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Simple Summary: Tree rings are widely used in global change research based on the accurate dating
capabilities, climate sensitivity and wide distribution of samples. In the context of global warming,
the response of tree growths in north–south transition zones to climate change is one of the hot issues
in Dendroecology. The research results found that trees’ growth had different responses to May–June
temperature and precipitation on the north and south of the mountain. Therefore, we analyzed the
relationship between tree ring and a regional hydrothermal composite factor and reconstructed its
variation. The variations agree with other drought series and represent the drought variation in
central and eastern monsoon regions, and may provide better understanding of drought variation
and service for agricultural production.

Abstract: Tree ring data from the southern boundary of Chinese Pine (Pinus tabulaeformis Carr.) distribu-
tion where is the southern warm temperate margin, the paper analyzes the response of climate factors
along north–south direction to tree growth. The results show that temperature and precipitation
in May–June and relative moisture from March to June are main limiting factors on trees growth;
however, the temperature in the south of the mountains and the moisture in the north of the moun-
tains have relatively greater influence on trees’ growth. Additionally, we also found that the regional
scPDSIMJ (that is scPDSI in May–June) was the most significant and stable factor limiting tree growth
to be used for reconstruction. The reconstructed scPDSIMJ revealed that there were 29 extremely dry
years and 30 extremely wet years during 1801–2016, and it could represent the drought variation in
central and eastern monsoon region. The variation exists in good agreement with the reconstructed
PDSI for Mt. Shennong and the drought/wetness series in Zhengzhou. Further research found
that the droughts of May–June in central China were mainly impacted by local temperature and
moisture (including precipitation, soil moisture, potential evaporation and water pressure), and then
by the northern Pacific Ocean and the northern Atlantic Ocean. These results may provide better
understanding of May–June drought variation and service for agricultural production in central
China.

Keywords: tree-ring; Chinese Pine; drought variation; climatic transition zone; central China

1. Introduction

Under global warming, the frequency and intensity of extreme weather events are
likely to increase dramatically, which will have a more serious impact on ecosystems and
human society and require more timely and effective responses [1]. The typical continental
monsoon climate in the middle and lower reaches of the Yellow River can cause the
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instability and variability of the climate due to the monsoon strength changes and the early
or late of monsoon rains. These changes may result in frequent flood and drought in the
region and directly related to the agricultural harvests. Hence, the climate changes in the
future may not only affect the living environment and ecological security, also put forward
severe challenges to the high quality and sustainable development of the middle and lower
reaches of the Yellow River region.

There is a long history and abundant climatic records on the middle and lower reaches
of the Yellow River, and some reconstructed drought–flood information based on histor-
ical documents, but often non-quantitative and discontinuous. Dendroclimatology is a
science that reconstructs past climate changes based on tree physiology and tree radial
growth characteristics [2,3]. Tree-ring data has the advantages of high resolution (annual
or seasonal) and precise-continuous series for dating, and it has been successfully used
to quantitatively characterize the climate change series and regarded as one of the most
important proxy indicators in the past climate change research [2,4], so it has been used
extensively in past global change studies.

In recent years, dendrochronological studies in eastern China have been developing
rapidly, including tree ring research of Chinese Pine [5–21]. Chinese Pine is an endemic
species and widely distributed in northern China due to its ecological characteristics of
cold and drought resistance. The Funiu Mountains is the southern boundary of Chinese
Pine distribution, so the growth of Chinese Pine is sensitive to climate change. However,
dendrochronological study is still limited in the Funiu Mountains [15,19,22–26] and mainly
focuses on hydroclimatic reconstructions, such as temperature [22,24,26–28] relative hu-
midity [15,25] and scPDSI [19]. To some extent, the above studies are helpful to understand
climate change in the Funiu Mountains and its surrounding areas. To better reveal the
impact and formation mechanism on climate change and better understand climate change
affecting ecological security and high-quality development in the central plains, further
study of tree rings in the Funiu Mountains is necessary.

This study was firstly used to compare correlations between tree-ring data of Chinese
Pine and climatic factors (including scPDSI grid data) along north–south gradient in
the Funiu Mountains and the transitional characteristics of performance. Secondly, the
most significant climate factor limiting on tree growth was selected to carry out climate
reconstruction and analyze its spatial representations, and finally further to explore the
possibility and potential impact of future climate change in this region.

2. Data and Methods
2.1. Study Area

Mt. Shiren is located in the Funiu Mountains of the central eastern Qinling Moun-
tains in western Henan province, central China (Figure 1). It is a transitional zone from
subtropical to warm temperate continental monsoon climate with mildly wet summers
and cold dry winters. It is also the transition zone from humid to sub-humid. The annual
mean temperature is 10.0 ◦C and annual amount of precipitation is 820–860 mm, and
mean temperature in January is −3.3 ◦C, while July is 20.3 ◦C. The forests canopy cover is
about 95%, the dominant vegetation is the mixed forests composed of temperate deciduous
broad-leaved and coniferous tree species on the top of the mountain, including Chinese
Pine and Huashan Pine (P. armandi Franch LC). The soil is typically brown mountain soil
with 30 to 40 cm depth. The species for our study, Chinese Pine, is mainly distributed
between 1300 m and 1800 m a.s.l. The species is very sensitive to climate change because
the eastern Funiu Mountains is the southern and upper boundary of the Chinese Pine
distribution [29].
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sites (Mt. Shennong: tree-ring reconstruction site, Zhengzhou: historical document site). 
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climate factors along west–east gradient (from Luanchuan and Baofeng meteorological 
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pling below 1775 m, N-S Ridge) at Mt. Shiren is located in central eastern Funiu Moun-
tains, central China. In general 1 or 2 cores were taken from each tree, and 25 trees/38 cores 
were sampled using 5.15 mm increment borers. After a lot of works in the lab, the reliable 
standard chronology from 1801 to 2016 CE, with the starting year determined by adopting 
a sub-sample signal strength (SSS) threshold of 0.85 [30], was developed and used. The 
chronology contains 33 cores/21 trees and high signal-to-noise ratio (SNR, 14.543) and the 
expressed population signal (EPS, 0.936), so it demonstrated a high level of reliability. 

To better understand north–south transitional characteristics of tree growth in the 
Funiu Mountains, the study selected Songxian meteorological station of the northern Fu-
niu Mountains and Neixiang meteorological station of the southern Funiu Mountains 
(Figure 1, Table 1) along a north–south temperature and precipitation gradient (that is 
along gradient from warm temperate to subtropical monsoon climate). Climate factors 
used in this study include monthly mean temperature (T), monthly mean maximum tem-
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Figure 1. Map showing the study area (Mt. Shiren, 33◦43′39.49”N, 112◦15′4.39”E), Songxian and
Neixiang meteorological stations, the scPDSI grid points and regional mean value, and two contrast
sites (Mt. Shennong: tree-ring reconstruction site, Zhengzhou: historical document site).

2.2. Chronology and Climate Data

Tree-ring data of Chinese Pine is from Mt. Shiren (Mt. Shennong is a contrast site)
in western Henan province in July 2017 where had been studied tree growth response to
climate factors along west–east gradient (from Luanchuan and Baofeng meteorological
stations) in previous studies [15,26]. The sampling site (33◦43′39.49′′ N, 112◦15′4.39′′ E,
sampling below 1775 m, N-S Ridge) at Mt. Shiren is located in central eastern Funiu Moun-
tains, central China. In general 1 or 2 cores were taken from each tree, and 25 trees/38 cores
were sampled using 5.15 mm increment borers. After a lot of works in the lab, the reliable
standard chronology from 1801 to 2016 CE, with the starting year determined by adopting
a sub-sample signal strength (SSS) threshold of 0.85 [30], was developed and used. The
chronology contains 33 cores/21 trees and high signal-to-noise ratio (SNR, 14.543) and the
expressed population signal (EPS, 0.936), so it demonstrated a high level of reliability.

To better understand north–south transitional characteristics of tree growth in the
Funiu Mountains, the study selected Songxian meteorological station of the northern Funiu
Mountains and Neixiang meteorological station of the southern Funiu Mountains (Figure 1,
Table 1) along a north–south temperature and precipitation gradient (that is along gradient
from warm temperate to subtropical monsoon climate). Climate factors used in this study
include monthly mean temperature (T), monthly mean maximum temperature (Tmax),
monthly mean minimum temperature (Tmin), monthly total precipitation (P), and monthly
mean relative humidity (RH) during 1963–2016 (Figure 2).

Table 1. Characteristics of climate data used in correlation analyses.

Climate Data Source Latitude (◦N) Longitude (◦E) Elevation
(m a.s.l.)

Songxian 34.13 112.06 440.7
Neixiang 33.15 111.88 221.4
scPDSI-1 33.75 111.75 -
scPDSI-2 33.75 112.25 -
scPDSI-3 34.25 111.75 -
scPDSI-4 34.25 112.25 -

Regional scPDSI 33.5–34.5 111.5–112.5 -
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Figure 2. Average annual values of Tmax, T, Tmin, P and RH from Songxian (a) and Neixiang (b) 
meteorological stations during 1963–2016. 

Table 1. Characteristics of climate data used in correlation analyses. 

Climate Data Source Latitude(°N) Longitude(°E) Elevation 
(m a.s.l.) 

Songxian 34.13 112.06 440.7 
Neixiang 33.15 111.88 221.4 
scPDSI-1 33.75 111.75 - 
scPDSI-2 33.75 112.25 - 
scPDSI-3 34.25 111.75 - 
scPDSI-4 34.25 112.25 - 

Regional scPDSI 33.5–34.5 111.5–112.5 - 

2.3. Statistical Methods 
Pearson’s correlation analyses were performed to identify climate–growth relation-

ships between tree-ring standard chronology and climatic factors from two meteorologi-
cal stations. Climate–growth relationships were investigated from previous March to cur-
rent November to explore the potential effects of climatic factors on tree growth from the 
previous year to the current year. 

Then, a simple linear regression model based on the most dominant climatic factor 
was selected and reconstructed. The split calibration–verification procedure was used to 
verify the reconstruction [32], statistical parameters for this assessment include correlation 
coefficient (r), R-squared (R2), sign test (ST), reduction of error (RE), and coefficient of 
efficiency (CE). In general, positive RE and CE indicate a rigorous and reliable reconstruc-
tion model [32]. 

Spectral analyses were performed using Multi-Taper Method (MTM) (Mann and Lee 
1996) to detect the periodicities of the reconstruction, and Wavelet analysis [33] was used 
to extract strong or weak changes for different cycle signals in the reconstruction. 

Spatial analyses were performed between the reconstructed scPDSIMJ and scPDSI 
(1963–2016; 4.05early), temperature, precipitation, potential evaporation, vapor pressure 
(1963–2016; CRU TS4.04) and soil moisture (1979–2016; CLM/EARi, 0–10 cm) (references 
for European Climate Assessment & Data) to explore regional representation and possible 
formation mechanisms. The analyses were performed on the KNMI Climate Explorer 
(http://climexp.knmi.nl (accessed on 1 January 2021)). 

  

Figure 2. Average annual values of Tmax, T, Tmin, P and RH from Songxian (a) and Neixiang
(b) meteorological stations during 1963–2016.

The self-calibrating Palmer Drought Severity Index (scPDSI) [31], which represents
the severity of dry and wet spells based on monthly temperature and precipitation data
as well as the soil–water holding capacity at that location, was chosen over the same time
period as a metric to measure the responses of tree growth to moisture conditions. The four
grids and a regional mean of the scPDSIs between 33.5 to 34.5 N and 111.5 to 112.5 E (CRU
scPDSI 3.26e, https://climexp.knmi.nl/ (accessed on 1 January 2021); Figure 1, Table 1)
were also used in this study to compare with climatic data.

2.3. Statistical Methods

Pearson’s correlation analyses were performed to identify climate–growth relation-
ships between tree-ring standard chronology and climatic factors from two meteorological
stations. Climate–growth relationships were investigated from previous March to cur-
rent November to explore the potential effects of climatic factors on tree growth from the
previous year to the current year.

Then, a simple linear regression model based on the most dominant climatic factor
was selected and reconstructed. The split calibration–verification procedure was used to
verify the reconstruction [32], statistical parameters for this assessment include correlation
coefficient (r), R-squared (R2), sign test (ST), reduction of error (RE), and coefficient of effi-
ciency (CE). In general, positive RE and CE indicate a rigorous and reliable reconstruction
model [32].

Spectral analyses were performed using Multi-Taper Method (MTM) (Mann and Lee
1996) to detect the periodicities of the reconstruction, and Wavelet analysis [33] was used to
extract strong or weak changes for different cycle signals in the reconstruction.

Spatial analyses were performed between the reconstructed scPDSIMJ and scPDSI
(1963–2016; 4.05early), temperature, precipitation, potential evaporation, vapor pressure
(1963–2016; CRU TS4.04) and soil moisture (1979–2016; CLM/EARi, 0–10 cm) (references
for European Climate Assessment & Data) to explore regional representation and possible
formation mechanisms. The analyses were performed on the KNMI Climate Explorer
(http://climexp.knmi.nl (accessed on 1 January 2021)).

3. Results
3.1. Climate–Growth Relationship

There are significant negative correlations (p < 0.05) with T, Tmax and Tmin in current
May and June (Figure 3), and also significant negative correlations with Tmax in current
March and April. There are similar significantly negative correlations with temperatures
from two meteorological stations, which indicated the strong effect of temperature on
tree growth and that the influence time of Tmax to tree growth is longer. In contrast, the
chronology shows mostly positive correlations with P in April–May and RH in March–
June at both stations. There are also significant positive correlations between chronology

https://climexp.knmi.nl/
http://climexp.knmi.nl
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and current June P in Songxian station and current July RH from the Neixiang station.
Overall, temperature (T, Tmax) of southern meteorological station (Neixiang) of the Funiu
Mountains showed higher correlation with tree growth while the greatest influence of
humidity (P, RH) were found from northern meteorological station (Songxian) of the Funiu
Mountains.
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parison also showed that the reconstructed mean scPDSIMJ tracked the observed scPDSIMJ 
well (Figure 4a). The first-order difference data show that there was a significant correla-
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Figure 3. Correlation coefficients between the chronology and climatic factors (T (a), Tmax (b), Tmin
(c), P (d), RH (e) and scPDSI (f)) in the Songxian (brown bar) and the Neixiang stations (green bar),
respectively. The horizontal dashed line represents p < 0.05.
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Previous studies demonstrated that the maximum temperature [26] and relative hu-
midity [15] from April to July were main limiting factors at Mt. Shiren. Early summer
moisture signal (scPDSI) was also captured and reconstructed in the eastern Qinling Moun-
tains [19].

The correlations between chronology and scPDSI from previous March to current
November are almost all positive, especially significant from current March to August.
Almost all correlations between chronology and scPDSI in May and June are over 0.6
(p < 0.05), the highest correlation in May is scPDSI grid point (0.687, p < 0.05; 33.75 N,
112.25 E) closest to the sampling site while the highest correlation in June is regional mean
scPDSI (0.663, p < 0.05; 33.5–34.5 N, 111.5–112.5 E).

In a general way, the influence of seasonal climatic factor to tree growth is more stable
and meaningful than that of single month climate factor. Based on the principle that a
higher correlation indicates a greater impact on tree growth, we combine the monthly data
on single scPDSI grid point (33.75 N, 112.25 E) closest to the sampling site and regional
mean scPDSI (33.5–34.5 N, 111.5–112.5 E). The highest correlations with chronology were
both May–June scPDSI, and the highest correlation value of single grid scPDSI was 0.693
(p < 0.05, 33.75 N, 112.25 E) while that of regional mean scPDSI was 0.71 (p < 0.05).

3.2. Transfer Function and Regional scPDSI Reconstruction

According to the above correlation results, the regional mean scPDSI in current May-
June (scPDSIMJ) was reconstructed using following linear regression equation based on the
least square method:

scPDSIMJ = 5.514 ×Wt − 5.21 (1)

where, Wt is the index of tree-ring chronology for year t. (N = 54, r = 0.71, R2 = 50.4%,
R2

adj = 49.4%, F = 52.795, p < 0.0001).
The reconstructed scPDSIMJ could explain 50.4% of the variance in the instrumental

record and 49.4% after an adjustment for the loss of the degree of freedom. A visual
comparison also showed that the reconstructed mean scPDSIMJ tracked the observed
scPDSIMJ well (Figure 4a). The first-order difference data show that there was a significant
correlation (r = 0.737, p < 0.001) between the two scPDSIMJ sequences (Figure 4b), indicating
that the reconstructed scPDSIMJ captured variations of the observed scPDSIMJ at both high
and low frequencies.
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Figure 4. (a) Comparison of the observed (solid line) and the reconstructed (dash line) scPDSIMJ 
during the period 1963—2016 CE at Mt. Shiren. (b) Comparison of the first-order difference se-
quence of the observed (solid line) and reconstructed (dash line) scPDSIMJ. 
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Figure 4. (a) Comparison of the observed (solid line) and the reconstructed (dash line) scPDSIMJ
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The split sample procedure was used to assess the reliability of the reconstruction.
Table 2 shows that all parameters used for calibration and verification periods are significant
(p < 0.01) and RE and CE values are positive, and ST test is also significant (p < 0.05) and
high F values are in all calibration and verification time periods, which means the model is
acceptable for scPDSIMJ reconstruction [32] (Cook et al., 1999).

Table 2. Calibration and verification statistics for reconstructed scPDSIMJ.

Calibration
(1963–1991)

Verification
(1992–2016)

Calibration
(1988–2016)

Verification
(1963–1987)

Full Calibration
(1963–2016)

R 0.714 ** 0.696 ** 0.814 ** 0.601 ** 0.710 **
R2 0.510 0.485 0.662 0.361 0.504
CE 0.298 0.324
RE 0.668 0.440
ST 22+/7− ** 18+/7− * 22+/7− ** 19+/6− * 41+/13− **
F 28.108 21.663 52.948 12.994 52.795

** Significant at the 99% confidence levels, * Significant at the 95% confidence levels.

Spectral analysis results (Figure 5) revealed that the scPDSIMJ reconstruction contained
2.30a, 2.86–2.9a, 3.35a, 3.69–3.83a and 6.43a cycles (p < 0.5), indicating potential ENSO (2–7a,
El Niño-Southern Oscillation) impacts [34,35]. There are also 34.11a, 49.26a cycles (p < 0.01),
which may be related to PDO (Pacific Decadal Oscillation) or AMO (Atlantic Multi-decadal
Oscillation) [36,37].
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4. Discussion
4.1. Tree Growth Influenced by Temperature, Precipitation, or scPDSI

The sampling site located in the eastern Funiu Mountains, the eastern extension of
the Qinling Mountains, here is a transitional belt from subtropical to warm-temperate
continental monsoon climate. There are higher temperature and more precipitation in the
subtropical zone of the southern Funiu Mountains belong to a humid climate region, while
they belong to a sub-humid climate region in a warm temperate zone of the northern Funiu
Mountains, so the growth of this temperate tree is different in response to climate factors in
the north and south Funiu Mountains.

The correlation results found that tree growth at a higher altitude responds similarly
to climate factors on the north and south meteorological stations, as described above, and
the temperature and precipitation in May and June are mainly limiting factors. Tree growth
is the result of the interaction of temperature and precipitation, and temperature often
affects tree growth through its effects on water availability. Therefore, temperature-raised
water deficiency induces water stress to suppress cell division and expansion [2] and form
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narrow rings. However, there are also some different responses in the horizontal scale, of
which temperature (T, Tmax) of the southern meteorological station (Neixiang) of Funiu
Mountains had greater influence on tree growth, while the greatest influence was moisture
(P, RH) from the northern meteorological station (Songxian) of the Funiu Mountains.

To better understand the interaction between temperature and humidity, scPDSI
was used for further research. We chose four single grid-points and a 1 × 1 grid-point
(33.5–34.5 N, 111.5–112.5 E) regional mean scPDSI near the sampling site as examples
to conduct correlation analyses, and found that the correlation results were consistent,
with significant positively correlations from current March to August. The regional mean
grid-point (33.5–34.5 N, 111.5–112.5 E) scPDSI contains both the sampling site and the
Songxian meteorological station, and there is a good correspondence between the response
of tree growth to scPDSI and the response to the precipitation of the Songxian meteoro-
logical station. This also proved that the tree growths in sub-humid areas were mainly
restricted by moisture. However, the highest correlation with chronology was regional
mean scPDSI (r = 0.71, p < 0.05) in current May–June, while it was 0.675 (p = 0.000) with
relative humidity and 0.583 (p = 0.000) with precipitation in current May–June. In other
words, with temperatures rising in May–June, deficiency of soil moisture limits tree growth
and produces narrow rings due to a lack of precipitation before the rainy season and a high
evapotranspiration rate.

The moving correlation results based on a window from January to December and
24 baselength showed that regional mean scPDSIMJ (Figure 6) was the most significantly
and stably limiting factor, and also proved that scPDSI of May–June was the main limiting
factor for tree growth, hence it could be used for reconstruction.
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4.2. Drought Variation of the Reconstructed scPDSIMJ

According to the length of the reliable chronology, scPDSIMJ variation at Mt. Shiren
for the period 1801 to 2016 was carried out (Figure 7). During the past 216 years, the mean
of scPDSIMJ was 0.08, and the standard deviation (σ) was 1.607. To investigate historical
drought variations, we defined a wet year as above mean +1σ (1.687) and a drought year as
below mean –1σ (−1.527) (Figure 7). There are 29 extremely dry years and 30 extremely
wet years, which account for 12.96% and 13.89% of the reconstruction, respectively. The
five driest years were 1880 (−2.999), 1835 (−2.795), 1955 (−2.723), 1929 (−2.629) and 1907
(−2.552). Similar results were found in previous studies [15,19], and had been recorded in
historical documents [38] (Table 3). However, different drought reconstruction methods
and classification of drought levels are the main reasons for the differences in these study
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results (Table 3). Obviously, the most consistent and severe drought events in these studies
were the Dingwu Great Drought (1876–1879 year) in Henan and Shanxi (abbreviated Jin), a
mega-drought that caused a great famine; and the extreme drought occurred from spring
to autumn and the river and pond dried up in 1929 throughout northern China.
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Table 3. Moderately to extreme drought/wet events derived from tree-ring reconstructions and the
corresponding descriptions of historical records.

scPDSIMJ (1801–2016,
This Study)

RHAJ
(1801–2016) [15]

scPDSIMJJ
(1868–2005) [19] Historical Records in Henan Province [38]

Extremely dry period

1801–1802 1801–1802 Not available
1807,1810 1807–1810 Drought from spring to summer
1813–1814 1813–1814 Drought from spring to summer in 1813 and

spring drought in 1814
1821 Not available

1835 1835–1836 Severe drought from spring to summer
1847 1847 Drought from spring to summer
1867 1867 Drought from spring to summer in Gongyi,

Henan
1879–1881 1879–1881 1879 A mega-drought caused a great famine over

Henan and Shaanxi so on provinces in northern
China in during 1876–1879

1891–1892 1891–1892 Not available
1900 1900 1900 Severe drought from spring to autumn over

Henan and Shanxi
1907 1907 Drought from spring to summer

1923,1926, Not available
1929 1929 1929 Severe drought from spring to autumn over

Henan, the river and pond dry up
1932 1932 Drought from summer to autumn over Henan
1935 1935 Severe spring drought over Henan
1941 1941 Severe drought from spring to autumn in 1941

and 1942
1945 1945 Severe drought and locust disaster over Henan
1955 1955 Severe drought from spring to early summer
1968 1968, Drought from spring to summer in the most of

Henan
1988 1988 Severe drought following the drought of

1985–1987
1992, 1992, Severe spring drought

1994,1995 Not available
2000–2001 2000–2001 2000 Severe drought from February to May (the worst

one since 1950)
2007 Not available

2011 2011 Severe drought from January to February since
October 2010 (the lowest for the same period
since 1951)
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Table 3. Cont.

scPDSIMJ (1801–2016,
This Study)

RHAJ
(1801–2016) [15]

scPDSIMJJ
(1868–2005) [19] Historical Records in Henan Province [38]

Extremely wet period

1831 Spring and summer rains from north to south of
the Yellow River

1840 Not available
1862–1864 Not available
1866 Flood in March in Yexian
1868–1872 1869 Flood in summer and autumn over Henan in 1869
1875 Not available

1883 Not available
1885 1885 Flood in summer in Lingbao and Shanxian

(northwestern Henan)
1894 1894 Not available

1895 Not available
1898 1898 Severe flood in summer at Yi and Luo river

(Henan), Shangnan (Shaanxi)
1901 Flood in Fangcheng (Henan)
1905 1905 Severe flood in spring and summer over Henan

1906 Not available
1911–1913 1910–1912 Persistent flood in summer and autumn over

Henan during 1910- 1913
1915 Flood in summer and autumn over Henan

1933,1934, Not available
1936,1944 Not available

1946 Persistent rainfall in spring and summer in the
most of Henan

1948,1949 Not available
1950 Not available

1973,1980, Not available
1983 1983 Rainstorm in April and May in the north Henan

in 1983
1984 1984 From June to September, there were 5 large-scale

rainstorms over Henan in 1984
1990 1990 Not available
1991 Rainstorm in September in Nanzhao (Henan)
1998, Not available
2010 Low temperature and rain in spring, heavy rain

in summer

The five driest years

1880 (−2.999) 1880 (57.82) 1879 (−3.61) Ding-Wu disaster, Shanxi and Henan famine,
1835 (−2.795) 1835 (60.05) 2000 (−2.94) extreme drought
1955 (−2.723) 1955 (60.24) 1929 (−2.53)
1929 (−2.629) 1929 (60.50) 1926 (−2.33)
1907 (−2.552) 1907 (60.71) 1923 (−2.28)

4.3. The Spatial Representations of Reconstructed scPDSIMJ

Spatial correlation analyses of actual or reconstructed regional mean scPDSIMJ with
scPDSI (1963–2016; scPDSI, 4.05early), temperature, precipitation, potential evaporation, va-
por pressure (1963–2016; CRU TS4.04) and soil moisture (1979–2016; CLM/EARi, 0–10 cm)
were performed to determine the spatial distribution and explore possible causes of
drought/wet variations.

4.3.1. Spatial Representations

Figure 8 demonstrates that the actual and reconstructed regional scPDSIMJ have
significant positive correlations with scPDSI (1963–2016; scPDSI, 4.05early) around the
study area. Obviously, the reconstructed scPDSIMJ may represent the drought/wetness
variation in central and eastern monsoon region, especially in the central China region and
the southern adjacent area. These regions are the main grain producing areas in China, so it
is very important to research drought/wet variation for grain production security in China.

In order to verify the reliability of regional representation, we compared recon-
structed scPDSIMJ with the reconstructed PDSI of Mt. Shennong (SNPDSI, Figure 1) and
drought/wetness index from Zhengzhou (DWZZ [39]; Figure 1 Zhengzhou). The results
found that the severe drought events showed better consistency, and correlation coefficients
are 0.367 (n = 210, p = 0.000) between scPDSIMJ and SNPDSI, 0.196 (n = 200, p = 0.005)
between scPDSIMJ and DWZZ, and 0.190 (n = 200, p = 0.007) between SNPDSI and DWZZ
(Figure 9). These statistically validated the reliability and spatial representation of the
reconstructed scPDSIMJ.
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Figure 9. Comparisons of (a) reconstructed regional scPDSIMJ, (b) reconstructed PDSI from Mt. 
Shennong [12], and (c) drought/wet index in Zhengzhou [39]. The gray bars represent the same 
drought periods in three series. 
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Figure 9. Comparisons of (a) reconstructed regional scPDSIMJ, (b) reconstructed PDSI from Mt.
Shennong [12], and (c) drought/wet index in Zhengzhou [39]. The gray bars represent the same
drought periods in three series.

4.3.2. Causes analysis of Drought Variations

The drought variation of a region is closely related to regional climatic elements.
The spatial correlation results show significant negative correlations with temperature
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and potential evaporation and significant positive correlations with precipitation and
vapor pressure and soil moisture in central China region and south adjacent region (e.g.,
Huanghuai region and the central-western Jianghuai region) (Figure 10a–j), however the
scale is slightly different. In terms of the perspective of affected area, temperature and soil
moisture on north and south sides of the sampling site (Mt. Shiren) have similar influence
on tree growth (Figure 10a,b,i,j), while precipitation, potential evaporation and water
pressure from the north of mountains have more influence than the south of mountains
(Figure 10c–h). These also show that drought of central China in May–June is probably
mainly impacted by local temperature and moisture (including precipitation, soil moisture,
potential evaporation and water pressure) on both sides of the transition zone.
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4.4. The Global Hydro-Climatic Signals in Reconstructed Mean scPDSIMJ

Based on the significant characteristics of monsoon climate in eastern China, this study
continues to discuss the relationship between tree growth at sampling sites and global sea
surface temperature (SST, NASA MERRA-2 Tsfc, 1980–2016; the relationship between tree
growth and land surface temperature has been analyzed in Figure 10a,b). Figure 11 shows
there are some significant negative correlations with SST from the northern Pacific Ocean
and the northern Atlantic Ocean and significant positive correlation with SST from the
southeastern Pacific Ocean and the northeastern Indian Ocean with reconstructed scPDSIMJ
in this study, but the overall correlation is weak. These results also confirm that the periodic
changes (2.3–6.43a ENSO cycles (p < 0.5); 34.11 and 49.26 PDO or AMO cycles (p < 0.01))
of tree growth in the transition zone could be related to the SST changes in the Pacific
and Atlantic Oceans. The conclusion, which the drought from May to June had a certain
relationship with SST from the northwestern Pacific Ocean (that is PDO cycle), was similar
to previous studies [40,41], and same as spectral analysis previously. Example, the monsoon
from the Pacific Ocean usually arrives at the middle and lower reaches of the Yangtze River
in June, and the monsoon rainy season begins in the study area in late July, so the study
area in May–June is a period of low rainfall. The high temperature of the northwestern
Pacific Ocean surface in May–June reduces the thrust of the monsoon, making it difficult for
water vapor to reach the northern China, while heat and evaporation on land lead to water
shortages for limiting tree growth (Figure 10a,b) and forming narrow ring. The spatial
correlation values from Figure 11 also show that local continental temperature influence
(above 0.6) is higher than that of the Pacific Ocean surface temperature (from 0.3 to 0.5),
this also indicates that sea surface temperature changes in the Pacific Ocean have a greater
impact on tree growth in the study area, but the impact is weaker than that on land in May
and June.
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5. Conclusions

Based on the sampling site located in an ecological sensitive area from north sub-
tropical to warm temperate climatic transition zone, we developed a 216 years ring-width
reliable chronology and the correlations between chronology and north–south longitudinal
climatic factors were conducted. The results found that temperature and precipitation
in May-June and relative humidity from March to June were main limiting factors; how-
ever, the temperature in the south of the mountains and the moisture in the north of the
mountains had greater influence to tree growth.

The study also showed that regional scPDSIMJ was the most significant and stable
limiting factor to be used for reconstruction. The reconstructed scPDSIMJ revealed that
there are 12.96% extremely dry years and 13.89% extremely wet years during 1801–2016
year and there existed the five driest years over the reconstructed period. The reconstructed
scPDSIMJ can represent the drought variation in central and eastern monsoon region and
has a good agreement with other drought sequences in the surroundings.

Further research found that drought of central China in May–June is mainly impacted
by local temperature and moisture (including precipitation, soil moisture, and potential
evaporation and water pressure) on both sides of the transition zone, and the second one
is by the Pacific and the Atlantic. These results may provide better understanding of
May–June drought variation and service for agricultural production in central China.
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