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Simple Summary: In the literature, there exist plenty of research works focused on the detection
and classification of breast cancer. However, only a few works have focused on the classification
of breast cancer using ultrasound scan images. Although deep transfer learning models are useful
in breast cancer classification, owing to their outstanding performance in a number of applications,
image pre-processing and segmentation techniques are essential. In this context, the current study
developed a new Ensemble Deep-Learning-Enabled Clinical Decision Support System for the diagno-
sis and classification of breast cancer using ultrasound images. In the study, an optimal multi-level
thresholding-based image segmentation technique was designed to identify the tumor-affected re-
gions. The study also developed an ensemble of three deep learning models for feature extraction
and an optimal machine learning classifier for breast cancer detection. The study offers a means of
assisting radiologists and healthcare professionals in the breast cancer classification process.

Abstract: Clinical Decision Support Systems (CDSS) provide an efficient way to diagnose the presence
of diseases such as breast cancer using ultrasound images (USIs). Globally, breast cancer is one of
the major causes of increased mortality rates among women. Computer-Aided Diagnosis (CAD)
models are widely employed in the detection and classification of tumors in USIs. The CAD systems
are designed in such a way that they provide recommendations to help radiologists in diagnosing
breast tumors and, furthermore, in disease prognosis. The accuracy of the classification process is
decided by the quality of images and the radiologist’s experience. The design of Deep Learning
(DL) models is found to be effective in the classification of breast cancer. In the current study, an
Ensemble Deep-Learning-Enabled Clinical Decision Support System for Breast Cancer Diagnosis and
Classification (EDLCDS-BCDC) technique was developed using USIs. The proposed EDLCDS-BCDC
technique was intended to identify the existence of breast cancer using USIs. In this technique,
USlIs initially undergo pre-processing through two stages, namely wiener filtering and contrast
enhancement. Furthermore, Chaotic Krill Herd Algorithm (CKHA) is applied with Kapur’s entropy
(KE) for the image segmentation process. In addition, an ensemble of three deep learning models,
VGG-16, VGG-19, and SqueezeNet, is used for feature extraction. Finally, Cat Swarm Optimization
(CSO) with the Multilayer Perceptron (MLP) model is utilized to classify the images based on whether
breast cancer exists or not. A wide range of simulations were carried out on benchmark databases
and the extensive results highlight the better outcomes of the proposed EDLCDS-BCDC technique
over recent methods.
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1. Introduction

Breast cancer is one of the most common cancers reported amongst women and is
a primary contributor to cancer-related deaths around the world. Early diagnoses of
breast cancer can enhance the patient’s quality of life and also increase their survival
rate. Further, the mortality rate of the affected patients can also be reduced [1]. The
ultrasonography technique is commonly employed in the diagnosis of breast cancer due to
its convenience, painless operation and efficient real-time performance [2]. However, the
ultrasonic instruments possess high sensitivity, which makes the tissues of the environment
in the human body vulnerable. This also results in a massive amount of speckle noise that
interferes with doctors’ diagnoses [3]. At present, ultrasound methods are preferred in
the diagnosis of breast cancer based on medical expertise. To be specific, ultrasound is
involved in the classifications and marks of breast lesions. The ultrasound procedure can
be prescribed in this following scenario: the doctor uses an ultrasound instrument to find a
better angle and demonstrates the lesion clearly on the screen. Then, they keep the probe
fixed for a long period of time using one hand while another hand is used to measure and
mark the lesion on the screen [4,5]. In the abovementioned procedure, automatic tracking of
the region of interest (lesions) and classification (malignant or benign) are in huge demand
for breast lesion detection in USIs.

Computer-Aided Diagnosis (CAD) systems are widely employed in the classification
and detection of tumors in breast USIs. This type of system is strongly recommended
among radiotherapists for recognizing disease prognoses and breast tumors. As per the
literature, the statistical method [6] has been mainly utilized in the analysis of the extracted
features such as posterior acoustic attenuation, lesion shape, margin, and homogeneity.
However, the recognition of the margins and shapes of lesions is complex in USIs [7]. In
addition, Machine Learning (ML) methods have been widely used in both the analysis and
classification of lesion-based handcrafted textures and morphological features of tumors [8].
The extraction of features is, however, still largely based on medical expertise. The struggles
of researchers for hand-crafted features resulted in the development of new algorithms,
such as the Deep Learning (DL) algorithm, that can learn the features automatically from
information, especially information that is effective in terms of extracting nonlinear features
from the data. The DL model is a promising candidate in the classification of USIs, where
the recognition of patterns cannot be hand-engineered with ease [9]. Several research
studies, using the DL approach, leverage the idea of a pretrained Convolution Neural
Network (CNN) to categorize the tumors in breast USIs [10].

In the current study, an Ensemble Deep-Learning-Enabled Clinical Decision Support
System for Breast Cancer Diagnosis and Classification (EDLCDS-BCDC) technique was
developed using USIs. The proposed EDLCDS-BCDC technique involves a Chaotic Krill
Herd Algorithm (CKHA) with Kapur’s Entropy (KE) technique used for the image seg-
mentation process. Moreover, an ensemble of three deep learning models, namely VGG-16,
VGG-19, and SqueezeNet, is used for feature extraction. Furthermore, Cat Swarm Opti-
mization (CSO) with the Multilayer Perceptron (MLP) model is also utilized to classify the
images in terms of whether breast cancer exists or not. Extensive experimental analysis
was conducted on benchmark database and the results of the EDLCDS-BCDC technique
were examined under distinct measures.

2. Related Works

Badawy et al. [11] proposed a system based on combined Deep Learning (DL) and
Fuzzy Logic (FL) for the automated Semantic Segmentation (SS) of tumors in Breast Ul-
trasound (BUS) images. The presented system comprises two stages, namely CNN-based
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SS and FL-based preprocessing. A total of eight common CNN-based SS methods was
employed in this work. Almajalid et al. [12] designed a segmentation architecture-based
DL framework called U-net for BUS images. U-net is a type of CNN framework that was
developed for the segmentation of life science images containing constrained trained data.
Yousef Kalaf et al. [13] presented an architecture for the classification of breast cancer with
an attention mechanism in an adapted VGG16 framework. The adapted attention model
distinguishes between features of the background and targeted lesions in ultrasound image.
In addition, an ensemble of loss function was presented; this involved an integration of
the logarithm of hyperbolic cosine loss and binary cross-entropy in order to enhance the
methodological discrepancy between labels and lesion classification.

Cao et al. [14] conducted a systematic evaluation of the efficiency of a number of
current advanced object classification and detection approaches for breast lesion CAD.
Then, they estimated distinct DL frameworks and implemented a complete research work
on the recently gathered data set. Tanaka et al. [15] designed a CAD scheme to classify
benign and malignant tumors using ultrasonography-based CNN. Next, an ensemble
network was created in this study by integrating two CNN architectures (VGG192 and
ResNel523). Afterwards, the balanced trained data were fine-tuned using data extension,
a common method to synthetically generate new samples from the original. These data
were further utilized in a mass level classification technique that enables CNN in the
classification of mass with each view.

Qi et al. [16] developed an automatic breast cancer diagnostics system to increase
the accuracy of diagnosis. The scheme, which can be installed on smartphones, takes
a picture of the ultrasound report as input, and performs diagnoses on all the images.
The presented method comprises three subsystems. Initially, the noise in the captured
images is reduced and high-quality images are reconstructed. Next, the initial subsystem is
designed according to a stacked Denoising Autoencoder (DAE) framework and Generative
Adversarial Network (GAN). Next, the image is classified in terms of whether it is malignant
or non-malignant; DCCN is applied to extract the high-level features from the image. At
last, anomalies in the system performance are detected, which further reduces the False-
Negative Rate (FNR).

3. The Proposed Model

The current study developed a novel EDLCDS-BCDC technique to identify the exis-
tence of breast cancer using USIs. In this technique, the pre-processing of USIs primarily
occurs in two stages, namely noise elimination and contrast enhancement. Subsequently,
CKHA-KE-based image segmentation with ensemble DL-based feature extraction pro-
cesses are performed. Finally, CSO-MLP model is utilized to classify the images in terms of
whether breast cancer exists or not. Figure 1 illustrates the overall process of the EDLCDS-
BCDC technique.

CKHA+Kapurs Entro
( 5 Py) Performance Evaluation
Data Collection Preprocessing Feature Extraction Process Specificity
: G o VGG. 19/

(Benign/Malignant/ Normal) (Weiner Filtering/CLAHE) ! (VGG-16/VGG-19/SqueezeNet) !
1 ceuracy
i

Classification Process

1
i
Segmentation Process :
]
1

(CSO+MLP Model)

Figure 1. Overall process of the EDLCDS-BCDC technique.
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3.1. Pre-Processing

In this primary stage, the USIs are pre-processed, which involves the noise being
removed using the WF technique. Noise extraction is an image pre-processing approach
in which the features of an image, corrupted by noise, are enhanced. The adaptive filter
is a particular case in which the denoising process is fully dependent upon the noise
content that is locally present in the image. Assume that the corrupted images are defined
as I(x,y), the noise variance through which the whole point is demonstrated is (7;, the
local mean is provided as jif about a pixel window, and local variance from the window is
represented as &5. Then, the probable technique of denoising an image can be demonstrated

as follows [17]:
2

A oy . —
I:me—gaﬂxw—ﬂﬁ M
Y

At this point, the noise variance across the image becomes equivalent to zero,

Uyz = 0 => [ = I(x,y). Once the global noise variance becomes lesser while the local
Variance becomes greater than global variance, the ration is almost equivalent to one.

If o, >> (7 then [ = I (x,y). The high local variance illustrates the occurrence of an

edge from the assumed image window. In this case, once the local and global variances
match with each other, then the formula is revamped as follows: I= jiL as @'ﬁ ~ O'yz.

It can be an average intensity from a usual region. Furthermore, the contrast is
improved with the help of the CLAHE technique [18]. It is an extended version of an
adaptive histogram equalization in which the contrast amplification is limited, so as to
minimize the noise amplification issue. In CLAHE, the contrast in the neighborhood of a
provided pixel value increases, which is offered by the slope of transformation function. It
functions on small regions in the image, which are named as ‘tiles’, instead of the whole
image. The adjacent tiles are integrated using bilinear interpolation to eliminate the artificial

boundary. It can be employed to increase the contrast level of the image.

3.2. CKHA-KE Based Image Segmentation

Next, the infected lesion areas are segmented with the help of CKHA-KE technique.
The KE technique is applied to determine the optimal threshold value, t. In general, t takes
values between 1 and 255 (for 8-bit depth images) and splits an image into Ey and E; to
maximize the succeeding function [19]:

F(t) = Eg+ E; )
l B Ni B t—1 4
ZR X—T%—;& 3)
i=0
L—-1
X; X;
a:—;ﬁxmﬁx—-ln Zn 4)

Nj represents the number of pixels with gray values, represented by 7, and T denotes
the number of pixels in an image. Equation (1) is adapted easily to find a multiple-threshold
value that separates the image into homogenous regions, where it can be redeveloped.
Consider a gray image with an intensity value within [0, L — 1], then the algorithmic search

for finding the n optimum threshold value [ty, t1, t2, ...... t,] that subdivides the image
to [Eo, E1, Ep, «..... , En] to maximize the subsequent function is as follows:
F(to, t1, t2, -o. v tn) =Eo+Ei +Ey+------- +E, 5)
to—1 x. X t1—1
1 1 l
E():—‘ ?OXIHTO,XI'_ TO EX (6)
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In order to detect an optimal threshold value for KE, CKHA is derived.

Having idealized on the swarm performance of krill, KHA [20], a meta-heuristic
optimization method, is used in resolving optimization problems. In KH, the place is
mostly affected by three activities, namely:

i. Drive affected by another krill;
ii. Poraging act;
iii. Physical diffusion.

In KHA, the Lagrangian method is utilized in the existing search space in Equation (10):

aX;
dr

=N;+F+ D; (10)

where N; implies the motion created by other krill individuals; F; signifies the foraging
motion; and D; is an arbitrary diffusion of the i*" krill individual.

A primary one, and its direction, &;, is obviously known by the subsequent parts, such
as target, local, and repulsive effects. Their brief explanation is given herewith:

NP = N™ q; + @, N (11)

N™aX -, and Niold demonstrate the maximal speed, inertia weight, and final
motion, respectively.

The secondary one is computed by two modules, namely the food place and its
preceding experience. In order to achieve the i krill, it could be idealized as follows:

F = VB +wsFM (12)

where

bi _ b{ood

+ byt (13)
and V refers to the foraging speed, wy defines the inertia weight, and Fi”ld represents the
final one.

The tertiary part is an essential aspect in arbitrary procedures. It can be calculated
based on the maximal diffusion speed and an arbitrary directional vector. Its formulation is
given herewith:

D; = D"®§ (14)

where D™# denotes the maximal diffusion speed whereas J indicates the arbitrary direc-
tional vector and their arrays are arbitrary numbers. At this point, the place from KH in r
to r + Ar can be expressed as follows:

dX;

Xi(t+Dt) = X;(t) + Dt~

(15)

The CKHA technique is derived by incorporating the chaotic concepts into KHA. In
this work, a 1-D chaotic map was incorporated in the CKHA design.
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3.3. Ensemble Feature Extraction

During the feature extraction process, an ensemble of DL models are used, encompass-
ing three approaches, namely VGG-16, VGG-19, and SqueezeNet. The three vectors can be
derived as given herewith:

fvcciexm = {VGG161x1, VGG16142, VGG16143, -+, VGG161xy} (16)
fvccioxm = {VGG1911, VGG191 42, VGG19143, -+, VGG191p} (17)
fsanixp = {SQN1x1, SQON1x2, SQN1x3, -+, SQN1xn} (18)

Furthermore, the extracted feature is merged in a single vector:

3
Fused( features vector)l x q =Y {fVGG161xn, fVGG191 iy, fSQN1xp} (19)
i=1

whereas f represents the fused vector (1 x 1186). The entropy is employed on the feature
vector for selecting the optimum feature according to the score. The FS method is explained
arithmetically in Equations (16)—(19). Entropy Bpg, is utilized in the selection of 1186
score-based features from 7835 features as defined below:

Bre = —NHey Y p(fi) (20)
i=1
Foelect = BHe(maX(fi/ 1186)) (21)

In Equations (20) and (21), Fs,jec; represents the number of features chosen, N denotes
the total number of features, and p characterizes the feature probability. The last chosen
feature is given to the classifier to differentiate the normal and breast cancer images.

3.3.1. VGG-16 and VGG-19

Simonyan and Zisserman 2014 presented VGG, a sort of CNN framework. The VGG
framework won the ILSVR (ImageNet) competition in 2014. The framework enhances
the AlexNet framework by replacing kernel-sized filter in which 11 represents the initial
convolution layer whereas 5 denotes the next convolutional layer, with numerous small
2 x 2 filters in the max-pooling layer and 3 x 3 kernel-sized filters at the convolution layer
consecutively. Finally, it has two FC layers and an activation function softmax/sigmoid for
the output. The familiar VGG models are VGG16 and VGG19. Between these, the VGG19
model comprises 19 layers whereas the VGG-16 model comprises 16 layers. The major
distinction between the models is the existence of an additional layer at three convolution
blocks of the VGG19 model.

3.3.2. SqueezeNet

Squeezenet is a kind of DNN that comprises 18 layers and is mainly utilized in image
processing and computer vision programs. The primary goals and the objectives of the
researchers, in the development of SqueezeNet, are to construct a small NN that comprises
fewer parameters and to allow easy transfer through a computer network (requiring
less bandwidth). Further, it should also fit into computer memory easily (requiring less
memory). The first edition of this framework was executed on top of a DL architecture
called Caffe [21]. After a short period of time, the authors started utilizing this framework
in many publicly available DL architectures. Firstly, SqueezeNet was labelled, in which
it was compared against AlexNet. Both AlexNet and SqueezeNet are two distinct DNN
frameworks yet have one common feature, namely accuracy, when estimating the ImageNet
image data set. Figure 2 demonstrates the structure of SqueezeNet.
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Figure 2. SqueezeNet architecture.

The primary objective of SqueezeNet is to achieve high accuracy using less param-
eters. To accomplish this objective, three processes are used. Primarily, a 3 x 3 filter is
substituted by a 1 x 1 filter with less parameters. Next, the input channel count can be
minimized to 3 x 3 filters. At last, the subsampled operation is carried out at the final
stages to create a convolutional layer with a large activation function. SqueezeNet is mainly
based on the concept of an Inception module [22] to design a Fire module with a squeeze
layer and an expansion layer. The fire module comprises a squeeze convolution layer
(which has only 1 x 1 filters) that feeds into an expansion layer with a mix of 1 x 1 and
3 x 3 convolutional filters.

3.4. Optimal MLP Classifier

Finally, the generated feature vectors are passed onto MLP classifier to allot proper
class labels. Perceptron is a simple ANN framework that depends on a slight distinct
artificial neuron called the Linear Threshold Unit (LTU) or the Threshold Logic Unit (TLU).
The input and output of the cells are numbers whereas all the values are related to weight.
TLU evaluates the weighted sum of the input as given below:

Z = WX +wWaxy + ...+ wuxy, = xW (22)
Later, a step function is employed for that sum and the outcome is viewed as the output:
hy(x) = step(z) (23)

However, z = x™. The perceptron is simply made up of a single layer of TLUs that
are interconnected to each input. Once the neuron in a layer is interconnected, it is named
as a dense layer or a fully connected layer. The perceptron is stacked by several perceptrons.
The resultant ANN is otherwise called the MLP. It is composed of a TLU or a hidden layer
in which the ones that pass through are input layers, and other last are output layers. In
order to train the MLPS, the BP training approach is utilized to compute the gradient
automatically. To optimally adjust the weight values of the MLP model, the CSO algorithm
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is applied. The CSO algorithm is stimulated from two characteristics of cats, namely the
Seeking Model (SM) and Tracking Mode (TM). In the CSO algorithm, the cats possess the
locations comprising the D-dimension, the velocity of the dimensions, the fitness value
that denotes the inclusion of the cat into the fitness function, and the flag to detect the
occurrence of SM or TM. The end solution is determined through the optimal location of
the cat and it sustains the optimal ones until the algorithm is terminated [23].

To model the characteristics of cats in the durations of their resting and alert states, SM
is used. It includes four major variables such as SMP, SRD, CDC, and SPC. The procedure
involved in SM is listed herewith:

Step I: Create j copies of the current location of cafy, where j = SMP. When the SPC
value is calculated to be true, assume j = (SMP — 1). Then, retain the current location of
the candidate.

Step 2: For all copies based on CDC, arbitrarily subtract the current values of the SRD
percent and substitute it with previous values.

Step 3: Determine the Fitness Value (FS) for every candidate point.

Step 4: When every FS is non-identical, determine the selection possibility of all the
candidate points or else consider the selection possibility of candidate points as ‘1’.

Step 5: Determine the fitness function for every cat. When the fitness function for
every cat is identical, then the probability of choosing a cat becomes 1; otherwise, the
probability P; can be determined as follows.

F, — F
Pi_ |l b|

Fmax - Fmin

(24)

where Fi indicates the fitness value of a cat, Fnax represents the maximum fitness value of
cats, Finin denotes the minimal fitness value of the cat, F, = Fnax for minimization problems,
and F, = Fyin for maximization problems.

TM is the next mode of CSO algorithm where the cats aim at tracking their food as
well as their targets. The process is listed as follows:

Step 1: Upgrade the velocity of all the dimensions based on Equation (25).

Step 2: Ensure whether the velocity falls inside the range of higher velocity. When the
new velocity is above the range, it is considered as equivalent to the limit:

Via = Viea + 1161 (Xpest.a — Xia) (25)
Step 3: Upgrade the position of catj according to (26):
Xkd = Xid + Via (26)

Xpestq denotes the location of the cat with optimal fitness and X ; implies the location
of caty; c; denotes the acceleration coefficient to extend the velocity of the cat when moving
into the solution space.

4. Performance Validation

The proposed model was implemented on a PC with the following configuration:
Intel i5, 8th generation PC with 16GB RAM, MSI L370 Apro, and Nividia 1050 Ti4 GB. The
researchers used Python 3.6.5 along with pandas, sklearn, Keras, Matplotlib, TensorFlow,
opencyv, Pillow, seaborn and pycm. The experimental analysis was conducted for the
EDLCDS-BCDC technique using the benchmark Breast Ultrasound Dataset [24], which
comprises 133 images classified as normal, 437 images classified as benign, and 210 images
classified as malignant. The dataset holds 780 images sized in the range of 500 x 500 pixels.
Figure 3 shows the input images along with ground truth images. The first, third, and
fifth rows represent the original mammogram images. Next, the respective ground truth
images are given in the consecutive second, fourth, and sixth images. Furthermore, Figure 4
includes a histogram of the images (for the input images given in the first, third, and fifth
rows in Figure 3).
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Figure 5 illustrates the sample visualization results of the proposed model during the
preprocessing stage. For a given input image, the corresponding noise was removed and
the contrast-enhanced images are depicted in the figure. It is evident that the quality of
these images was considerably improved in this preprocessing stage.

LEFT BREAST

Figure 3. Sample and ground truth images (benign/malignant/normal).
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LEFT BREAST

(c)

Figure 5. Sample visualization results: (a) original image; (b) noise-removed image, and (c) contrast-

enhanced image.
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Table 1 exhibits the overall breast cancer classification analysis results accomplished
using the EDLCDS-BCDC technique under several epochs and different measures such as
sensy, specy, precy, and accu,. The table values imply that the proposed EDLCDS-BCDC
technique accomplished the maximum breast cancer classification results in all the aspects

considered for the study.

Table 1. Analysis results of EDLCDS-BCDC technique with distinct epochs.

Classes Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)
Epoch-250
Benign 95.88 96.79 97.44 96.28
Malignant 95.24 97.54 93.46 96.92
Normal 95.49 98.61 93.38 98.08
Epoch-500
Benign 96.57 95.63 96.57 96.15
Malignant 92.86 98.95 97.01 97.31
Normal 96.99 97.99 90.85 97.82
Epoch-750
Benign 95.65 96.21 96.98 95.90
Malignant 91.90 98.25 95.07 96.54
Normal 98.50 97.68 89.73 97.82
Epoch-1000
Benign 97.03 96.79 97.47 96.92
Malignant 94.76 98.77 96.60 97.69
Normal 96.24 98.30 92.09 97.95
Epoch-1250
Benign 96.57 97.67 98.14 97.05
Malignant 94.29 97.72 93.84 96.79
Normal 96.24 98.30 92.09 97.95
Epoch-1500
Benign 96.34 95.34 96.34 95.90
Malignant 92.86 98.25 95.12 96.79
Normal 96.24 98.45 92.75 98.08

Table 2 show the overall breast cancer classification outcomes achieved by the pro-
posed EDLCDS-BCDC technique under several epochs. The results represent the enhanced
classifier results for the EDLCDS-BCDC technique under every epoch. For instance, with
250 epochs, the EDLCDS-BCDC technique attained sensy, specy, precy, and accu,, values of
96.01%, 97.95%, 95.39%, and 97.52%, respectively. Similarly, with 750 epochs, the presented
EDLCDS-BCDC technique obtained sensy, specy, precy, and accuy values of 95.35%, 97.38%,
93.93%, and 96.75%, respectively. Moreover, with 1500 epochs, the proposed EDLCDS-
BCDC technique attained sensy, specy, precy, and accu, values of 97.15%, 97.35%, 94.74%,

and 96.92%, respectively.
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Table 2. Average analysis results for the EDLCDS-BCDC technique under different measures.

No. of Epochs Sensitivity (%) Specificity (%) Precision (%) Accuracy (%)
Epoch-250 96.01 97.95 95.39 97.52
Epoch-500 95.47 97.52 94.81 97.09
Epoch-750 95.35 97.38 93.93 96.75

Epoch-1000 95.54 97.65 94.76 97.09
Epoch-1250 95.70 97.90 94.69 97.26
Epoch-1500 95.15 97.35 94.74 96.92

The results from the accuracy analysis of the EDLCDS-BCDC technique conducted
on the test data are illustrated in Figure 6. The results demonstrate that the proposed
EDLCDS-BCDC system accomplished an improved validation accuracy as compared to the
training accuracy. Further, the accuracy values were also found to be saturated with the
number of epochs.

Accuracy Graph

1_
0.9-
i
o
o
o
0.8-
—
v
a
>
o 0.7
—_
-
o
o
<
0.6-
— Training Accuracy
Validation Accuracy
0.5~
0 100 200 300 400 500 600 700 800

Epochs

Figure 6. Accuracy analysis results for the EDLCDS-BCDC technique.

The loss outcome analysis results accomplished by the proposed EDLCDS-BCDC
technique on test data are portrayed in Figure 7. The results reveal that the EDLCDS-BCDC
approach reduced the validation loss as compared to the training loss. It is also shown that
the loss values were saturated with increasing numbers of epochs.
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Figure 7. Loss graph analysis for the EDLCDS-BCDC technique.

Figure 8 illustrates the set of ROC curves obtained by EDLCDS-BCDC technique under
distinct epochs. The results show that the proposed EDLCDS-BCDC technique achieved
an increased ROC of 99.4027 under 250 epochs, 99.7071 under 500 epochs, 98.7158 under
750 epochs, 99.4562 under 1000 epochs, 98.4676 under 1250 epochs, and 98.8527 under
1500 epochs.

Figure 9 contains the comparative analysis results, in terms of sensy, specy, and precy,
for the proposed EDLCDS-BCDC technique as well as other recent approaches [25]. The
results indicate that the VGG19 and Densnet161 models obtained the lowest values of sens,,,
specy, and precy,.

In addition, the VGG11, Resnet101, and Densenet161 models produced slightly in-
creased sensy, specy, and prec, values. The VGG16 model accomplished reasonably good
sensy, specy, and prec, values of 84.42%, 96.21%, and 94.69%, respectively. However, the
proposed EDLCDS-BCDC technique surpassed the available methods with the highest
sensy, specy, and prec, values of 84.95%, 90.20%, and 87.90%, respectively.

Figure 10 highlights the comparative analysis results, in terms of accu,, accomplished
by EDLCDS-BCDC and recent approaches [25]. The results indicate that both the VGG19
and Densnet161 models obtained low accuy. In addition, the VGG11, Resnet101, and
Densenet161 models produced slightly increased accu, values. Moreover, the VGG16
model accomplished a reasonable accu, of 92.46%. However, the proposed EDLCDS-BCDC
technique surpassed all other available methods with the highest accuy of 97.09%.
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Figure 8. ROC analysis results for the EDLCDS-BCDC technique under distinct epochs.
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The above-discussed results establish that the proposed EDLCDS-BCDC technique is
a promising candidate for the recognition of breast lesions using USIs.

5. Conclusions

The current research work developed a novel EDLCDS-BCDC model to diagnose
breast cancer using USIs. Primarily, USIs are pre-processed in two stages, namely noise
elimination and contrast enhancement. These stages are followed by CKHA-KE based
image segmentation, with ensemble DL-based feature extraction processes also being
performed. Finally, the CSO-MLP technique is utilized to classify the images in terms of
breast cancer either being present or not. Extensive experimental analyses were conducted
using the proposed EDLCDS-BCDC technique on a benchmark database and the results
were examined under distinct measures. The comparative results established the supremacy
of the proposed EDLCDS-BCDC technique over existing methods. In future, deep instance
segmentation techniques can be designed to enhance the detection rate of the EDLCDS-
BCDC technique.
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