homeostasis [12]. Production of siderophores by B. subtilis YB-15 can chelate
iron thus promoting plant growth by making iron more available [58]. Other genes in the
B. subtilis YB-15 genome that can directly promote growth through enhanced nutrient avail-
ability were for nitrate/nitrite assimilation, potassium uptake and phosphate assimilation
and transport [11]. In addition, genes for flagellar motility and chemotaxis in the B. subtilis
YB-15 genome indicate that they can likely identify root exudates and migrate to the roots,
which is common among effective PGPB and BCA [12].
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5. Conclusions

In summary, B. subtilis YB-15 is a promising BCA exhibiting significant biocontrol
effects against Fusarium crown rot caused by F. pseudograminearum, which could be due
to the production of hydrolytic enzymes, antimicrobial compounds and inducing host
systemic resistance. It is also a promising PGPB demonstrating growth promotion of wheat
seedlings both with and without F. pseudograminearum infection, which could be due to the
potential of strain YB-15 to produce phytohormone and siderophores and improve nutrient
acquisition for wheat seedlings. While in vitro and in planta tests can reveal common
mechanisms employed by BCA and PGPB, genome sequencing can rapidly determine
a much wider range of molecular mechanisms underlying BCA and PGPB-mediated
biocontrol and growth promotion.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11050778/s1, Table S1: Genome annotation of B. subtilis
YB-15; Table S2: CAZymes identified in the B. subtilis YB-15 genome. Table S3: Genes associated with
plant growth promotion identified in the strain YB-15 genome.
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