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Simple Summary: Elm (Ulmus pumila) is a strong essential wood, and it is widely used in cabinets,
sculptures, and ship making. In the present study, phenotypic and comparative transcriptomic
analyses were performed in elm fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07
and U82-39). Phenotypic observation showed that the thickness of secondary xylem of 2-year-old fast-
growing branches was greater compared with slow-growing cultivars. Comparative transcriptome
analysis predicted that many pathways were involved in vascular development and transcriptional
regulation in elm, such as “plant-type secondary cell wall biogenesis”, “cell wall thickening”, and
“phenylpropanoid biosynthesis”. NAC domain transcriptional factors (TFs) and their master regula-
tors, cellulose synthase catalytic subunits (CESAs), xylan synthesis, and secondary wall thickness
were presumed to function in the thickening mechanism of elm branches. Our results indicated that
the general phenylpropanoid pathway and lignin metabolism had vital functions in the growth of
elm branches.

Abstract: Wood plays a vital role in human life. It is important to study the thickening mechanism
of tree branches and explore the mechanism of wood formation. Elm (Ulmus pumila) is a strong
essential wood, and it is widely used in cabinets, sculptures, and ship making. In the present study,
phenotypic and comparative transcriptomic analyses were performed in U. pumila fast- (UGu17 and
UZuantian) and slow-growing cultivars (U81-07 and U82-39). Phenotypic observation showed that
the thickness of secondary xylem of 2-year-old fast-growing branches was greater compared with
slow-growing cultivars. A total of 9367 (up = 4363, down = 5004), 7159 (3413/3746), 7436 (3566/3870),
and 5707 (2719/2988) differentially expressed genes (DEGs) were identified between fast- and slow-
growing cultivars. Moreover, GO and KEGG enrichment analyses predicted that many pathways
were involved in vascular development and transcriptional regulation in elm, such as “plant-type
secondary cell wall biogenesis”, “cell wall thickening”, and “phenylpropanoid biosynthesis”. NAC
domain transcriptional factors (TFs) and their master regulators (VND1/MYB26), cellulose synthase
catalytic subunits (CESAs) (such as IRX5/IRX3/IRX1), xylan synthesis, and secondary wall thickness
(such as IRX9/IRX10/IRX8) were supposed to function in the thickening mechanism of elm branches.
Our results indicated that the general phenylpropanoid pathway (such as PAL/C4H/4CL) and lignin
metabolism (such as HCL/CSE/CCoAOMT/CCR/F5H) had vital functions in the growth of elm
branches. Our transcriptome data were consistent with molecular results for branch thickening in
elm cultivars.

Keywords: Ulmus pumila; branch thickening; comparative transcriptome; cultivars; xylan synthesis

1. Introduction

Wood plays a vital role in human life. Humans have used wood for fuel, building
materials, furniture, paper, tools and more. The thickness of branches is a key wood
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trait for the selection of trees with enhanced glucose yield and biomass production [1].
Previous studies have unraveled the links between wood quality and thickness of branches
by studying populations of natural variants and genotypes [1,2]. Different cultivars or
genotypes of the same tree have great differences in thickness due to environmental and
genetic factors. In connection with the evaluation of wood quality, it is significantly
necessary to study the thickening mechanism of tree branches and explore the formation
mechanism of wood. The formation of vascular tissue is the most important process in the
growth of tree branches. As physical support for upright growth, vascular tissues play a
critical role in conveying water and nutrients throughout the plant [3–5].

The vascular cambium—a secondary lateral meristem—contains the stem cells and
transient amplifying cells that produce the secondary phloem and secondary xylem
(wood) [1]. Cambial activity is highly plastic throughout a plant’s life; cell division, expan-
sion rates, cell-type specification, and differentiation in the cambium can all be varied in
response to environmental and developmental factors [1]. As a complex process, vascular
development of plants culminates in the generation of xylem and phloem, the transport-
ing conduits of plants [6–9]. Xylem cells can develop into secondary cell walls (SCWs),
which form the biggest section of plant lignocellulosic biomass serving as a renewable
resource for biofuel production [6,10]. Biochemical, molecular, and genetic investigations
have discovered that a large number of genes are involved in the biosynthesis of SCW
components [11,12]. Cellulose synthase complexes synthesize cellulose in the plasma
membrane [13]. Three Arabidopsis SCW CESA genes, CESA4/IRX5, CESA7/IRX3, and
CESA8/IRX1, play significant roles in plant development, mutation of which leads to a
seriously reduced cellulose amount and SCW thickness, resulting in decreased stem struc-
tural strength and an abnormal xylem phenotype [14–17]. Xylan, including its β-1,4-xylan
backbone, glycosyl substituents, and acetyl groups, is produced in the Golgi apparatus,
which are then released into the cell walls through vesicles. Genetic and biochemical
studies have shown that the synthesis of the β-1,4-xylan backbone is regulated by a xylan
synthase complex, and such a complex consists of a family GT47 proteins (IRX10/IRX10L)
and two functionally nonredundant groups of family GT43 proteins (IRX9/IRX9L and
IRX14/IRX14L) [18–21].

Plant hormonal response, transcriptional regulation, and peptide signaling control
procambium/cambium proliferation, vascular patterning, and xylem differentiation [22,23].
Auxin is instrumental in regulating cambial stem cells’ activity and the differentiation of
their derivatives. Studies of cryotome sections across wood forming tissues from poplar
and spruce indicated that auxin concentrations are highest in the cambial zone [24,25]
and decrease gradually upon moving away from the cambium toward the secondary
phloem or the xylem. Independent proteomics and transcriptomics studies of Pinus sp.
have tentatively identified ethylene as a potential regulator of the transition from juvenile
to mature wood [26,27]. Both hierarchical and non-hierarchical regulatory networks are
involved in the development of vascular tissues, which are regulated by many transcrip-
tional factors (TFs) [6,28,29]. The biosynthetic genes of SCW are directly modulated by
three layers of regulators, such as NAC domain master regulators (including NST1-3 and
VND1-7) in tier three [30–32], two MYB domain regulators in tier two (as MYB46 and
MYB83), and many other regulators in tier one [3,29]. Repression of these regulators re-
duces the thickness of the cell wall. By contrast, several genes responsible for the synthesis
of cellulose, hemicellulose, and lignin, such as CesA8, IRX9, and 4CL, can be up-regulated
once the TFs are over-expressed (like MYB52 and MYB54) [33]. Besides, phenylpropanoid
metabolism contributes to plant development, including vascular tissue thickening [34].
Lignin is synthesized through the phenylalanine/tyrosine metabolic pathway, which can
increase cell wall rigidity and hydrophobic properties and enhance mineral delivery via
the vascular bundles.

As a strong essential wood from the broadleaf family, Elm (Ulmus pumila) is a decid-
uous tree species belonging to the botanical classification of Ulmaceae, and is native to
central Asia and distributed diffusely in Asia, America, and southern Europe [35–37]. The
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color of the wood is brownish–brown or reddish–yellow. A characteristic tone of the elm is
that it darkens with the passage of time, giving it an added beauty. It is very hard, compact,
rigid, and resistant and can be turned and carved. Currently, it is widely used in cabinet
making, in the manufacture of sculptures, and even on ships [35,38]. In recent years, some
transcriptome sequencing studies have been reported on the molecular mechanism of fruit
development and salt tolerance of elm [36,39]. However, as an excellent wood, there is still
no research on the mechanism of wood formation among different cultivars. Therefore, the
aim of the present study was to reveal the mechanism of wood formation and its quality
in elm cultivars on the basis of phenotypic and comparative transcriptomic analyses in
fast- and slow-growing cultivars. To fully understand the branch growth in elm cultivars,
it is necessary to discover candidate genes and potent pathways associated with vascular
development and transcriptional regulation.

2. Materials and Methods
2.1. Plant Materials and Anatomical Observation

The material for the study was collected from Baiwa Forestry Centre, Shandong
Province, China (35◦2′22” N, 116◦8′22” E), established in 1959, with a forest land area of
1.47 square kilometers. It is the only elm germplasm and gene bank in China where elm
germplasm/cultivar resources have been collected and preserved from all over China.

In this study, 2-year-old seedlings of 50 U. pumila cultivars from the Baiwa Forestry
Centre were selected for morphological analyses. The plant materials were cultured in
natural conditions, and the branches were measured and collected in the vegetation season
(21 June 2020). The measurement of branch diameters was performed by the method
described by Wang [40]. At sampling time, for each cultivar, three trees in good condition
were used for the measurements. Three branches were measured randomly from the
selected tree (Figure S1b). Basal diameter (BD) of the internode was determined as the
geometric mean of two measurements taken in perpendicular directions to 0.1 mm with
digital calipers at the midpoint of the internode (Figure S1b). The growth rate of cultivars
was estimated by relative growth rates (RGR): RGR = (lnN2 − lnN1)/∆t, where N1 is the
BD at time-point 1 (16 March 2020) and N2 is BD at time-point 2 (21 June 2020), ∆t is the
time interval (months).

For anatomical observation, 10 cross-sections were excised from 10 branches collected
from the fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-39)
and fixed in formalin-alcohol-acetic acid (FAA) for anatomical observation. The freehand
slices of cross-sections were stained with phloroglucinol, and observed under a ZEISS Stemi
508 dissecting microscope (Germany) equipped with a computer-assisted digital camera.

2.2. RNA Extraction

UGu17 (Fast1, F1) and UZuantian (Fast2, F2) were selected as representative cultivars
of the group with a fast branch growth rate, U81-07 (Slow1, S1) and U82-39 (Slow2, S2) were
used as cultivars with a slow growth rate. At sampling time, for each cultivar, 9 small blocks
of vascular tissue were excised from 9 branches collected from three different trees and
fixed. A total of 3 replicates of blocks of vascular tissue were sampled for RNA extraction
and transcriptome sequencing. For each replicate, a total of 1g plant materials were ground
in liquid nitrogen and total RNAs were extracted using the TRIzol Reagent (Invitrogen,
Carlsbad, CA, USA) following the manufacturer’s procedures. RNA quality was assessed
using the RNA Nano 6000 Assay Kit of the Agilent Bioanalyzer 2100 system (Agilent
Technologies, Santa Clara, CA, USA) and the NanoDrop 2000 spectrophotometer (Thermo
Scientific, Wilmington, NC, USA).

2.3. Illumina Library Construction and Sequencing

Sequencing libraries were generated using the NEBNext® UltraTM RNA Library Prep
Kit for Illumina® (NEB, San Diego, CA, USA) by following manufacturer’s procedures
and index codes were added to attribute sequences to each sample. Briefly, mRNA was
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purified from total RNA using poly-T oligo-attached magnetic beads. After first and second
strand cDNA synthesis, 150–200 bp cDNA fragments were purified with the AMPure
XP system (Beckman Coulter, Indianapolis, IN, USA). The size-selected, adaptor-ligated
fragments were purified and enriched by PCR amplification. The resulting products were
used for sequencing analysis. High-throughput sequencing was conducted using an Illu-
mina HiSeq X platform (Illumina, San Diego, CA, USA), according to the manufacturer’s
procedures. All genetic data have been submitted to the NCBI Sequence Read Archive
(SRA) database (https://www.ncbi.nlm.nih.gov/sra, accessed on 1 May 2022), SRA acces-
sion: PRJNA785411.

2.4. De Novo Assembly of Transcriptome

RNA sequencing and de novo transcriptome assembly were conducted to create
reference sequence libraries for U. pumila branches. The RNA sample of every accession was
sequenced separately. cDNA library construction and Illumina pair-end 150 bp sequencing
(PE150) were performed according to instructions provided by Illumina Inc. Clean reads
were obtained by removing reads containing adapters, reads containing ploy-N and low-
quality row reads. The remaining high-quality reads were used for transcriptome assembly
using the Trinity software pipeline with default parameters [41]. De novo assembled
unigene sequences were used for BLAST searches and annotation against public databases
(NR, NT, Swiss-Prot, Pfam, KOG/COG, Swiss-Prot, KEGG Ortholog database and Gene
Ontology) with an E-value threshold of 1 × 10−5.

2.5. Calculation of Gene Expression Levels

Twelve independent transcripts libraries were generated for of U. pumila branches by a
PE150 sequencing analysis, separately. Gene expression levels were estimated by RSEM [42]
for all samples. The clean reads were aligned to the de novo assembled transcriptome.
Gene expression levels of branch samples from U. pumila were calculated by the fragment
per kilobase of exon model per million mapped reads (FPKM) method [43]. FPKM values
were chosen to compare the expression levels between fast- and slow samples with a cutoff
of adjusted p-value < 0.05 and |log2(foldchange)| > 1.

2.6. Gene Ontology (GO) and KEGG Annotation and Enrichment

The unigenes of U. pumila were mapped to A. thaliana gene IDs by sequence similarity
searching against the genome of A. thaliana with an E-value cutoff of 1 × 10−5. The GO
enrichment analysis for the differentially expressed genes (DEGs) in U. pumila samples
were performed by the topGO package of R. The DEGs of U. pumila unigene IDs were
transferred to the Arabidopsis TAIR locus IDs during the MapMan analysis. The software
KOBAS were used to test the statistical enrichment of differential expression genes in KEGG
pathways in U. pumila [44].

2.7. qRT-PCR Verification

The qRT-PCR was performed to verify the expression patterns revealed by the RNA-
seq analysis. The purified RNA samples were treated with DNaseI and converted to cDNA
using the PrimeScript RT Reagent Kit with gDNA Eraser (Takara, Dalian, China) according
to the manufacturer’s procedures. A total of four up-regulated genes (Cluster_14363.17023,
Cluster_14363.17552, Cluster_14363.18534, Cluster_14363.18706) and two down-regulated
genes (Cluster_14363.19711, Cluster_14363.18394) were selected randomly for the qRT-PCR
assay. An ortholog (Cluster-14363.8722) of the A. thaliana member of SAND family protein
in U. pumila was used as a reference and to normalize the amount of template cDNA added
in each reaction. Expression of five key genes of the “secondary walls synthesis” pathway
and three genes of “phenylpropanoid and lignin biosynthesis” were tested in branch
samples of UGu17 (Fast1, F1), UZuantian (Fast2, F2), U81-07 (Slow1, S1) and U82-39 (Slow2,
S2) at spring (16 March 2020), summer (21 June 2020) and autumn (19 September 2020) by
qRT-PCR analysis. Gene-specific qRT-PCR primers (21–24 bp) were designed using Premier
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5.0 software (Table S4). qPCR was performed using SYBR Green qPCR Master Mix (DBI,
Ludwigshafen, Germany) in an ABI7500 Real-Time PCR System (ABI, Waltham, MA, USA).
Three replicates were performed, and the amplicons were used for melting curve analysis
to evaluate the amplification specificity. Relative gene expression was quantified using the
2−(∆∆Ct) method.

3. Results
3.1. Branches Phenotypic Traits

The results of the conducted descriptive statistical analysis are shown for each studied
cultivar (Figure S1a). The variation range of branch diameter is 0.65–2.36 mm, the average
is 1.52 mm. The coefficient of variation (CV) value of branch diameter was 33.54%. The
cultivar U73-03 has the highest BD (2.36 mm) and the cultivar U82-39 had the lowest BD
(0.65 mm). Growth rates of cultivars were estimated by RGR. The variation range of RGR is
0.07–0.24 mm month-1, the average is 0.181 mm. The cultivar UTaishan1 had the highest
BD (0.24) and the cultivar U82-39 had the highest BD (0.77) (Figure 1a). The phenotypic and
comparative transcriptomic analyses were performed in U. pumila fast-growing cultivars
UGu17 (2.13 mm) and UZuantian (2.21 mm) (Figure 1b,c) and slow-growing cultivars
U81-07 (1.32 mm) and U82-39 (0.65 mm) (Figure 1b,c). Phenotypic observation showed
that the thickness of secondary xylem of 2-year-old fast-growing branches (UGu17 and
UZuantian) was significantly greater than that of slow-growing cultivars (U81-07 and
U82-39) (Figure 1c).

3.2. Transcriptome Profiling of U. pumila

For branches, UGu17 and UZuantian were selected as representative cultivars of the
fast-growing group with large BD values, U81-07 and U82-39 were used as representative
cultivars of the slow-growing group with small BD values. After sequencing with the
Illumina HiSeq X platform, a total of 20,176,918 to 24,632,251 pair-end reads were obtained
from six samples with fast a branch growth rate and six samples with a slow branch growth
rate (Table 1). De novo transcriptome assembly generated 60,784 unigenes, with an average
length of 1204 nt and N50 of 1845. On average, 80.56% of the reads from twelve samples
were mapped to the reference genome (Table 1).

Table 1. Summary of the mapping of transcriptome reads to the reference sequence.

Sample Name Total Reads Total Mapped Mapping Ratio

Fast1_1 49,014,302 39,324,430 80.23%
Fast1_2 41,483,608 33,367,760 80.44%
Fast1_3 41,955,680 33,679,770 80.27%
Fast2_1 41,945,930 33,784,144 80.54%
Fast2_2 40,140,204 32,087,136 79.94%
Fast2_3 42,014,884 33,631,348 80.05%
Slow1_1 44,732,848 35,697,784 79.80%
Slow1_2 42,697,528 34,428,142 80.63%
Slow1_3 40,034,844 32,328,242 80.75%
Slow2_1 42,918,790 34,843,800 81.19%
Slow2_2 41,464,616 33,715,910 81.31%
Slow2_3 41,702,398 34,017,546 81.57%
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UTaishan1 has the highest BD (0.24) and the cultivar U82-39 has the highest BD (0.77). Error bars 
indicate SE. (b) The branch phenotypes of fast- (UGu17 and UZuantian) and slow-growing cultivars 
(U81-07 and U82-39). (c) Photomicrographs of branch cross-sections of fast- (UGu17 and UZuantian) 
and slow-growing cultivars (U81-07 and U82-39). C, cambium region; SP, secondary phloem; SX, 
secondary xylem. 
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Figure 1. (a) The relative growth rates (RGR) of 50 elm cultivars from the Baiwa Forestry Centre. The
variation range of RGR is 0.07–0.24 mm month−1, the average is 0.181 mm. The cultivar UTaishan1
has the highest BD (0.24) and the cultivar U82-39 has the highest BD (0.77). Error bars indicate
SE. (b) The branch phenotypes of fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-
07 and U82-39). (c) Photomicrographs of branch cross-sections of fast- (UGu17 and UZuantian)
and slow-growing cultivars (U81-07 and U82-39). C, cambium region; SP, secondary phloem; SX,
secondary xylem.

3.3. Functional Annotations of Unigenes

Similarity searches by BLASTX were performed to annotate unigenes against different
databases. All 60,784 (100%) unigenes were annotated in at least one database. A total
of 38,225 (62.88%), 34,341 (56.49%) and 28,400 (46.72%) unigenes showed similarity to
sequences in NR, NT and PFAM database with an E-value threshold of 1× 10−5 (Figure 2a).
A total of 28,399 (46.72%) unigenes were annotated in the GO database by Blast2GO v2.5
with an E-value cutoff of 1 × 10−6. A total of 30,916 unigenes of U. pumila were assigned
to A. thaliana gene IDs for GO annotation mapping by BLASTX with an E-value cutoff of
1 × 10−5.
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Figure 2. (a) Venn diagram of functional annotations of unigenes in nt (NCBI non-redundant protein
sequences), nr (NCBI non-redundant protein sequences), kog (Clusters of Orthologous Groups of
proteins), go (Gene Ontology) and pfam (Protein family) databases. (b) Heatmap of expression
patterns in fast- (Fast1: UGu17 and Fast2: UZuantian) and slow-growing cultivars (Slow1: U81-07
and Slow2: U82-39) samples. (c–f) Expression patterns of differentially expressed genes (DEGs)
identified between fast- and slow-growing cultivars. Red and green dots represent DEGs, blue dots
indicate genes that were not differentially expressed. Totals of 9367 (Up = 4363, Down = 5004),
7159 (Up = 3413, Down = 3746), 7436 (Up = 3566, Down = 3870), 5707 (Up = 2719, Down = 2988)
unigenes were filtered as dysregulated genes in comparisons between Fast1 vs. Slow1 (F1vS1), Fast1
vs. Slow2 (F1vS2), Fast2 vs. Slow1 (F2vS1), Fast2 vs. Slow2 (F2vS2) with the cutoff of padj < 0.05 and
|log2(foldchange)| > 1.

3.4. Differentially Expressed Genes (DEGs) Calculation

The relative level of gene expression in U. pumila branches was evaluated by the
FPKM values, which were calculated based on the uniquely mapped reads. Totals of 9367
(Up = 4363, Down = 5004), 7159 (Up = 3413, Down = 3746), 7436 (Up = 3566, Down = 3870),
5707 (Up = 2719, Down = 2988) unigenes were filtered as dysregulated genes in comparison
of Fast1 vs. Slow1 (F1vS1), Fast1 vs. Slow2 (F1vS2), Fast2 vs. Slow1 (F2vS1), Fast2 vs.
Slow2 (F2vS2) with the cutoff of padj < 0.05 and |log2(foldchange)| > 1 (Figure 2b–f,
Table S1). Overlapping studies found that there were 804 common up-regulated genes for
fast samples compared with slow samples, and the overlapping details were shown in
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Figure 3a. Samples of Fast1 vs. Slow1 and Fast2 vs. Slow1 (F2vS1) had a relatively large
number of characteristics up-regulated genes.
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3.5. Gene Ontology (GO) and KEGG Enrichment Result of DEGs

To uncover the potential pathways for branch growth in elm cultivars, the DEGs were
characterized with GO databases. As a result, a total of 155, 150, 151 and 129 biological
processes (BP) terms were enriched by the 4363, 3413, 3566 and 2719 up-regulated unigenes
with a cutoff of p-value < 0.05 (Table S2). The comparison of four GO enrichment anal-
yses indicated that “plant-type secondary cell wall biogenesis” (GO:0009834), “cell wall
thickening” (GO:0052386), “flavonoid biosynthetic process” (GO:0009813) and “response
to karrikin” (GO:0080167) were commonly enriched by genes up-regulated in fast samples.
The heatmap of the expression pattern of the key genes in the representative over-expressed
processes is shown in Figure 3b.

The KEGG pathways enriched by up-regulated unigenes were shown in Table S3 and
top ten pathways are represented in Table 2. The KEGG pathway “Phenylpropanoid biosyn-
thesis” (ko00940) was enriched by 60, 43, 46 and 25 up-regulated unigenes, “Flavonoid
biosynthesis” (ko00941) was annotated by 11 to 25 over-expressed genes, and 11 to 18 up-
regulated genes were annotated in the KEGG pathway “DNA replication” (ko03030)
(Tables 2 and S3). Besides, “Photosynthesis-antenna proteins” (ko00196) were enriched by
genes commonly up-regulated in comparisons of F1vS1, F2vS1 and F2vS2 (Tables 2 and S3).
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Table 2. The top KEGG pathways enriched by upregulated genes.

KEGG Pathway F1VS1 F1VS2 F2VS1 F2VS2

Phenylpropanoid biosynthesis 1.27 × 10−11 9.28 × 10−9 6.83 × 10−9 7.54 × 10−4

Flavonoid biosynthesis 6.02 × 10−10 3.52 × 10−11 2.25 × 10−3 1.73 × 10−4

Stilbenoid, diarylheptanoid and
gingerol biosynthesis 2.83 × 10−6 6.41 × 10−6 2.46 × 10−2 -

Photosynthesis-antenna
proteins 4.91 × 10−4 - 4.42 × 10−6 2.01 × 10−4

DNA replication 6.62 × 10−4 5.46 × 10−5 1.16 × 10−3 3.95 × 10−3

Starch and sucrose metabolism 2.47 × 10−3 - 4.54 × 10−3

Diterpenoid biosynthesis 2.89 × 10−3 2.62 × 10−2 1.85 × 10−4 1.10 × 10−2

Linoleic acid metabolism 3.87 × 10−3 1.97 × 10−3 3.21 × 10−2 2.82 × 10−2

Plant hormone signal
transduction 4.89 × 10−3 3.52 × 10−5 -

Phenylalanine metabolism 4.90 × 10−3 7.28 × 10−5 3.42 × 10−3 -

3.6. Gene Expression Pattern and Functional Transition of Fast- and Slow-Growing Genotypes

To further provide insights into the functional transitions of fast- and slow-growing
genotypes of elm, we clustered the union of DEGs (15,411 unigenes) into eight clusters using
the euclidean distance clustering algorithm (Figure 4). The GO annotation was performed
to assign genes to functional categories for each cluster (Figure 4). Genes belonging to
cluster three (C3, 2110 genes) were mainly expressed in F1 (UGu17). This cluster contained
a set of genes related to “plant-type secondary cell wall biogenesis”, “lignin biosynthetic
process” and “lignin biosynthetic process”. Genes in cluster two (C2, 2583 genes) were
synchronously upregulated in F2 (UZuantian). These genes function in “photosynthesis,
light harvesting in photosystem I”, “protein oligomerization” and “terpenoid biosynthetic
process”. Genes included in cluster six (C6, 3005 genes) were up-regulated in genotype
S1 (U81-07) and participated in “protein phosphorylation”, “signal transduction”, and
“defense response to fungus” (Figure 4). The genes in cluster eight (C8, 3291 genes) were
highly expressed in S2 (U82-39) and represented by genes related to “signal transduction”,
“defense response to bacterium”, and “hormone-mediated signaling pathway” (Figure 4).

3.7. Real-Time Quantitative PCR Validation

To verify the RNA-Seq results, an alternative strategy was selected for the dysregu-
lated unigenes. In total, four over- and two under-expressed unigenes were selected for
validation by real-time quantitative PCR (qRT-PCR) using the same RNA samples that
were used for RNA-Seq. Primers were designed to span exon-exon junctions (Table S4).
In most cases, the gene expression trends were similar between these two methods, the
correlation between the two sets of data was R2 = 0.859, the result was shown in Figure 5.
For example, the homolog of the class I small heat-shock protein, Cluster-14363.17023,
which was detected by RNA-Seq as up-regulated unigene in the fast-growing samples
(Log2 fold change (L2fc) of F1vS1, F1vS2, F2vS1, F2vS2 = 2.069, 1.246, 3.170, 2.343), was also
detected significantly over-expressed by the qRT-PCR method (Figure 5).
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3.8. qRT-PCR Analysis for Secondary Walls and Lignin Biosynthesis-Associated Genes in
Different Seasons

Information on the major gene expression variations that occur during branch growth
has been predicted in elm fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07
and 11 U82-39) in the growth season; however, transcriptome analysis is limited to only
summer. To provide more information about other seasons, the qRT-PCR analysis for key
genes of the “secondary walls synthesis” pathway and three genes of “phenylpropanoid
and lignin biosynthesis” were tested in branch samples of fast- and slow-growing cultivars
in spring (16 March 2020), summer (21 June 2020) and autumn (19 September 2020). Most
of the unigenes upregulated in the fast-growing cultivars screened by RNA_seq were
discovered to be overexpressed in summer and other seasons by qRT-PCR (Figure S2a–i).
However, the difference of gene expression in March or September was less than that in
June. For example, fold change values of F1/S1 in VND1-Cluster-15866 were 2.27 (16 March
2020), 5.67 (21 June 2020) and 2.00 (19 September 2020). Besides, statistical analysis showed
that the gene expression of samples in June was generally higher than that in spring
and autumn.
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Figure 5. Validation of RNA-Seq data. Verification of the expression level of the selected eight
DEGs from RNA−Seq data through RT-qPCR: (a) Cluster_14363.17023, (b) Cluster_14363.17552,
(c) Cluster_14363.18534, (d) Cluster_14363.18706, (e) Cluster_14363.18394, (f) Cluster_14363.19711.
Error bars indicate the standard error as mean + SD. The x axis represents the relative expression level,
and the y-axis represents cultivars. (g) Correlation coefficient of gene expression between qRT−PCR
analysis and RNA-Seq data.

4. Discussion

The most important process in the growth of tree branches is the formation of vas-
cular tissue. The procambium/cambium proliferation, vascular patterning, and xylem
differentiation are regulated by plant hormones, transcriptional regulators, and peptide
signaling, respectively. NAC domain TFs function as primary regulators in the biosynthesis
of cellulose, hemicellulose, and lignin in xylary fibers [11,28,33,45]. The illustration of
the predicted transcriptional regulating and secondary walls synthesis genes of branch
growth in elm are shown in Figure 6a and Table 3. In Arabidopsis, the xylem vessel dif-
ferentiation is positively regulated by VND6 and VND7 [46]. VND1 to VND5 function
redundantly with VND6 and VND7 in vessel development [31]. In the present study, VND1
coding gene VND1 (Cluster-15866.0, L2fc = 2.93, 3.00, 1.77, 1.84) was up-regulated in the
fast-growing samples. A positive regulator MYB26 was found to be a primary regulator
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modulating the NAC domain [47]. The SCW deposition was enhanced when MYB26 was
overexpressed. Furthermore, MYB26 positively modulated the accumulation of SCWs. We
found that the MYB26 homolog was over-expressed (Cluster-17858.0, L2fc = 2.15, 2.62, 1.07,
1.54) in the fast-growing elm branches. In the process of vascular development, xylem
cells developed SCWs, which formed the biggest section of lignocellulosic biomass in
plants. The over-expression of VND1 and MYB26 indicated that VND proteins regulated
the biosynthesis of SCW in xylem vessels. It is one of the decisive factors for the growth
of elm branches. A variety of other TFs serve as primary regulators downstream of the
NAC and MYB domains [45,48]. The homolog of MYB103 in elm was up-regulated in
the fast-growing samples (Cluster-14363.13132, L2fc = 3.30, 2.91, 1.84, 1.45). This result
indicated that cellulosic synthesis and enhanced SCW thickening in fibers were related to
the thickening mechanism of elm branches.

The main components of SCWs include cellulose, xylan, glucomannan, and lignin.
Cellulose synthase complexes synthesize cellulose in the plasma membrane [49,50]. In the
present study, CESA homologs IRX5 (Cluster-14363.24938, L2fc = 5.80, 2.55, 6.08, 2.83),
IRX3 (Cluster-14363.17155, L2fc = 3.18, 2.83, 2.07, 1.73), and IRX1 (Cluster-14363.16654,
L2fc = 2.78, 2.70, 1.64, 1.57) were over-expressed in fast-growing branches. As the second
most abundant polysaccharide in SCWs of angiosperms, xylan plays a vital role in a struc-
tural network for secondary wall strength by forming twofold helical screw ribbons [7,51].
In elm, xylan synthase coding genes IRX9 (Cluster-14363.8812, L2fc = 3.38, 3.34, 1.66, 1.62),
IRX10 (Cluster-14363.8812, L2fc = 5.80, 2.55, 6.08, 2.83), and IRX8 (Cluster-14363.24938,
L2fc = 5.80, 2.55, 6.08, 2.83) were up-regulated in the branches with coarser diameters. Be-
sides, the over-expression of glucuronoxylan methyltransferases (GXMs) of DUF (domain
of unknown function) 579 family GXM3 (Cluster-14363.8812, L2fc = 3.38, 3.34, 1.66, 1.62)
and IRX15L (Cluster-14363.8812, L2fc = 3.38, 3.34, 1.66, 1.62) indicated that GlcA methy-
lation was enhanced in the fast-growing branches. These results suggested that cellulose
amount, xylan synthesis, and SCW thickness were related to the thickening mechanism
of elm.

As a significant metabolic process in plants, phenylpropanoid metabolism greatly
contributes to plant development and plant-environment interplay [34]. The general phenyl-
propanoid pathway is composed of the first three steps of the phenylpropanoid pathway.
The reactions in the general phenylpropanoid pathway are catalyzed by phenylalanine
ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H), and 4-coumarate-CoA ligase
(4CL) [52]. In the present study, PAL (Cluster-14363.18746, L2fc = 3.04, 2.66, 1.86, 1.48), 4CL
(Cluster-14363.17413, L2fc = 2.94, 3.38, ns, 2.45) and C4H (Cluster-14363.19028, L2fc = 3.38,
3.03, 2.13, 1.79) coding genes were up-regulated in the fast-growing elm branch samples
(Figure 6b, Table 3). These results indicated the general phenylpropanoid pathway was re-
lated to the thickening mechanism of elm branches. As one of the most important secondary
metabolites, lignin is synthesized through the phenylalanine/tyrosine metabolic pathway
in plant cells. In Nicotiana tabacum, hydroxycinnamoyl-CoA shikimate/quinate hydroxycin-
namoyl transferase (HCT) is identified as the gateway enzyme of lignin biosynthesis [53].
We found that the homolog of HCL (Cluster-14363.5128, L2fc = 3.49,7.96, ns, 6.09) was
over-expressed in the fast-growing elm branches. Besides, several vital enzymes, such as
coumarate 3-hydroxylase C3H, caffeoyl shikimate esterase CSE, caffeate/5-hydroxyferulate
3-O-methyltransferase COMT, caffeoyl CoA 3-O-methyltransferase CCoAOMT, cinnamoyl-
CoA reductase CCR, cinnamyl alcohol dehydrogenase CAD, fihydroflavonol 4-reductase
DFR, and ferulate 5-hydroxylase F5H, in the lignin synthesis pathway were up-regulated
in fast-growing branches of elm (Figure 6b, Table 3). These results indicated that lignin and
its underlying pathway played a crucial role in the growth of elm branches. We speculated
that lignin improved cell wall rigidity and hydrophobic properties and enhanced mineral
delivery using the vascular bundles in fast-growing branches [17].
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Figure 6. (a) Illustration of the predicted transcriptional regulating and secondary walls synthesis
genes of branch growth in elm. The expression levels (Log2(FC)) of selected differentially expressed
genes in fast- and slow-growing cultivars are shown on the right. A red color indicates that the
gene is highly expressed in the branch samples. Log2(FC) means Log2() value of fold change
for unigenes. (b) The biosynthesis pathway of the general phenylpropanoid and lignin. PAL,
phenylalanine ammonia-lyase; TAL, tyrosine ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL,
4-coumarate: CoA ligase; CCR, cinnamoyl-CoA reductase; HCT, hydroxycinnamoyl-CoA shiki-
mate/Quinatehydroxycinnamoyltransferase; CCoAOMT, caffeoyl-CoA O-methyltransferase; F5H,
ferulate 5-hydroxylase; CSE, caffeoyl shikimate esterase; COMT, caffeic acid O-methyltransferase;
CAD, cinnamyl alcohol dehydrogenase. The color of the proteins indicates the expression of their
coding genes in fast and slow growing branches: red indicates up-regulated in the four comparisons
(F1vS1, F1vS2, F2vS1, F2vS2), orange indicates up-regulated in three comparisons, yellow indicates
up-regulated in two comparisons.
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The transcriptional process and signaling pathways play a vital role in lignin synthesis
and plant vascular tissue growth [33,45]. In the present study, many bZIP, C3H, Dof,
and MYB TF family members were differentially expressed in the fast-growing branches.
Moreover, five MYB TFs were over-expressed in the fast-growing elms. MYB66 encoding
a MyB-related protein-containing R2 and R3 repeats participated in root and hypocotyl
epidermal cell fate determination in Arabidopsis [54]. The over-expression of its homolog
(Cluster-14363.50, L2fc = 2.63, 2.07, 2.78, 2.22) in the fast-growing branches indicated its
function in transcription during cell fate. MYB105 functions in boundary specification in
model plants [55]. The up-regulation of this gene (Cluster-16574.0, L2fc = 5.93, 3.14, 6.63,
3.85) in fast-growing elm branches indicated the role of organ boundary patterning and
meristem initiation/maintenance in the development of elm branches. In Arabidopsis,
AtNAC2 is involved in lateral root development [56]. The expression pattern of this gene in
the fast-growing branches indicated the function of this TF in ethylene and auxin signaling
pathways during the thickening of elm.

Table 3. The fold change ratio of genes in several key vascular development and transcriptional
regulation pathways.

Process Speculative Function Unigene ID F1vS1 F1vS2 F2vS1 F2vS2

plant-type secondary cell
wall biogenesis

cellulose synthase
Cluster-14363.16654 2.781 2.704 1.643 1.570
Cluster-14363.17155 3.181 2.834 2.070 1.726
Cluster-14363.24938 5.799 2.547 6.081 2.832

Exostosin Cluster-14363.20748 2.841 2.757 1.268 1.185

fasciclin-like
arabinogalactan protein

Cluster-14363.18562 2.603 3.123 1.765 2.289
Cluster-14363.14849 2.962 3.642 1.753 2.433
Cluster-14363.25117 2.656 2.678 1.524 1.547
Cluster-14363.6739 4.230 4.432 2.344 2.552

glucuronoxylan
4-O-methyltransferase Cluster-14363.13842 3.744 3.140 2.008 1.404

glucuronyltransferase Cluster-14363.14914 2.455 2.865 1.309 1.720
glycosyl transferase Cluster-14363.8812 3.382 3.340 1.658 1.617
laccase Cluster-14363.9138 3.477 3.514 1.736 1.774

MYB transcription factor Cluster-14363.13132 3.301 2.909 1.843 1.452
Cluster-17858.0 2.152 2.620 1.069 1.538

NAC transcription factor Cluster-15866.0 2.925 2.997 1.766 1.845
phytochelatin synthetase Cluster-14363.17226 3.718 3.903 3.050 3.245
xylan synthesis Cluster-14363.14397 2.455 2.537 1.274 1.359

lignin biosynthetic process

chitinase Cluster-14363.19471 3.163 2.963 1.626 1.427
interfascicular fibers
synthesis Cluster-14363.13437 2.402 3.274 2.872 3.745

laccase Cluster-14363.7596 4.162 3.920 2.297 2.055
O-methyltransferase Cluster-14363.16741 3.258 2.758 2.537 2.039

xylan biosynthetic process
galacturonosyltransferase Cluster-14363.6326 2.609 2.866 1.306 1.566
synthesis and deposition
of secondary wall
cellulose

Cluster-14363.15500 3.517 3.539 2.184 2.206

unidimensional cell growth

actin monomer-binding
protein Cluster-14363.20463 1.884 2.078 1.727 1.920

Alpha-Expansin Cluster-14363.17330 4.839 2.400 4.704 2.264
cell differentiation Cluster-14363.13311 2.983 2.661 1.934 1.618
expansin A6 Cluster-14363.28593 1.493 1.715 1.113 1.336
Immunoglobulin E-set Cluster-14363.18373 4.244 2.924 2.466 1.144
key turgor pressure
regulator in plant cells Cluster-14363.35635 1.745 1.599 1.174 1.027

plasma-membrane
associated
cation-binding protein

Cluster-14363.13070 2.431 2.956 1.436 1.961
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Table 3. Cont.

Process Speculative Function Unigene ID F1vS1 F1vS2 F2vS1 F2vS2

water transport

ABC transporter Cluster-14363.32034 1.416 2.427 1.937 2.949

plasma membrane
intrinsic protein

Cluster-14363.15480 1.787 1.351 1.987 1.553
Cluster-14363.16016 2.476 2.960 2.677 3.161
Cluster-14363.19969 2.378 2.143 2.477 2.242
Cluster-14363.20258 1.136 1.286 1.258 1.410

water and urea channels Cluster-14363.8769 4.830 3.982 4.473 3.620

regulation of transcription,
DNA-templated

Auxin inducible protein Cluster-13847.0 1.559 1.218 1.797 1.455
Auxin-responsive gene Cluster-14363.35167 1.811 1.168 2.146 1.509
B-box type zinc finger
protein Cluster-14363.31847 3.759 2.030 3.805 2.075

bHLH DNA-binding
protein

Cluster-14363.10371 3.195 2.068 3.374 2.250
Cluster-14363.388 1.248 2.707 1.614 3.076

C2H2 transcription
factor

Cluster-14363.17522 2.245 1.967 1.666 1.391
Cluster-14363.19420 2.797 3.476 2.111 2.800
Cluster-14363.25933 1.883 1.732 1.247 1.098

Dof transcription factor Cluster-14363.5357 1.185 1.278 1.471 1.570
multiprotein bridging
factor Cluster-14363.21135 1.831 2.109 2.962 3.240

MYB transcription factor

Cluster-14363.31703 5.646 3.215 5.811 3.389
Cluster-14363.50 2.631 2.067 2.778 2.216
Cluster-16574.0 5.926 3.140 6.629 3.849
Cluster-17031.0 1.934 1.959 1.801 1.827
Cluster-17693.0 5.932 5.833 5.440 5.353

zinc knuckle protein Cluster-14363.23170 1.345 1.180 1.644 1.483

response to auxin

Auxin efflux carrier
protein

Cluster-14363.23375 2.303 1.763 2.336 1.793
Cluster-14363.23376 1.570 1.270 1.796 1.501

modulator of auxin
signaling Cluster-14363.24574 1.570 2.781 1.064 2.279

regulates vesicle
trafficking Cluster-14363.13767 1.350 1.129 2.224 2.006

regulator of cellular
auxin efflux Cluster-14363.4717 2.327 1.505 2.275 1.457

response to jasmonic acid

controls the balance
between salicylic acid
and jasmonic acid
signaling

Cluster-14363.16305 2.509 2.540 1.252 1.294

NAC transcription factor Cluster-18724.0 2.013 1.488 2.351 1.834
required for
wound-induced jasmonic
acid accumulation

Cluster-14363.17181 2.753 2.264 2.969 2.478

response to abscisisc acid
and jasmonic acid Cluster-16707.0 7.905 7.813 4.921 4.835

vacuole formation Cluster-14363.19730 3.595 3.708 2.602 2.710
wound- and methyl
jasmonate-induced
secondary metabolism

Cluster-14363.28007 2.998 1.359 2.978 1.338

The environmental factors affecting trees are climate, soils, topography, and biota.
The soil microbial community is responsible for most nutrient transformations in soil,
regenerating minerals that limit tree growth [57–59]. In this study, immune responding
genes were differentially expressed in the slow-growing genotypes, as “defense response to
fungus” enriched by 80 over-expressed unigenes in S1 (U81-07) and “defense response to
bacterium” included 136 up-regulated unigenes in S2 (U82-39). However, the unigenes of
two fast-growing genotypes did not enrich in the process of soil microorganisms’ response.
The above results indicated that the microorganisms in the source environment of slow
growing strains may be different from that of Baiwa Forest farm. Therefore, there is a
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response to environmental microorganisms in the process of tree growth and development,
resulting in slow growth.

Although we identified the molecular underpinning of biologically active substances
in growing elm branches through sequencing and bioinformatics methods, we did not test
any of the above-mentioned genes, which remained a limitation of our current investigation.
Collectively, it is necessary to carry out functional analyses to further identify the functions
of phytonutrient-associated genes and pathways in elm thickening.

5. Conclusions

In the present study, phenotypic and comparative transcriptomic analyses were per-
formed in Elm fast- (UGu17 and UZuantian) and slow-growing cultivars (U81-07 and U82-
39). Phenotypic observations showed that the thickness of secondary xylem of 2-year-old
fast-growing branches was greater compared with slow-growing cultivars. Comparative
transcriptome analysis predicted that many pathways were involved in vascular devel-
opment and transcriptional regulation in elm, such as “plant-type secondary cell wall
bio-genesis”, “cell wall thickening”, and “phenylpropanoid biosynthesis”. NAC domain
transcriptional factors and their master regulators, cellulose synthase catalytic subunits,
xylan synthesis, and secondary wall thickness were supposed to function in the thicken-
ing mechanism of elm branches. Our results indicated that the general phenylpropanoid
pathway and lignin metabolism had vital functions in the growth of elm branches.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/10.3390/
biology11050711/s1, Table S1: The dysregulated gene list in comparisons of Fast1 vs. Slow1 (F1vS1),
Fast1 vs. Slow2 (F1vS2), Fast2 vs. Slow1 (F2vS1), Fast2 vs. Slow2 (F2vS2), Table S2: The biological
processes (BP) terms enriched by the up-regulated unigenes, Table S3: The KEGG pathways enriched
by the up-regulated unigenes, Table S4: The real-time quantitative PCR (qRT-PCR) primer sequences.
Figure S1: (a) The branch diameter of 50 elm cultivars from the Baiwa Forestry centre. The variation
191 range of branch diameter is 0.65–2.36 mm, the average is 1.52 mm. The coefficient of variation
(CV) 192 value of branch diameter was 33.54%. The cultivar U73-03 has the highest BD (2.36 mm)
and the 193 cultivar U82-39 has the highest BD (0.65 mm). (b) For each cultivar, three trees in
good condition were used for the measurement. Three branches were measured randomly from the
selected tree. Basal diameter (BD) of the internode was determined as the geometric mean of two
measurements taken in perpendicular directions to 0.1 mm with digital calipers at the midpoint of the
internode. Figure S2: Expression of five key genes of “secondary walls synthesis” pathway and three
genes of “phenylpropanoid and lignin biosynthesis” were tested in branch samples of UGu17 (Fast1,
F1), UZuantian (Fast2, F2), U81-07 (Slow1, S1) and U82-39 (Slow2, S2) at spring (March 16, 2020),
summer (June 21, 2020) and autumn (September 19, 2020) by qRT-PCR analysis: (a) VND1-Cluster-
15866.0, (b) MYB103-Cluster-14363.13132, (c) IRX3-Cluster-14363.17155, (d) IRX9-Cluster-14363.8812,
(e) GXM3-Cluster-14363.138424, (f) IRX15L-Cluster-14363.14397, (g) PAL-Cluster-14363.26992, (h) 4CL-
Cluster-14363.17413, (i) COMT-Cluster-14363.16741. Error bars indicate the std error. The x axis
represents the relative expression level, and the y-axis represents three sampling seasons. The
statistical differences between gene expression in Jun and Mar/Sep samples were analyzed by
one-way anova. ***/### indicates p-value < 0.001, **/## indicates p-value < 0.01, */# indicates
p-value < 0.05, ns means not significant.
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