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Simple Summary: Ocean acidification is causing major changes in marine ecosystems, with varying
levels of impact depending on the region and habitat investigated. Here, we report noticeable
changes in both meio- and macrobenthic assemblages at shallow hydrothermal vents located in
the Mediterranean Sea. In general, the areas impacted by the vent fluids showed decrease in the
abundance of several taxa and a shift in community composition, but with a clear biomass reduction
evident only for macrofauna. CO2 emissions at shallow hydrothermal vents cause a progressive
simplification of community structure and a general biodiversity decline due to the loss of the
most sensitive meio- and macrofaunal taxa, which were replaced by the more tolerant groups, such
as oligochaetes, or highly mobile species, able to escape from extreme conditions. Our results
provide new insight on the tolerance of marine meio- and macrofaunal taxa to the extreme conditions
generated by hydrothermal vent emissions in shallow-water ecosystems.

Abstract: The Aeolian Islands (Mediterranean Sea) host a unique hydrothermal system called the
“Smoking Land” due to the presence of over 200 volcanic CO2-vents, resulting in water acidification
phenomena and the creation of an acidified benthic environment. Here, we report the results of a
study conducted at three sites located at ca. 16, 40, and 80 m of depth, and characterized by CO2

emissions to assess the effects of acidification on meio- and macrobenthic assemblages. Acidification
caused significant changes in both meio- and macrofaunal assemblages, with a clear decrease in terms
of abundance and a shift in community composition. A noticeable reduction in biomass was observed
only for macrofauna. The most sensitive meiofaunal taxa were kinorhynchs and turbellarians that
disappeared at the CO2 sites, while the abundance of halacarids and ostracods increased, possibly as a
result of the larger food availability and the lower predatory pressures by the sensitive meiofaunal and
macrofaunal taxa. Sediment acidification also causes the disappearance of more sensitive macrofaunal
taxa, such as gastropods, and the increase in tolerant taxa such as oligochaetes. We conclude that
the effects of shallow CO2-vents result in the progressive simplification of community structure and
biodiversity loss due to the disappearance of the most sensitive meio- and macrofaunal taxa.

Keywords: ocean acidification; shallow hydrothermal vents; meiofauna; macrofauna; biodiversity;
Mediterranean Sea

1. Introduction

The atmospheric carbon dioxide (CO2) concentration, due to anthropogenic activities,
has increased from 280 ppm in preindustrial times to a present-day level of ~418 ppm [1].
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This increase also results in dramatic effects within the oceanic realm, by reducing carbonate
saturation of estuarine, coastal, and surface open-ocean waters [2] and expanding the
volume of acidified seawater [3]. Previous investigations have been conducted at shallow
submarine hydrothermal vents around active volcanoes (here referred to as hydrothermal
CO2 seeps), where large amounts of CO2 are injected into seawater [4]. They also showed
different impacts of ocean acidification (OA) on marine life, especially on calcifying species
such as corals [5], but also on seagrasses, macroalgae [6,7], and meiofauna [8], which are
fundamental in the benthic food-web, being responsible for the matter and energy transfer
to higher trophic levels [9,10].

Seawater acidification in shallow CO2 vents can alter the diversity of calcareous
algae and invertebrates near sites at lower pH with signs of dissolution of gastropods
shells [10]. In addition, meiofaunal abundance and diversity are negatively influenced by
the presence of shallow-water hydrothermal vents as documented in the Southern Pacific
Ocean [11]. Moreover, OA leads to a simplification of food webs with the trophic structure
of the invertebrate community shifting to fewer trophic groups and the dominance by few
generalists in low pH conditions [12].

In the Aeolian Arc (Aeolian Islands, Southern Tyrrhenian sea) in particular, the metal-
rich geochemical composition, the presence of chemosynthetic bacteria, and the emission
of CO2 fluids enriched with toxic chemicals create the so-called “Smoking Land”, i.e., a
complex of ca. 200 volcanic vents located between the Panarea island and the islet of
Basiluzzo, a highly interesting area and a natural laboratory for studying the effects of
acidification on marine ecosystems [13] and in particular on benthic communities.

Benthic fauna provides crucial insights on the health status of marine ecosystems and
information on habitat changes and/or alteration due to disturbance events [14,15]. In par-
ticular, soft-bottom infauna (either macrofauna and meiofauna), due to its limited mobility
and intimate association with seabed, is directly exposed to the changing environmental
conditions and is sensitive to most chemical and physical alterations.

Macrobenthic invertebrates have been repeatedly identified as important biological
components to assess the environmental status of marine ecosystems due to their ecological
role and importance in marine food webs and nutrient cycling [16,17]. For this reason,
macrofauna have been the most investigated component for the assessment of the envi-
ronmental impacts and are considered one of the most effective indicators of changing
environmental conditions [18].

Meiofaunal organisms are good indicators of environmental conditions, and changes
in their abundance, community structure, and functional diversity may indicate alterations
in the system [19,20]. Thanks to their ecological characteristics, meiofauna as bioindicators
present some advantages over macrofauna (e.g., ubiquity, high abundance and diversity,
small size, short life cycles, limited mobility, absence of pelagic life stages, and the presence
of both tolerant and sensitive taxa/species), because they respond rapidly to changes in
disturbance in aquatic ecosystems [19,20].

Meiofauna and macrofauna respond differently in time to natural and anthropogenic
disturbance, with meiofauna usually showing a quick response to changes in the ecosystem
and also a rapid recovery when compared to macrofauna. Meiofauna indeed show high
turnover rates, rapid reproduction, and rapid life histories [21]. By integrating both meio-
fauna and macrofauna in environmental disturbance assessments, either due to natural
or anthropogenic events, our understanding of the impacts on the benthic community in
particular, as well as marine ecosystems, is greatly improved.

In the present study, we hypothesize that the presence of hydrothermal vents influ-
ences sediment properties, and consequently meio- and macrofaunal assemblages in terms
of abundance, community composition, and diversity. This study aims to assess: (a) the
effect of local acidification on the abundance, biomass, species composition, and assemblage
structure of meio- and macro-fauna communities; (b) the presence of highly sensitive taxa,
which might provide indication on the long-term effects of OA; and (c) the effect of depth
on the benthic community patterns observed.
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2. Materials and Methods
2.1. Study Area

The hydrothermal system of Panarea island is ca. 70 km2 and includes active vents
characterized by an intense exhaust of gases dominated by CO2 and thermal fluids with
temperatures up to 140 ◦C [22,23]. This hydrothermal system suffered a sharp increase
in ventilation activity in November 2002 due to the injection of magmatic fluids into the
deep geothermal body that caused a low-energy underwater explosion, killing almost
all living organisms in the area [24]. The magma uplift in the nearby volcanic island of
Stromboli allowed the hot magmatic volatile compounds to migrate to Panarea through
the normal active fault that connects the two volcanic structures [25]. Around the islet
of Basiluzzo, hydrothermal processes produce sulfide deposits and vents rich in Fe [26].
Despite the numerous and detailed information on the geomorphological characteristics of
the Panarea volcanic complex, investigations on the biological components of this under-
water hydrothermal system are scant and still ongoing. Recent studies have highlighted
the presence of structures with different shapes and sizes with diffuse gas and thermal
emission. The presence of many active and different conformation vents has given this area
the name “Smoking Land” [26]. The volcanic complex of Panarea represents the emerg-
ing part of a composite submarine volcano belonging to the Aeolian arc in the southern
Tyrrhenian Sea [27]. Remains of primary volcanic structures can be traced to “Secca dei
Pesci”, to the S and SW areas of Panarea and to the NW and NE areas of Basiluzzo [26].
Between the island of Panarea and the islet of Basiluzzo, the presence of gas leakage, white
spots, bacterial mats, and precipitates of Fe-oxyhydroxides has been detected [28]. About
200 vents with different shapes and sizes have been characterized by ROV [26]. Among all
the volcanic vents observed, some are clearly active, with the emission of bubble plumes or
hydrothermal fluids having a density visibly different from the surrounding seawater [26].
The origin of the “Smoking Land” can be attributed to the presence of a strong hydrother-
mal circulation along the fault plane of the north-western graben. Acid fluids enriched
in dissolved inorganic carbon (DIC) and trace elements for volcanic degassing emerge
from the bottom and are accompanied in some cases by bubbles of CO2 and in others by
apparent inactivity.

2.2. Sampling Strategy and Samples Collection

Sampling activities in the Panarea area were carried out during the ISPRA “ORBS
PANA_15” scientific cruise on board of the R/V Astrea using a 25 L Van Veen grab, in
June 2015. Two different sub-areas were investigated: one off the southwestern coast of
the islet of Basiluzzo (named CB3, with four sampling stations: CB3-1, CB3-2, CB3-3, and
CB3-4) and located at ca. 77 m of depth, and one at the southeastern sector of the Panarea
Volcanic Complex, in the shallow region (ca. 40 m of depth) known as “Secca dei Pesci”
(named SP, with two sampling stations: SP1 and SP2) (Figure 1). Both sub-areas were
first investigated by means of multi-beam prospection, to identify venting sites [29]. In
the Basiluzzo sub-area, a benthic chamber was deployed for 6 h in 3 different sites (depth
range 74–81 m) characterized by potential venting activity to carry out measurements of
temperature (T), DIC, metals, and H+ over time. In the Secca dei Pesci sub-area, the pH and
T were measured through a CTD cast along the water column, which allowed to identify
one vent site (SP1, close to an intense hydrothermal active vent with strong CO2 emission,
i.e., ppm 1400) and one non-venting station (SP2). Two additional sampling stations were
selected far from the SP sub-area at comparable depths, named as SP3 and SP4, with no
vents activity. Thus, SP2-SP4 were considered as control stations (hereafter inactive vents).
Similarly, at the CB3 sub-area, two stations were characterized by the presence of CO2
emission vents (CB3-2 and CB3-3), while in the other two (CB3-1 and CB3-4), no activity
was recorded; thus, they were used as the control (e.g., inactive vents). Additional samples
were collected at a shallower site named Black Point (BP1, at 16 m of depth), characterized
by strong emission, and located inside a small archipelago consisting of five islets (Figure 1).
At those sites characterized by CO2 emission, the pH values ranged between 5.80 and 6.07
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(at SP1 and CB3-3, respectively), while at the control sites, the pH varied between 7.10 and
8.17, at SP2 and CB3-4, respectively.
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Figure 1. Study area and location of sampling sites within each sub-area. SP indicate samples
collected at the Secca dei Pesci, CB3 indicated samples collected off the southwestern coast of the
islet of Basiluzzo and BP is the Black Point site at the Archipelago of Dattilo, Panarelle, Lisca Bianca,
Bottaro and Lisca Nera (Color maps are generated from Google Earth: Map data ©2021 Google Earth
data SIO, NOAA, US Navy, NGA, GEBCO, Landsat/Copernicus).

Sediment samples for the analysis of the sediment organic matter (0–1 cm), meiofauna,
and macrofauna (both collected down to a depth of 10 cm) were sampled in three inde-
pendent replicates in each site and stored at −20 ◦C until the analyses in the laboratory.
To cope with the possible bias raised by using the Van Veen grab, which may produce
leaking of interstitial water during recovery, we collected samples only from deployments
in which the grab was completely watertight, by visual inspection. Moreover, the grab
was equipped with rubber flaps over screened opening to prevent washout [30]. Sediment
sub-samples for the subsequent analyses of organic matter (OM) and meiofauna were
collected from three independent deployments of the grab by means of plexiglass corers
(internal diameter 3.6 cm). As the grain size at different sites was characterized by large
sediment fraction (i.e., rodolith beds) making the sieving of samples on board difficult,
through 20 and 500 µm sieve, for meio- and macrofauna, respectively, the whole samples
were kept frozen (see review in [31]).

2.3. Biochemical Composition of Sedimentary Organic Matter

Data on the biochemical composition of sedimentary organic matter are reported in
Tangherlini et al. [32].

2.4. Meio- and Macrofauna Samples Processing

Each sediment sample for meiofauna was treated with ultrasound (for 1 min, three
times, with 30 s intervals) to detach organisms from the grain particle surface and then,
sieved through a 500 µm (no large meiofaunal organisms were retained in this first sieve,
at a visual check) and a 20 µm mesh net to retain the smallest organisms. For samples
collected in CB3 and BP1, the fraction remaining on the latter sieve was re-suspended
and centrifuged three times with Ludox HS40 diluted with water to a final density of
1.18 gcm−3 [30]. For samples collected in SP, meiofauna were extracted using the decanta-
tion method [33]. Once the extraction was completed, the quality check of the extraction
efficiency was 100% in both approaches (verified through sample inspection after three
centrifugations in the first approach, and after 10 baths in the second). All specimens from
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three independent replicates per sampling site were counted and sorted by taxa, under
a stereomicroscope after staining with Rose Bengal (0.5 gL−1) and stored in ethanol at
70%. Meiofaunal biomass was assessed by bio-volumetric measurements of all retrieved
specimens. Nematode biomass was calculated from their biovolume, using the Andrassy
(1956) formula (V = L × W2 × 0.063 × 10−5, in which body length, L, and width, W, are
expressed in µm). Body volumes of all other taxa were derived from measurements of
body length (L, in mm) and width (W, in mm), using the formula V = L × W2 × C, where
C is a dimensionless factor (specific for each meiofaunal taxon) used to convert L × W2 to
body volume, according to models relating body dimensions and volume [34]. Each body
volume was multiplied by an average density of 1.13 gcm−3 to obtain the biomass (µg dry
weight: µg wet weight =0.25; ref. [35] and the carbon content was considered to be 40% of
the dry weight [34]. Abundance data were expressed as individuals/10 cm2 [34].

In the laboratory, macrofauna samples were thawed, sieved through a 500 µm sieve,
and first separated in higher taxonomical groups (Polychaeta, Bivalvia, Gastropoda, Am-
phipoda, Isopoda, etc.). Then, the extracted organisms were identified to the lowest
taxonomic level, counted and weighed, and standardized to m2, to obtain the abundance
(number of individuals/m2) and biomass (mg WW/m2) data.

2.5. Data Analysis

Both univariate and multivariate analyses were based on a two-way sampling design:
“vents” as a fixed factor, with two levels, active vs. inactive (as control), and “depth”, fixed,
with two levels, shallow (SP stations at depths between 37 and 41 m) vs. deep sites (CB3
stations at depths ranging from 74 m to 81 m), crossed within each other. Since the BP site
had no replicates, it was removed from statistical analyses, to maintain a crossed design, and
represented only in descriptive analyses. Changes in abundance, biomass, and diversity
(number of meiofaunal taxa and of macrofaunal species richness) were tested by univariate
PERMANOVA [36], based on the Euclidean resemblance matrix of log(x + 1) transformed
abundance, biomass, and untransformed diversity data, respectively. Abundance, biomass,
and diversity data were also visualized by boxplots.

Changes in community composition were analyzed through PERMANOVA test run
on the Bray–Curtis resemblance matrix of square root for meiofauna, and log(x + 1)-
transformed for macrofauna abundance data, and the pair-wise tests were carried out for
the interaction factor, if significant in the main test. On the same matrix, a CAP analysis [37]
was run on the factor found to be significant by PERMANOVA, to visualize the differences
in meio- and macrofaunal composition among sampling sites. To assess the percentage of
similarity/dissimilarity in the taxonomic composition of meio- and macrofauna at active
vs. inactive sites and at shallow vs. deep sites, a SIMPER analysis was carried out. In the
case of meiofauna, SIMPER analysis was performed with and without nematodes once
they tended to also dominate in stressful environmental conditions [38]. A shade plot was
also used to represent the total abundance by higher taxonomical group of macrofauna
(class or order) in active vs. inactive sites [38].

Finally, a distance-based linear model (DistLM, [39]) was run on both meio- and
macrofaunal composition matrix and the variables obtained by the analysis of the sedi-
mentary organic matter, and the total meiofauna and nematodes abundance as additional
variables for the model run on macrofaunal abundance matrix. In both cases, DistLM
models were performed by using a stepwise selection procedure and adjusted R2 as the
selection criterion. Environmental variables were first tested for normality and collinearity
with Draftsman’s plot. Non-normal distributed variables were log(x + 1) transformed,
while redundant variables (at ρ > 0.7) were eliminated from the analysis. Specifically, as
the Draftsman’s plot showed collinearity between biopolymeric carbon fraction (BPC) and
protein (PRT) and carbohydrate (CHO) content, at 0.89 and 0.91, respectively, BPC was
eliminated from the model running.

All statistical analyses were carried out by using PRIMER7 and PERMANOVA+
software [36,40].
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3. Results
3.1. Abundance and Biomass of Meiofauna

The meiofaunal abundance decreased significantly from inactive to active sites, with
significant differences at both shallow and deep locations (Table 1a,b, Figure 2a). Con-
versely, the meiofaunal biomass showed a nonlinear trend, with higher biomass values
at inactive vents only at shallow sites (Figure 2b). Consistently, the meiofaunal biomass
varied significantly only for the factor depth (Table 1a).
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Figure 2. Boxplots of (a) abundance (N individuals/10 cm2) and (b) biomass (µgC/10 cm2) of
meiofauna in active (shallow and deep) and inactive (shallow and deep) sites. Colors indicate active
(light blue) and inactive (dark blue) vents and x-axis defines shallow vs. deep sites. Lines in the box
represent the median. Circles are outliers (observation points that is distant from other observations).
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Table 1. Results of the univariate PERMANOVA main (a) and pairwise tests (b) for term
‘Vents × Depth’ for pairs of levels of factor ‘Vents’, carried out on the abundance and biomass
of meiofauna (in (a)), and in (b) only for abundance) collected at active vs. inactive sites at the
two depth ranges (shallow vs. deep). df = degrees of freedom; MS = mean square; F = statistic F;
t = statistic t for pairwise comparisons.

(a) Abundance Biomass
Source df MS F MS F

Vents 1 9.05 22.87 *** 0.07 0.18 ns

Depth 1 0.45 1.15 ns 4.42 11.15 **
Vents × Depth 1 0.01 0.02 ns 0.17 0.44 ns

Residuals 19 0.4 0.4
Total 22

(b) Within level ‘shallow’ of factor ‘Depth’ for abundance

Groups t
Active vs. Inactive 3.76 *

Within level ‘deep’ of factor ‘Depth’ for abundance

Groups t
Active vs. Inactive 3.22 *

*** indicates p < 0.001; ** indicates p < 0.01; * indicates p < 0.05; ns means not significant differences.

3.2. Abundance and Biomass of Macrofauna

Higher abundance and biomass values were found in inactive sites compared to those
characterized by CO2 emission (Table 2a and Figure 3a,b). Abundance and biomass values
significantly decreased between active vs. inactive sites at the deep sites and for both
abundance and biomass and at the shallow ones only for biomass (Table 2b).

Table 2. Results of the univariate PERMANOVA main (a) and pairwise tests (b) for term
‘Vents × Depth’ for pairs of levels of factor ‘Vents, carried out on the abundance and biomass of
macrofauna collected at active vs. inactive sites and at shallow vs. deep sites. Df = degrees of freedom;
MS = mean square; Pseudo-F = statistic F; t = statistic t for pairwise comparisons.

(a) Abundance Biomass
Source df MS F MS F

Vents 1 262,080 6.25 * 276.88 7.70 *
Depth 1 206,290 4.92 * 80.89 2.25 ns

Vents × Depth 1 7410.1 0.18 ns 74.07 2.06 ns

Residuals 18 41,912 35.94
Total 21

(b) Within level ‘shallow’ of factor ‘depth’

Groups t t
Active vs. Inactive 1.24 ns 1.79 *

Within level ‘deep’ of factor ‘depth’

Groups t t
Active vs. Inactive 5.38 ** 3.40 **

** indicates p < 0.01; * indicates p < 0.05; ns means not significant differences.
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Figure 3. Boxplots of (a) abundance (N individuals/m2), and (b) biomass (g WW/m2) of macrofauna
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3.3. Meio- and Macrofaunal Diversity and Community Composition

Overall, 18 meiofaunal taxa were reported in the present study. Meiofaunal diversity,
as number of meiofaunal higher taxon, ranged from 7 (CB3-4, inactive) to 16 (SP2, inactive),
respectively. Nematodes were the dominant taxon (on average 74%), followed by copepods
(12%), ostracods (4%), polychaetes and halacarids (3%), and cladocerans (1%). All other
taxa were rare.

The meiofaunal diversity was higher, though not significant, at inactive vents, while it
differed significantly between shallow vs. deep sites (Table 3a), with the highest values at
shallow sites (Figure 4a).
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Table 3. Results of the univariate PERMANOVA main (a) and pairwise tests (b) for term
‘Vents × Depth’ for pairs of levels of factor ‘Vents’, carried out on the richness of higher taxa for
meiofauna and species richness for macrofauna collected at active vs. inactive sites and at shallow
vs. deep sites. df = degrees of freedom; MS = mean square; Pseudo-F = statistic F; t = statistic t for
pairwise comparisons.

(a) Meiofaunal Richness of
Higher Taxa Macrofaunal Species Richness

Source df MS F df MS F

Vents 1 19.79 2.60 ns 1 712.5 45.18 ***
Depth 1 73.44 9.63 ** 1 89.48 5.67 *

Vents × Depth 1 8.7 1.14 ns 1 1.97 0.12 ns

Residuals 19 7.63 18 15.77
Total 22 21

(b) Within level ‘shallow’ of factor ‘depth’

Groups t
Active vs. Inactive _ 3.17 *

Within level ‘deep’ of factor ‘depth’

Groups t
Active vs. Inactive _ 9.48 **

*** indicates p < 0.001; ** indicates p < 0.01; * indicates p < 0.05; ns means not significant differences.
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The macrofaunal diversity varied significantly for both the factors investigated (Table 3a),
being greater at inactive vs. active sites at both the depths explored (Table 3b and Figure 4b).
Differences in species richness between inactive vs. active sites were particularly evident at
the deeper stations.

Changes in community composition were evident for both meio- and macrofauna,
when comparing active vs. inactive sites. The PERMANOVA test showed that both meio-
and macrofaunal community significantly changed in relation to the presence of CO2
emission (Table 4a). The pairwise comparisons indicated significant differences between
samples collected at inactive vs. active sites only at shallow sites for meiofauna and at both
depths for macrofauna (Table 4b).

Table 4. Results of the multivariate PERMANOVA main (a) and pairwise tests (b) for term
‘Vents × Depth’ for pairs of levels of factor ‘vents activity’, carried out on the meio- and macro-
faunal community composition of samples collected at active vs. inactive sites. df = degrees of
freedom; MS = mean square; Pseudo-F = statistic F; t = statistic t for pairwise comparisons.

(a) Meiofauna Macrofauna
Source df MS Pseudo-F df MS Pseudo-F

Vents 1 3819.8 5.95 *** 1 10,354 5.28 ***
Depth 1 5665.4 8.83 *** 1 6838 3.49 ***

Vents × Depth 1 602.05 0.94 ns 1 5186.3 2.64 **
Residuals 19 641.78 18 1962.1

Total 22 21

(b) Within level ‘shallow’ of factor ‘depth’

Groups t t
Inactive vs. Active 2.49 ** 2.16 **

Within level ‘deep’ of factor ‘depth’

Groups t t
Inactive vs. Active 1.41 ns 2.06 **

** = p < 0.01, *** = p < 0.001, ns means not significant differences.

The CAP analysis revealed a good separation of meiofaunal assemblages at inactive
vs. active vents (Figure 5a), while a clear segregation of samples also by depth occurred for
macrofauna, especially for samples collected at inactive vents (Figure 5b).

The SIMPER analysis identified the meiofaunal taxa that mostly contributed to the
similarity/dissimilarity between inactive vs. active sites at each depth (Table S1a,b in SOM).
Considering all taxa, nematodes and copepods were present in all sites regardless the vent
type (i.e., active vs. inactive) and depth (shallow vs. deep, Table S1a,b). At both shallow
and deep sites, ostracods and polychaetes contributed to dissimilarity among samples
together with nematodes and copepods (Table S1b), being more abundant at inactive sites.
Considering only rare taxa (Table S1c,d), cladocerans and halacaroids were responsible for
the dissimilarity, being more abundant at the active sites (Table S1c), while tardigrades and
priapulids were dominant in the inactive sites.

As far as the macrofauna is concerned, while syllid, onuphid, and eunicid polychaetes
seemed to be the most sensitive taxon to CO2 emission, together with different bivalve
species, being abundant only at inactive sites, oligochaetes appeared to be the most tolerant
group, dominating at active vents (Table S2a). Differences in the taxa contributing to
dissimilarity were evident at both depths (Table S2b), with Caprella sp. and Syllidae as
dominant at active and inactive vents, respectively, at shallow depths, and Onuphidae
and Oenonidae, and oligochaetes abundant at active and inactive vents, respectively, at
deep sites.
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A shade plot (Figure 6) based on the abundance of the macrofaunal classes/orders
found at each station shows a decrease in polychaetes and disappearance of mollusks,
sipunculids, crustaceans (except for gammarids and caprellids), echinoderms, and chor-
dates at active vents.
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3.4. Correlation of Meio- and Macrofaunal Communities and Organic Matter Quality
and Quantity

Concerning meiofauna, the results of the model showed that four variables explained
the observed pattern of changes in community composition; however, after fitting the first
two variables, the p-value associated to add lipids (LIP) to the model was not statistically
significant and quite large (p = 0.321). The two significant variables (protein concentration-
PRT and total phytopigments-TPH) explained 30% of the total variance (Table 5).

Six variables explained the total variation for macrofauna (Table 5). The first four
variables (TPH, PRT, percentage -%PRT and carbohydrate percentage -%CHO), together
explained 33% of the variation in community structure, and subsequent variables added
little to the total variation (about 4–6% each) and were not significant.
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Table 5. Results of the DistLM models run on meiofauna and macrofauna resemblance
matrix and potential drivers of change. Adj R2 = adjusted R2; Pseudo-F = statistic F;
p = probability level; Prop. = proportional percentage of variance explained by the explanatory vari-
able; Cumul. = cumulative percentage of variance explained by the explanatory variables; res.df
= residual degrees of freedom; PRT and %PRT = proteins concentration and percentage, respec-
tively, in sedimentary organic matter (SOM); LIP = lipids concentration in SOM; CHO and %CHO:
carbohydrates concentration and percentage, respectively, in SOM; TPH: total phytopigments.

Meiofauna
Variable Adj R2 Pseudo-F p Prop. Cumul. res.df

PRT 0.13 4.76 0.004 0.17 0.17 24
TPH 0.24 4.54 0.005 0.14 0.30 23
LIP 0.25 1.20 0.321 0.04 0.34 22

%PRT 0.28 1.99 0.088 0.06 0.40 21

Macrofauna
Variable Adj R2 Pseudo-F p Prop. Cumul. res.df

TPH 0.07 2.57 0.004 0.11 0.11 21
PRT 0.11 2.02 0.023 0.08 0.19 20

%PRT 0.15 1.87 0.031 0.07 0.26 19
%CHO 0.18 1.84 0.029 0.07 0.33 18
CHO 0.21 1.59 0.085 0.06 0.39 17

Nematoda 0.22 1.25 0.276 0.04 0.43 16

4. Discussion

While the biodiversity, adaptation, and response to fluid emissions have been widely
investigated in deep-sea hydrothermal vents, the response of meio- and macrofauna to CO2
volcanic emission at shallower (<100 m) depths has received much less attention. Here, we
report the changes observed for meiofaunal and macrofaunal assemblages at active and
inactive vent sites from different depths.

4.1. Changes in Meio- and Macrobenthic Abundance and Biomass Due to CO2 Emission

A drastic decrease in the abundance of benthic fauna moving towards active vents is
expected due to the extreme chemical and physical conditions encountered around these
sites [41]. Overall, we observed a decrease in meio- and macrofaunal abundance near active
hydrothermal vents, where the CO2 concentrations increased up to 1400 ppm. At the same
time, the impact in terms of biomass was significant only for macrofauna. A previous study
conducted in the same area and investigating the impact of fluid emissions on benthic
prokaryotes [32] revealed that both prokaryotes and viruses remained consistently higher
in sediments influenced by CO2 discharges than in inactive sites. These results suggest
that acidification due to CO2 leakage can differently impact the diverse components of the
benthic system.

Previous studies have also shown a significant negative effect on the abundance and
growth of several marine taxa (e.g., oysters and mussels, warm-water corals, and cold-
water coralline algae), with a mean reduction of 15% for abundance, and of 11% for growth
rates [42].

For meiofauna, we observed that water acidification seems to affect the abundance
but not on biomass. This finding may suggest that the emissions had negligible effects
on the growth rates of meiofaunal taxa or that large-size meiofaunal taxa were not more
sensitive to acidification than small-sized taxa. Despite the extreme conditions close to the
vent emissions, the values of abundance reported here are higher than those reported in
other coastal vents, where the meiofaunal abundance was 5–10 times lower than in the
present study [8]. Among the emission vent sites, the highest abundance is observed in the
shallowest site, revealing the importance of local environmental conditions in influencing
meiofaunal assemblages.
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The decrease in both macrofaunal abundance and biomass close to the vent sites
could be related to changes in the species growth rate, particularly mollusks, which are the
second most dominant group in soft-bottom macrofauna samples. There is an increased
metabolic cost of coping with hypercapnia, which also leads to dwarfism phenomena [43]
or an increased susceptibility to predation [44].

4.2. Effects of Acidification on Meio- and Macrofauna Community Composition and Diversity

The available literature on the benthic community responses to low pH suggests that
one of the main consequences is a shift in community structure (see [44] and references
cited therein, [12,45,46]).

In the present study, we reported significant differences at the community level in
both meiofauna and macrofauna between inactive and active vents.

The negative effects of acidification on meiofaunal diversity have been documented in
previous investigations carried out in in situ conditions [8]. At the same time, experimental
studies conducted in mesocosms reported contrasting results [8,47–50] of the effects of low
pH on the abundance of meiofaunal taxa, with some experiments showing decreased abun-
dances of calcifying taxa (i.e., Gastotricha, [47]) and unaffected abundances of dominant
taxa, and others showing equal or higher abundances for dominant taxa (i.e., Harpacticoida
and Polychaeta abundances without variations and Nematoda, Ostracoda, Turbellaria, and
Tardigrada exhibiting their highest densities in low-pH treatments.

Most of the available studies aimed to assess the effects of acidification on meiofauna
are indeed based on laboratory experiments and focused on the dominant taxa such as
nematodes and copepods [51,52].

The findings of the present investigation indicate that at high CO2 concentrations,
the meiofaunal diversity and community composition change as a result of the different
sensitivity of the various taxa.

Nematodes, followed by copepods, are generally the key component of meiofaunal
assemblages inhabiting sediments around the vents [8,53–57]. Accordingly, in the present
study, these two taxa dominated at all sites, including in those influenced by vent emis-
sions. However, most of the changes in taxa/species composition occur amongst the rare
taxa [20,58,59]. Here, we report that, among rare taxa, kinorhynchs and turbellarians are
the most sensitive to the acidification and disappeared in all sites characterized by CO2
emissions. Bivalves and priapulids showed a similar sensitivity to CO2 emissions and were
present only in inactive sites. We cannot exclude that the different vent emissions along
with the local environmental conditions and depth could influence the presence/absence
of some other taxa. At the same time, we cannot discount the potential influence of in-
direct effects linked to changes in food availability as well as top-down effects due to
meiofaunal predation.

Furthermore, we report that halacarids and ostracods increased their abundance in
sediments characterized by CO2 emissions, and this could be a direct response to the large
availability of organic matter along with an increase of prokaryotic abundance [32].

The high meiofaunal variability observed at some sites in active vents is likely associ-
ated with the complexity of hydrothermal vent fields, small-scale habitats that change at
scales of centimeters, influenced by topographical variables. Changes in composition along
the vent transition zone may be abrupt or gradual, vary according to vent characteristics,
such as intensity, size, and regional context [57,60]. In this sense, additional studies are
recommended to investigate the natural variability in structure by in situ time series of
vents and associated fauna [61].

Macrofauna also showed a clear community shift from active to inactive vent sites.
The taxa that most contributed to the discrimination between active and inactive sites were
syllid polychaetes, sipunculids, gastropods, and bivalves. A gradient of vulnerabilities to
exposure to low-pH conditions have also been previously reported for mollusks > arthro-
pods > annelids [12,45,46,52,62,63]. Calcifying organisms, such as mollusks, are proposed
as the most vulnerable taxa to low pH, especially at larval and juvenile stages [64–67].
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Moreover, they generally possess poorer regulatory abilities [68–72]. In our study, evident
effects were also observed for the sipunculid Phascolion (Phascolion) strombus strombus,
which preferentially lives inside the shells of gastropods (here Bittium reticulatum) acting as
drivers of sipunculid distribution [73].

At the species level, inactive vents are dominated by the Eunicid polychaete Lysidice
unicornis, a species characteristic of rodolith beds [74], which disappeared in fluid vent
areas [27]. Low pH sites, and especially the “smoking land”, were dominated by the
red algae Peyssonellia sp. This alga creates a secondary substratum for the settlement of
encrusting and sessile organisms, such as hydrozoans, which could explain the abundance
of caprellids, frequently associated to hydrozoans [75] at the vent sites.

Several macrofaunal species of shallow-water vents are typical of organic-rich/reducing
sediments. Here, sensitive macrofaunal species disappeared almost completely, while op-
portunistic species such capitellid polychaetes and oligochaetes increased in
abundance [55–57,76]. Oligochaetes are indicators of environmental quality and have
a high tolerance to high organic concentrations, including pollutants. Moreover, they can
tolerate environments characterized by low pH, varying temperatures and salinity, and
oxygen deficiency [77]. As a result, these organisms tolerate high CO2 emissions [78].

The shallow-vent fauna is usually a sub-set of the surrounding community that
contains a limited number of species capable of withstanding the vent environment
(e.g., [54,57]). At active vent sites, we also found different abundant lyssianassyd and
Leucothoe sp., which are found to be very abundant in extreme conditions such as deep-sea
hydrothermal vents [79]. Some of the dominant polychaete taxa showed relatively high
and uniform abundances at active and controls sites, such as Hesionidae and Pisione sp.,
while Lumbrineris was almost exclusively present at vents sites, demonstrating some degree
of tolerance to OA. Conversely Lysidice spp. occurred only at inactive sites, suggesting that
polychaete tolerance (or vulnerability) to OA is highly species-specific [80]. Amphipods of
the genus Caprella only occurred at the vent sites, as also observed in other studies [81].

The emission areas are therefore drivers that shape the structure of macrofaunal
assemblages [82] and their diversity. Even a small decrease in pH levels can lead to
relevant changes in benthic systems with altered community structure and composition of
macrofaunal communities [83].

4.3. Ocean Acidification Changes in Food Availability as Drivers of Community
Composition Shifts

Both DistLM models for meiofauna and macrofauna showed that food availability
(protein and total phytopigment concentrations) were crucial driving forces of community
composition. Sediments surrounding the sites with vent emissions exhibit a relative high
concentration of the most labile compounds of the organic matter, especially proteins, and
a preferential accumulation of phytopigments. The larger availability of high-quality food
sources could explain the higher abundance and diversity of meiofauna generally observed
in the present study. At the same time, the increased food availability can offset reductions
in calcification and growth associated with acidification in corals and mussels [84–87] and
thus support moderate abundance values also at vent sites, including the importance of
herbivores, sustained by the high primary biomass (as indicated by the total phytopigment
concentration), which can counterbalance the impact of acidification [88,89].

5. Conclusions

Our results show a clear impact of CO2 emissions from shallow hydrothermal vents
of the Aeolian Islands on both meio- and macrofaunal assemblages at both shallow and
deep sites. However, while acidification impacted directly on highly sensitive meio- and
macrofaunal taxa, the decrease in other taxa may be caused by the effect of vent emissions
on food availability. Kinorhynchs and turbellarians, for instance, disappeared at low-
pH sites. Other cascade effects may be due to altered top-down interactions. Among
macrofauna, calcifying organisms, especially gastropods, appeared more sensitive than
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amphipods and brittle stars to acidification. Finally, the polychaetes response to low pH
varied from species to species.

The results of this study indicate that the effects of fluid vents and related acidification
cannot be easily predicted as the response of the different components of the benthic system
(even within the same size class) may vary drastically. Further studies are needed to
fully elucidate the complex physiological mechanisms allowing a different tolerance of the
benthic species and the cascade ecological effects due to the disappearance of some taxa
and the altered food availability.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11020321/s1, Table S1: Results of the SIMPER analysis
with the taxa contributing to similarity (a–c) and dissimilarity (b,d) considering active vs. inactive
vents and shallow vs. deep sites for meiofauna, for all taxa (a,b) and only for rare taxa (c,d);
Table S2: Results of the SIMPER analysis with the taxa contributing to similarity (a) and dissimilarity
(b) considering active vs. inactive vents and shallow vs. deep sites for macrofauna.
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