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Simple Summary: Triploid seedless watermelon cultivars have high demand globally, and they
are excellent in quality compared to diploid seeded watermelons. A low number of seedlings are
produced as a result of grafting in triploid and tetraploid watermelons. In this regard, to understand
the influencing factors of genome duplication on graft compatibility, we performed a comparative
transcriptome analysis between tetraploid and diploid watermelons grafted on squash rootstock
with the splice method. A weighted gene co-expression network analysis (WGCNA) was performed
using the common differentially expressed genes (DEGs) between diploid and tetraploid plants of
watermelon grafted seedlings and the contents of hormones antioxidants (AOX), sugars, and starch at
0, 3, and 15 days after grafting (DAG). Higher survival rates and contents of hormones, AOX, sugars,
and starch were observed in tetraploid grafted seedlings compared to diploid ones. We concluded
that genome duplication significantly affected gene expression in the IAA and ZR signal transduction
and AOX biosynthesis pathways in the grafted plants, resulting in the regulation of hormone levels’
signal pathways, promoting plant survival. These genes are identified for the first time, and no
previous reports about their role or functions in watermelon are available.

Abstract: Watermelon (Citrullus lanatus) is a popular crop worldwide. Compared to diploid seeded
watermelon, triploid seedless watermelon cultivars are in great demand. Grafting in triploid and
tetraploid watermelon produces few seedlings. To learn more about how genome duplication affects
graft compatibility, we compared the transcriptomes of tetraploid and diploid watermelons grafted
on squash rootstock using a splicing technique. WGCNA was used to compare the expression of
differentially expressed genes (DEGs) between diploid and tetraploid watermelon grafted seedlings at
0, 3, and 15 days after grafting (DAG). Only four gene networks/modules correlated significantly with
phenotypic characteristics. We found 11 genes implicated in hormone, AOX, and starch metabolism in
these modules based on intramodular significance and RT-qPCR. Among these genes, two were linked
with IAA (r2 = 0.81), one with ZR (r2 = 0.85) and one with POD (r2 = 0.74). In the MElightsteelblue1
module, Cla97C11G224830 gene was linked with CAT (r2 = 0.81). Two genes from the MEivory module,
Cla97C07G139710 and Cla97C04G077300, were highly linked with SOD (r2 = 0.72). Cla97C01G023850
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and Cla97C01G006680 from the MEdarkolivegreen module were associated with sugars and starch
(r2 = 0.87). Tetraploid grafted seedlings had higher survival rates and hormone, AOX, sugar, and
starch levels than diploids. We believe that compatibility is a complicated issue that requires further
molecular research. We found that genome duplication dramatically altered gene expression in
the grafted plants’ IAA and ZR signal transduction pathways and AOX biosynthesis pathways,
regulating hormone levels and improving plant survival.

Keywords: WGCNA; diploid; tetraploid; IAA and ZR signal; pathways; hormones antioxidants (AOX)

1. Introduction

Watermelon (Citrullus lanatus L.) is an essential and popular summer fresh fruit
worldwide [1]. Triploid seedless watermelon cultivars are the most desired by consumers,
with a high price and more excellent quality than seeded watermelons [2]. Seedless
watermelons are triploids (3n = 33), produced by crossing a tetraploid (4n = 44) as a
female parent with a diploid (2n = 22) as a male parent [3,4]. Tetraploid plant induction
can be achieved by different methods, such as applying aqueous chemicals solution, viz.,
Colchicine and Oryzalin to the apical meristem of diploid seedlings [5–7].

Polyploidy, the presence of more than two genomes in a nucleus or cell [8,9], is a com-
mon phenomenon among plants and is usually related to fitness and is well-adapted [10].
One of the core advantages of polyploidy in the watermelon is triploid (seedless) fruits;
another benefit of gene redundancy is diversifying gene function by altering redundant
copies of essential genes [10–12]. Interestingly, after genome doubling, the artificially in-
duced autopolyploids always exhibit new characters, such as increased DNA contents, high
secondary metabolite substances, large tissues and organs, improved yield, or higher con-
tents of chlorophyll, lycopene, fructose, and glucose [3,4,6,13,14]. Additionally, other effects
have been observed such as increased quality hardiness [15–17] and higher tolerance to
both abiotic and biotic stresses when compared to diploids in watermelon [18], rice [19,20],
citrus [21], black locust [22], honeysuckle [23], kinnow mandarin [24], cotton [25], and
rangpur lime [26]. In this respect, grafting is another technique frequently used in horticul-
tural crops. Commercially, vegetable grafting is employed due to its potential to provide a
wide range of essential benefits, such as enhancing resistance to biotic and abiotic stresses
and improving and promoting plant growth [27], in addition to other advantages. In
particular, watermelon is known to achieve high compatibility when grafted with cucurbit
hybrids [28].

Recently, with the wide adoption and implementation of various omics technologies,
it has become easier to understand the compatibility mechanisms and identification of
candidate genes. The transcriptome is an organism’s whole collection of transcripts, and
transcriptomics is the study of gene expression at the RNA level [29]. Li et al. [30] discovered
that in apple shoots grafted onto a dwarf rootstock, the expression of the polar auxin
transport-related gene PIN1 was significantly downregulated, implying that the change in
gene expression reduced polar transport of indole-3-acetic acid (IAA) from the top-down,
resulting in an insufficient supply of IAA to the apple roots. The expression levels of
ARF1, ARF8, GH3, and IAA4 were discovered to be adversely linked with growth vigor
and IAA content by Liu et al. [31]. The differential expression of KO1 and GA2OX1 in
grafted plants also impacted GA metabolism. Furthermore, most antioxidant enzyme genes
were upregulated in red tangerine tree leaves, resulting in increased peroxidase activity.
Furthermore, investigations of gene expression variations in different scion–rootstock
combinations of sweet cherry [32] and grape [33] have been conducted.

Graft compatibility is a complex process involving anatomical and biochemical interac-
tions [34,35] that starts with wound response, callus formation, and eventually, the creation
of a cambium functional vascular system between rootstock and scion [36]. These processes
may decide a grafted plant’s destiny [37]. However, no clear knowledge of how these thera-
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pies impact incompatibility reactions exists [38]. According to Melnyk [39], who explained
the graft junction formation, steps during the first 1–2 days after grafting are as follows:
(1) adhesion of scion and stock (2) cell divisions are initiated and there is callus formation
(3) callus makes contact between scion and stock. After one week or more, (4) calluses dif-
ferentiate into xylem and phloem elements, (5) vascular connections are re-established, and
cytokinins play an essential role in regulating scion/stock interactions [40] and cytokinin is
required for wound healing and vascular regeneration in the graft region area [41,42]. Graft
incompatibility in fruit trees occurs due to hormone imbalance [43–46]. One of these plant
hormones, auxin, causes cell elongation in shoots and regulates plant growth. Low auxin
concentrations promote intact roots, whereas higher concentrations inhibit growth [47,48],
such as in maize roots [49]. Tobacco cytokinin promotes root development by increasing
the size of the root apical meristem.

Similarly, mutations that partly alter cytokinin perception promote root development
and speed up the vascular differentiation process in the root tip [48]. The buildup of
reactive oxygen species (ROS) causes oxidative damage and cell death [18,50,51]. As
a result, boosting the activity of defense-related enzymes such as catalase (CAT) and
peroxidase (POD) may help plants scavenge ROS and improve their resilience to a variety
of stressors [1,52]. POX and CAT convert hydrogen peroxide (H2O2) to H2O [53]. The graft
union formation coincides with AOX activities in dealing with oxidative stress [54,55]. In
comparison, incompatible grafts showed higher H2O2 levels and lower AOX activities in
the grafting region [54,56,57]. On the other side, POD and CAT activities were increased
in the grafted plants [18,55]. Furthermore, carbohydrates play an essential role in plants’
cellular activities by providing energy [58,59]. Graft union development is positively
correlated with the content of carbohydrates present in scion and rootstock at grafting
time, higher carbohydrates levels, and auxins and cytokinin, essential for effective callus
formation. Importantly, interactions among rootstock and scion cultivars for utilizing
carbohydrates can influence starch depletion throughout callus development; the survival
rate increases by increasing starch content [59,60].

Previous studies have focused on studying compatibility by comparing different
rootstocks with incompatibility differences [45,61]. To the best of our knowledge, no
research has been conducted before on polyploidy in plant grafting. Concerning this
study, we compared diploid and tetraploid watermelon plants, which have significant
differences in survival rate, to study the effect of genome duplication in graft compatibility
at physiological and molecular levels, which leads to a good explanation of the compatibility
mechanisms. Furthermore, this is first comparison of polyploid watermelons in terms of
graft compatibility.

2. Materials and Methods
2.1. Plant Material

Autotetraploid watermelons were induced artificially by colchicine from a homozy-
gous diploid watermelon, then crossbred with a diploid watermelon to create an au-
totriploid watermelon as well as a squash interspecific hybrid (Xijiaqiangsheng), which is
widely used in China as a rootstock, which was obtained by crossing a diploid watermelon
with autotetraploid watermelon—Zhengzhou Fruit research institute, CAAS China.

2.2. Grafting Methods, Growth Conditions, and Sampling

The splice method was chosen based on the results of our previous research [62]. After
using the splice grafting method, significant differences between diploid and tetraploid
plants in the previous study [62] were recorded. Plants were cultivated and grafted in a
glass house, keeping the temperature between 25 and 30 ◦C with 60–85% relative humidity.
THtool-V151 En (Campbell Scientific Ltd., Beijing, China) was used to record temperature
and humidity at each experimental plot’s center.

Samples (grafting union) were taken as three biological replicates to determine hor-
mones, AOX, sugars and starch. Each biological replicate sample from 30 plants was
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collected at three different stages, 0, 3, and 15 days after grafting (DAG). Total samples
were collected at 0, 3, and 15 days after grafting. We collected 30 plants and considered
them as one replicate. Samples at 0 days after grafting were considered as controls [63].

2.3. Determination of Survival Rate

Survival rates were recorded after 15 days of grafting by counting the successful
seedlings and dividing them by the total number of the grafting seedlings using the
following formula [1,64].

Survival rate =
Number of survived grafted plants

Total number of grafted plants
× 100

2.4. Phytohormone Determinations

Diploid and tetraploid plant graft unions from three biological replicates were used to
extract Indole-3-acetic acid (IAA) and Zeatin Riboside (ZR). We used the ELISA method
proposed by Mo et al. [40] to determine the presence of the antigen.

2.5. Assay for Antioxidant Enzymes’ Activity and H2O2 Contents

The capacity of superoxide dismutase (SOD) activity in the graft union sample super-
natant to prevent photochemical reduction of nitro blue tetrazolium (NBT) was measured
by measuring the absorbance at a 560 nm wavelength using the SOD assay kit/YX-C-A500.
The CAT test kit/BC0200 was also used to assess catalase activity by measuring the rate
of change in H2O2 absorbance in 60 s at 240 nm using a spectrophotometer. POD can
catalyze the oxidation of phenols and amines by H2O2, which has the dual function of
eliminating the toxicity of H2O2, phenols, and amines. POD catalyzes the oxidation of
specific substrates by H2O2 and has characteristic light absorption at 470nm when using
the POD assay kit/YX-C-A502. Using the H2O2 test kit/YX-C-A400 (Sino best biological
technology co, Beijing, China) according to the manufacturer’s instructions, H2O2 produces
a yellow titanium peroxide complex with titanium sulphate, with distinctive absorbance at
415 nm wavelength. For each duplicate, three biological replications from grafting unions
at 0, 3, and 15 DAG were obtained from three distinct plants.

2.6. Quantification of Sugars and Starch

To estimate starch content, the starch assay kit/YX-C-C400 was used, and for sugar
content estimation, the sugars assay kit/YX-C-B629 was used (Beijing, China: Sino Best
Biological Technology Co., Ltd.) according to the manufacturer’s instructions. For each
replicate, three biological replications from grafting unions at 0, 3, and 15 DAG were
obtained from three distinct plants.

2.7. Construction and Sequencing of the RNA-Sequencing Library

A previously reported approach [65] was used to create the RNA-Seq library. To
begin, total RNA was extracted from samples using the TIANGEN kit (Beijing, China), and
contamination and degradation of RNA were checked using a 1% agarose gel. Then, using
a Nano Photometer® spectrophotometer, the purity of RNA was determined (IMPLEN,
CA, USA). After that, a Qubit® RNA Assay Kit and a Qubit® 2.0 Fluorometer were used
to estimate RNA concentration (Life Technologies, CA, USA). Finally, an Agilent Nano
6000 test kit was used to assess RNA integrity (Santa Clara, CA, USA).

Sequencing libraries were created using the NEBNextR UltraTM RNA Library Prep Kit
for Illumina R (NEB, USA) and sequenced on an Illumina HiSeq platform, and 125-bp/150 bp
paired-end reads were obtained. After the libraries’ detection, sequencing was performed
on the Illumina HiSeq platform v3.6. Raw readings were filtered to acquire excellent-quality
reads. Data were extensively examined to detect any erroneous readings; moreover, GC
content was also monitored, so that clean reads were acquired and could be utilized for the
remaining stages. Hisat2, v2. 1. 0 was used to sequence clean reads using the reference
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genome (97103 V2) 4. Transcripts or gene expression levels were assessed by calculating
FPKM (fragments per kilobase of transcript per million fragments mapped) [66]. Deseq2
v1.30.1 was used to investigate differential gene expression across different samples. Af-
ter that, multiple hypothesis tests were utilized to correct the hypothesis test probability
(p-value) by the Benjamini–Hochberg method to produce the false discovery rate (FDR), and
the Bioconductor package Custer-Profller v3.14 was used for KEGG enrichment analysis.

2.8. Mapping to Watermelon Genome V2 and Quantification of Gene Expression

TopHat v2.0.12 was used to match clean reads to the watermelon reference genome
(http://cucurbitgenomics.org/organism/V1, accessed on 14 March 2022). HTSeq v0.6.125
was used to count reads in features (genes in this example). The FPKM values were
calculated using gene lengths and read counts assigned to genes [66].

The DESeq R package [67] was used to identify DEGs between diploid and tetraploid
plants, and Benjamini–Hochberg-adjusted P-values of 0.05 were deemed statistically signif-
icant [68,69].

2.9. Enrichment Analysis of DEGs and Weighted Gene Coexpression Network Analysis (WGCNA)
for Identifying Correlated Gene Networks

DEG enrichment in Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
was tested using the KOBAS program v 2.0 [70]. To simplify genes into co-expressed
modules, WGCNA was performed in R with default settings [71,72]. An adjacency matrix
was created using normalized FPKM data. Using the default parameters, correlation-based
connections between phenotypes and gene modules were estimated using the phenotypic
data input into the WGCNA package v1.70-3. The adjacency matrix was converted into a
topological overlap matrix using the WGCNA package (TOM). Transcripts with similar
expression patterns were combined into one module once the network was built, and
eigengenes were determined for these modules as well. The genes from each module were
exported using Cytoscape’s default settings.

2.10. Validation of Intramodular Candidates through RT-qPCR Analysis

For each sample, three independent biological replicates and three technical replicates
were used to analyze gene expression using RT-qPCR [73]. The total RNA was extracted
using the TIANGEN kit (Beijing, China). The Takara kit (Tokyo, Japan) containing reverse
transcriptase was used to make cDNA. The target candidate genes for the gene modules
were chosen based on intramodular gene significance and annotation data from the water-
melon reference genome database (http://cucurbitgenomics.org/organism/V1, accessed
on 14 March 2022). The primer design and RT-qPCR conditions were performed as pre-
viously described [74]. Actin (Cla016178) was used as a reference control gene [75]. The
internet program “Primer 3 v4.1.0” (https://primer3.ut.ee/, accessed on 14 March 2022)
was used to build primers for RT-qPCR (Supplementary Data). The amplicon (PCR product)
ranges were set between 80 and 200 bp. To increase the product, a Roche Light-Cycler 480 II
was employed [74,76].

2.11. Statistical Analysis

Using SPSS 18.0 Statistics, the data were submitted to analysis of variances (SPSS Inc.,
Chicago, IL, USA). Duncan’s multiple range test was used to assess the differences between
treatment means at a 0.05 probability level. OriginPro 8.5 was used to create the graphics
(OriginLab Corp., Northampton, MA, USA).

3. Results
3.1. Survival Rates of Diploid and Tetraploid Watermelon Grafted by Splice Method

Plant survival rates were recorded in diploid and tetraploid plants after grafting
during two consecutive seasons, March and August 2019. They were 75.97 and 95.23% in
the first season and 75.87 and 97.83% in the second season, respectively (Figure 1).

http://cucurbitgenomics.org/organism/V1
http://cucurbitgenomics.org/organism/V1
https://primer3.ut.ee/
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At 0 DAG, IAA contents in tetraploid were 1.28- and 1.32-fold higher than diploids 
in the first and second season, respectively (Figure 2). Additionally, the increment rate of 
IAA in the graft union at 3 DAG showed a higher increase in tetraploid than in diploid 
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Figure 1. Plant survival rates in diploid and tetraploid plants of watermelon at 15 DAG during March
and August 2019 cropping seasons. The bars with different letters differ significantly (p < 0.05), and
columns indicate mean ± SE.

3.2. Measurement of IAA and ZR in the Grafting Union among Diploid and Tetraploid Plants of
Watermelon during the Grafting Process

Hormone contents and increment rates in tetraploids were significantly different at the
p < 0.0.5 level from diploids during the grafting process, especially 2–3 days after grafting
(DAG) (Figure 2).
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Figure 2. IAA and ZR hormones’ contents in diploid (Di) and tetraploid (Tetra) plants of watermelon
at 0, 3, and 15 DAG during March and August 2019. The bars with different letters show significant
differences (p < 0.05), and columns indicate mean ± SE. A comparison is made between diploid and
tetraploid plants over 0, 3, and 15 DAGs.

At 0 DAG, IAA contents in tetraploid were 1.28- and 1.32-fold higher than diploids in
the first and second season, respectively (Figure 2). Additionally, the increment rate of IAA
in the graft union at 3 DAG showed a higher increase in tetraploid than in diploid plants;
it was 14.48 and 30.29% in the first and 21.97 and 27.32% in the second season in diploid
and tetraploid plants, respectively. The increment rates at 15 DAG were 48.6 and 33.33%
in the first and 48.55 and 36.62% in the second season in diploid and tetraploid plants of
watermelon plants, respectively.

ZR results showed insignificant differences between diploid and tetraploid plants at
0 DAG, while at 3 and 15 DAG, there were highly significant differences during both seasons
(Figure 2). ZR contents at 3 DAG were increased by 8.17 and 21.52% in the first season, and
5.32 and 14.77% in the second season in diploid and tetraploid plants, respectively. The
increment rate at 15 DAG was 29.26 and 21.12% in the first season, and 28.99 and 23.35% in
the second season in diploid and tetraploid plants of watermelon, respectively.
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3.3. Measurement of POD, SOD, CAT, and H2O2 Contents in the Grafting Union among Diploid
and Tetraploid Plants of Watermelon

Antioxidant activities were significantly different between diploid and tetraploid
plants of watermelon during the grafting process in both seasons (Figure 3). The highest
POD activities were shown in tetraploid at 0 DAG, i.e., 1.41- and 1.42-fold, compared to
diploids, in the first and second season, respectively. On the other hand, POD activities’
increment rates at 3 DAG, were 108.07 and 223.53% in the first, and 116.71 and 219.13%
during the second season, in diploid and tetraploid plants of watermelon, respectively.
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Tetraploids had significantly greater CAT levels than diploids (Figure 3); at 0 DAG,
tetraploid CAT activities were 1.2- and 1.2-fold higher than diploids in the first and second
seasons, respectively. CAT activities in the graft union, on the other hand, increased by
57 and 354.8% in the first season, and 70.1 and 400% in the second season in diploid and
tetraploid watermelon plants, respectively, at 3 DAG.

Higher SOD activity was observed in tetraploid than diploid watermelons (Figure 3);
at 0 DAG, SOD activities in tetraploids were 1.79- and 1.63-fold higher than diploids in
the first and second season, respectively. At 3 DAG, SOD activities were increased in
tetraploids compared to diploids by 20.57 and 46% in the first season, and by 10.2 and
53.66% in the second season.

H2O2 accumulation leads to cell death. There were no significant differences between
diploid and tetraploid plants in terms of H2O2 contents at 0 DAG in both seasons (Figure 3).
However, at 3 DAG, the H2O2 contents in the graft union started to increase, by 64.1 and
8.59% in the first season and 65.57 and 2.33% in the second season in diploid and tetraploid
plants, respectively. It was observed that the increase in H2O2 in tetraploids was much
lower than in diploids; this may be because of the higher activities of antioxidants in
tetraploids than diploid.
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3.4. Sugars’ and Starch Contents in the Grafting Union among Diploid and Tetraploid Plants of
Watermelon during the Grafting Process

Carbohydrates supply energy to the plant, and cotyledons are the source of carbohy-
drates in seedlings; grafting survival rates were positively connected with an increase in
starch content. At 0 DAG, there were substantial changes in sugar concentration between
diploid and tetraploid watermelon plants (Figure 4). Sugar concentration was 1.54- and
1.27-fold higher in tetraploids then in diploids in in the first and second seasons, respec-
tively. At 3 DAG, the contents of sugars decreased by 288.5 and 47.7% in the first season
and 288.5 and 57.15% in the second season in diploid and tetraploid plants, respectively. It
was observed that the decrement rate was significantly lower in tetraploid than diploid
plants at 3 DAG. On the other hand, sugar contents at 15 DAG started to increase by
322.29 and 12.51% in the first season and 164.91 and 18.83% in the second season in diploid
and tetraploid plants, respectively.
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In the first season, starch contents (Figure 4) at 0 DAG showed significant differences
between diploid and tetraploid plants of watermelons. Starch contents started to decrease
at 3 DAG in diploid and tetraploid plants. The decrement rates in tetraploids were less than
diploids by 13.87 and 7.38% in the first season, and 3.47 and 20.9% in the second season.
On the other hand, at 15 DAG, starch contents increased significantly by 77.85 and 43.42%
in the first season, and 56.04 and 41.68% in the second season in diploid and tetraploid
plants, respectively.

3.5. Principal Component Analysis (PCA)

The PCA scatterplot (Figure 5) showed a clear cluster for AOX, hormones, sugars,
starch and H2O2 with diploid watermelon at 3 DAG. Other clustered groups showed
additional separation in more than one group, in the second, third and fourth quarters of
the centroid, respectively, for diploid and tetraploid plants at different time points (0, 3,
15 DAG).

These results indicate that increase in hormones and antioxidant enzymes at 3, 15 DAG
was similar in tetraploid plants and just at 15 DAG in diploid plants. While in Di at 3 DAG
there was a high correlation with H2O2 which leads to cell oxidation and damage.
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3.6. Genome-Wide Transcriptomic Analyses of Diploid and Tetraploid Plants of Watermelon

We obtained 178.49 Gb of clean data after RNA sequencing of 27 samples collected
from diploid and tetraploid plants of watermelon at 0, 3, and 15 DAG, with at least 5.81 Gb
clean data for each sample. Each sample has more than 93.65% of bases with a score of Q30
and above (Table 1).

Table 1. RNA sequencing data and corresponding quality control information.

Samples Di-0DAG Di-3DAG Di-15DAG Tetra-0DAG Tetra-3DAG Tetra-15DAG

Clean reads 21,931,767 24,794,003 21,124,267 22,596,008 21,227,314 21,498,313

Clean bases 6,551,749,351 7,401,188,622 6,316,423,223 6,755,177,632 6,352,106,792 6,428,408,569

GC Content 45.54% 44.51% 45.73% 44.85% 44.98% 44.73%

% ≥ Q30 94.15% 93.89% 94.61% 94.93% 94.26% 94.27%

Total Reads 43,863,533 49,588,005 42,248,535 45,192,017 42,454,628 42,996,625

Mapped Reads 18,004,952 23,863,421 12,594,273 34,743,569 22,683,237 22,038,804

Mapped Reads
ratio 41.35% 47.58% 29.72% 76.69% 53.17% 52.67%

Uniq Mapped
Reads 17,456,213 23,213,051 12,223,916 33,769,354 22,049,895 21,546,888

Uniq Mapped
ratio 40.09% 46.28% 28.85% 74.53% 51.69% 51.51%

Multiple Map
Reads 548,739 650,370 370,356 974,215 633,342 491,917

Multiple Map
ratio 1.26% 1.30% 0.87% 2.16% 1.48% 1.16%

SNP Number 21,441 33,225 27,477 26,737 43,712 45,905

Note: (1) Clean reads: paired-end numbers of clean data; (2) clean bases: total base number of clean data; (3) GC
content: GC content percentage of clean data, namely the percentage of clean database G and C; (4) ≥Q30%: the
bases whose quality values are greater than or equal to 30% of clean data. (5) Unique Mapped Reads: number of
reads mapped uniquely mapped to the reference genome and the percentage in clean reads; (6) Multiple Mapped
Reads: number of reads multiply mapped to reference genome and the percentage in clean reads.
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The data were cleaned and mapped to the reference genome (http://cucurbitgenomics.
org/organism/V1, accessed on 14 March 2022), with a mapping ratio that ranges from
6.89 to 95.96%. The outcomes of the mapping, alternative splicing prediction, genetic
structure optimization, and new gene identifications were all investigated. Gene expression
analysis was carried out based on the alignment findings. Functional annotation and
enrichment analysis were conducted on differentially expressed genes based on their
expression levels in various samples.

Between diploid and tetraploid watermelon plants, a total of 14,586 DEGs were discov-
ered. We compared and analyzed DEGs between diploid and tetraploid watermelon plants
at three key grafting stages: 0 days after grafting (DAG) (Diploid-0DAG vs. Tetraploid-
0DAG), 3 DAG (Diploid-3DAG vs. Tetraploid-3DAG), and 15 DAG (Diploid-15DAG
vs. Tetraploid-15DAG), using 3178 and 2002 DEGs. At three important grafting phases,
3945 genes were considerably upregulated, and 3692 genes were significantly downregu-
lated in diploids compared to tetraploids (Table 2).

Table 2. Pairwise comparison of up- and down-regulated DEGs between diploid vs. tetraploid
watermelon at 0, 3, and 15 DAG.

DEG Set DEG Number Upregulated Downregulated

Diploid-0_vs_Tetraploid-0 3178 1746 1432
Diploid-3_vs_Tetraploid-3 2002 967 1035

Diploid-15_vs_Tetraploid-15 2457 1232 1225

To investigate gene activities linked with graft compatibility in polyploid watermelon,
researchers used Gene Ontology (GO) enrichment analysis of DEGs. The most enriched
GO terms in the biological process “cellular component,” and “molecular function” groups
were the same for both up- and down-regulated genes: “metabolic process” and “cellular
process” in the biological process category; “cell membrane,” “cell part,” and “membrane
part” in the cellular components category; “binding activity” and “catalytic activity” in the
molecular function category; and “binding activity” and “catalytic activity” in the mole
category (Figure 6).
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We also used a KEGG enrichment analysis to figure out the function of the DEGs.
As a consequence, 1432 upregulated genes and 1147 downregulated genes were found

http://cucurbitgenomics.org/organism/V1
http://cucurbitgenomics.org/organism/V1
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to be concentrated in 55 metabolic pathways, which were divided into three categories:
biological processes, cellular components, and molecular function. Plant hormone signal
transduction is the secondary metabolic route with the most DEGs among these groups.
Carbon metabolism, starch metabolism, and sucrose metabolism are all part of the metabolic
categorization category in the environmental information process category. The metabolism
category contains the most KEGG pathways in this study, implying that differentially
expressed genes involved in metabolic pathways may play a role in watermelon graft
compatibility variation (Figure 7).
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different diploid and tetraploid plants grafting stages. (A) Diploid vs. tetraploid at 0 DAG, (B) diploid
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3.7. WGCNA for the Identification of Highly Connected “Hub Genes” and Correlated
Gene Modules

WGCNA is an omics analysis tool that defines itself as a network that connects all
variables continuously and clusters the most strongly co-expressed variables into inflexibly
specified modules. We created a transcriptome dataset of diploid and tetraploid plants
at three important grafting process stages: 0, 3, and 15 DAG, and input FPKM values
into WGCNA. As a consequence of the connection and co-expression patterns of different
genes, 73 unique gene modules were discovered. These gene modules are color-coded and
pre-presented as a network heatmap. In addition, for the WGCNA analysis, the contents of
IAA, ZR, AOX, starch, and sugars at each grafting stage were employed as phenotypic data.

3.8. Module Analysis Based on WGCNA

Out of 73 gene modules, only 4 revealed a significant correlation with phenotypic
traits. The MEpurple module comprises 331 genes and showed significant associations
with IAA, ZR and POD with correlation coefficient (r2) values of 0.81, 0.85, and 0.74, re-
spectively. The MElightsteelblue1 module with 21 genes was strongly correlated with CAT
and SOD, with r2 = 0.81 and 0.72, respectively. MEivory module consisting of 20 genes
recorded a significantly high correlation with H2O2 (r2 = 0.88). The MEdarkolivegreen
module consisting of 35 genes showed a significantly high correlation with sugars and
starch (r2 = 0.87, and 0.75). A detailed description of gene module and trait correlations is
presented in (Figure 8A,B).

These putative candidate genes are highlighted in red in the gene networks; these
gene networks’ clear features can easily be observed in the Cytoscape display (Figure 9).
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Figure 9. Network visualization of hub genes (A) MEdarkolivegreen (B) MEpurple (C) MElightsteel-
blue1 (D). ME-ivory module gene. The red highlighted cells indicate the hub genes.

The WGCNA R program was used to compute all the genes’ edges and nodes from
each of the four modules based on intramodular gene importance. For gene-network visual-
izations, these data were exported to Cytoscape. The watermelon annotation database was
used to extract and annotate genes from all four highly linked modules. Finally, four genes
were identified from MEpurple, and among these four genes, two genes, Cla97C08G155010
and Cla97C06G128110, were correlated with IAA (r2 = 0.81), one gene, Cla97C09G169510,
correlated with ZR (r2 = 0.85), and one gene, Cla97C01G002890, correlated with POD
(r2 = 0.74). On the other hand, of three genes from the MElightsteelblue1 module, one
gene, Cla97C11G224830, correlated with CAT (r2 = 0.81). Two genes, Cla97C03G066780
and Cla97C03G068360, strongly correlated with SOD (r2 = 0.72), while two gene from
the MEivory module, Cla97C07G139710 and Cla97C04G077300, strongly correlated with
H2O2 (r2 = 0.88). Two genes from the MEdarkolivegreen module, Cla97C01G023850 and
Cla97C01G006680, strongly correlated with sugars and starch (r2 = 0.87).

3.9. RT-qPCR to Verify the Accuracy of Transcriptome Data

Precision of transcriptome sequencing data is required for identifying differentially
expressed genes and subsequent GO and KEGG function enrichment analyses. To verify
the reliability of the transcriptome sequencing data, we selected 11 hub genes from four
modules significantly associated with the phenotype to check the relative expressions in
diploid and tetraploid plants of watermelon plants at three time points (0, 3, and 15 DAG).
At three separate stages, the expressions of genes that regulate CAT, POD, SOD, H2O2,
IAA, ZR, sugars, and starch were examined (0, 3, and 15 DAG). Genes linked to IAA and
ZR, Cla97C08G155010, Cla97C06G128110, and Cla97C09G169510, had higher expressions
at all three stages in tetraploid watermelons than diploid ones in both seasons. Genes
linked to POD, CAT, and SOD, Cla97C01G002890, Cla97C11G224830, Cla97C03G066780, and
Cla97C03G068360, had a higher expression in tetraploid compared to diploid watermelons
at all days after grafting (Figure 10A). Genes regulating H2O2, Cla97C07G139710 and
Cla97C04G077300, had lower expression levels in tetraploid watermelons than diploid
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watermelons in both seasons. Genes regulating sugars and starch, Cla97C01G023850
and Cla97C01G006680, had higher expressions in tetraploid watermelons than diploid
watermelons. Thus, this confirms the active role of these two candidate genes in sugar
and starch accumulation at all time points of watermelon sampling. The trends in gene
expression evaluated by transcription (FPKM) and relative expression evaluated by the
qRT-PCR method were consistent (Figure 10B), indicating that the validation transcriptome
data and relative gene expressions confirmed that the key putative genes we selected are
true candidates involved in watermelon graft compatibility.
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4. Discussion

The current study was conducted to compare grafted diploid and tetraploid plants of
watermelon plants to study the compatibility mechanisms and genome duplication effects.
The obtained data showed that the tetraploid grafted plants have more compatibility than
diploid grafted plants with the splice method.

4.1. Role of Hormones, AOX and Carbohydrates in the Graft Union during the Grafting Seedling
Process in Tetraploid Compared to Diploid Watermelon

Plant hormones play an important central role in callus initiation and vascular bundle
formation at grafting unions [40,45,46]. During the grafting process, the maximum IAA
contents were observed until 3 DAG in the scion, as reported by Zheng B.S. et al. [77]
and Melnyk et al. [78]. Hormonal imbalance and low IAA contents lead to incompati-
bility [56,79,80]. At various days after grafting, the IAA and ZR contents of diploid and
tetraploid watermelon plants in the graft union were compared. With a p value of 0.05, the
IAA and ZR contents of grafted tetraploid plants were substantially higher than in diploid
plants. Our findings revealed that tetraploid plants with high hormone content and incre-
ment rates were more compatible than diploid plants, notably at 3 DAG (critical phase)
and 15 DAG. These results can explain the higher survival rates in tetraploid than diploid
plants; these results were in agreement with Melnyk et al. [78], Cookson et al. [81], and
Schaller et al. [82].

According to Gainza et al. [63], incompatibility is caused by stress created during
the healing process. POD, SOD, and CAT activities increased much more in tetraploids
than in diploids throughout the healing process (Figure 4). Surprisingly, the content of
H2O2 (Figure 4) did not increase during the healing process in tetraploids; these findings
emphasized that high antioxidant activities lead to scavenging oxygen radicals and H2O2.
Our results are in accordance with Meng et al. [1] and Fernandez-Garcia et al. [55]. The
incompatible grafts showed higher H2O2 content and lower activity of POD and SOD in the
grafting union [54,56,57]. Our findings are in line with those of Jiang et al. [19], Tu et al. [20],
Ruiz et al. [21], and Ganie et al. [83], who discovered that genome doubling boosted stress
resistance due to increased hormone content and antioxidant activity. Watermelon, rice,
citrus, black locust, honeysuckle, kinnow, mandarin, cotton, and rangpur lime have all been
shown to be more resistant to abiotic stressors than diploid species [18–26]. The grafting
process brought more stresses such as injury or wounds, complete dark and high humidity
during the healing period [63,84]. The most critical times in the healing process are the 2nd
and 3rd days after grafting [78]. The results in both seasons showed significant differences
in POD, SOD and CAT activities between tetraploid and diploid watermelons (Figure 4).
From our results, we can assume that the increase and decrease in contents of antioxidants
played a biovital role during the graft healing process of watermelon.

An increase in starch is said to lead to a boost in survival rates [59,60]. At 0 DAG,
tetraploids accumulated considerably more sugars and starch in the graft union than
diploids. In comparison to diploids, sugar and starch decrement rates in tetraploids
were quite low. These findings might explain why tetraploids outperform diploids in
terms of survival rates. Dabirian and Miles [59] and Bartolini et al. [85] both claimed
that increased glucose content in grafted tissues might contribute to effective grafting.
Hormones and carbohydrates are both important in the process of compatibility and callus
formation [59,60,85–87].

4.2. Transcriptome Sequencing and DEG Screening in Diploid and Tetraploid Plants
of Watermelon

RNA-Seq was utilized to investigate transcriptome variations in the grafting union of
diploid and tetraploid watermelon plants grafted onto an interspecific squash hybrid, as
well as genes involved in the rootstock–scion interaction. At 0, 3, and 15 DAG, DEGs were
found in diploid and tetraploid plants. More than 14,586 DEGs were discovered, with over
50 functional categories and metabolic pathways represented. Furthermore, in tetraploids
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vs. diploids, we observed more DEGs concentrated in biological processes, cellular compo-
nents, and molecular function, which significantly varied grafting compatibility survival
rates. This meant that genes involved in the activities and pathways indicated above were
important in the rootstock/scion interaction effect [88]. WGCNA is also a highly useful
method, since it allows us to combine phenotypic and transcriptome data to identify critical
candidates for transplant compatibility [89].

4.3. Role of Genes Related to Hormonal Signaling in Rootstock–Scion Interaction

Auxin may cause the expression of particular genes, known as primary auxin-responsive
genes, to be fast and temporary. The Aux/IAA, SAUR, and GH3 gene families are the three
primary groups of auxin-responsive genes [90]. In the auxin signal transduction pathways,
the Aux/IAA gene family contains important transcriptional repressors. Aux/IAA tran-
scription factors may react to auxin and degrade quickly, triggering the auxin signaling
pathway [91,92].

In this work, Aux/IAA gene expression in grafting union was shown to be favorably
correlated with tetraploid grafting union survival rates and IAA levels. The foregoing
findings suggest that the auxin signaling-mediated grafting compatibility of tetraploid
grafted seedlings was aided by the selective expression of genes from the Aux/IAA family.

4.4. Expression of Antioxidant Enzymes and Growth-Regulating Factors

Most antioxidant enzyme genes were upregulated in the grafting union of tetraploid
plants, whereas practically all antioxidant enzyme genes were repressed in diploid water-
melon, according to transcriptome data. Meanwhile, in tetraploid plants, gene expression
was shown to be positively correlated with antioxidant enzyme activity. As a result, per-
oxidases play a role in a variety of physiological processes in plants, including peroxide
scavenging, lignification, cell-wall production, and auxin metabolism [93,94]. As a result,
considerable antioxidant enzyme gene expression could be produced in grafted plants to
boost peroxidase activity. This might speed-up auxin metabolism and the crosslinking of
structural proteins, hemicellulose, and pectin in the cell wall, reducing graft compatibility;
these findings agree with those of Liu et al. [31].

5. Conclusions

In this research, we utilized WGCNA to combine transcriptome profiles and phe-
notype data to analyze gene networks influencing hormones, AOX, and carbohydrates
in diploid and tetraploid watermelon plants (based on co-expression patterns). During
the grafting process, four co-expression modules/gene networks were found that were
substantially linked with differences in hormone, AOX, and carbohydrate contents. We
also found 11 significant candidate genes that were weighted as module hub genes within
these networks, and their quantitative expressions were associated with phenotypic data.
Multiple stringent screening steps in our study increased the likelihood and confidence
that these genes are true candidates in the hormone, AOX, and carbohydrate pathway
networks. These genes were discovered recently, and there have been no earlier studies
on their roles or functions in watermelon, nor have there been any previous reports on
tetraploid grafting.
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