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Simple Summary: Computational modeling of bacterial infection is an attractive way to simulate 
infection scenarios. In the long-term, such models could be used to identify factors that make 
individuals more susceptible to infection, or how interference with bacterial growth influences the 
course of bacterial infection. This study used different mouse infection models (immunocompetent, 
lacking a microbiota, and immunodeficient models) to develop a basic mathematical model of a 
Yersinia enterocolitica gastrointestinal infection. We showed that our model can reflect our findings 
derived from mouse infections, and we demonstrated how crucial the exact knowledge about 
parameters influencing the population dynamics is. Still, we think that computational models will 
be of great value in the future; however, to foster the development of more complex models, we 
propose the broad implementation of the interdisciplinary training of mathematicians and 
biologists. 

Abstract: The complex interplay of a pathogen with its virulence and fitness factors, the host’s 
immune response, and the endogenous microbiome determine the course and outcome of 
gastrointestinal infection. The expansion of a pathogen within the gastrointestinal tract implies an 
increased risk of developing severe systemic infections, especially in dysbiotic or 
immunocompromised individuals. We developed a mechanistic computational model that 
calculates and simulates such scenarios, based on an ordinary differential equation system, to 
explain the bacterial population dynamics during gastrointestinal infection. For implementing the 
model and estimating its parameters, oral mouse infection experiments with the enteropathogen, 
Yersinia enterocolitica (Ye), were carried out. Our model accounts for specific pathogen characteristics 
and is intended to reflect scenarios where colonization resistance, mediated by the endogenous 
microbiome, is lacking, or where the immune response is partially impaired. Fitting our data from 
experimental mouse infections, we can justify our model setup and deduce cues for further model 
improvement. The model is freely available, in SBML format, from the BioModels Database under 
the accession number MODEL2002070001. 
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1. Introduction 
The gastrointestinal microbiome provides resistance to pathogen colonization and 

infection by contributing to the development of the host immune system [1,2] and 
conferring colonization resistance (CR) [3], as well as the direct competition of a pathogen 
with members or compounds produced by the microbiota [4]. Consequently, the 
disruption of the endogenous microbiome results in an increased susceptibility to 
infection [5–7] and can be induced by several means, including the host’s inflammatory 
response to infection or antibiosis [8,9]. Together with the physical barriers provided by 
the epithelial surface lining and the adherent mucus, several effectors of the intestinal 
immune system prevent the entry and systemic spread of pathogenic bacteria present in 
the gut lumen, while allowing for the existence of a complex microbiome. Several 
measures of the immune system contribute to this involved process; amongst them are 
the production of secretory IgA, the release of antimicrobial peptides (AMP), the 
expression of pro-inflammatory cytokines, and the recruitment of, e.g., neutrophils 
[10,11]. 

Gastrointestinal infection is a frequent disease that causes significant morbidity and 
a high economic burden [12,13]. Being self-resolving in most cases, the symptomatic 
treatment (e.g., rehydration) is sufficient for otherwise healthy individuals. In contrast, 
gastrointestinal tract (GIT) infection can cause high morbidity, and even fatal diseases, in 
healthcare settings and specific populations, such as newborns, the elderly, and 
immunocompromised individuals. According to the OECD Health Report 2016–2017, 
approximately 9% of healthcare-associated infections were related to the GIT 
(OECD/European Union Paris/European Union, (2018)). Therefore, understanding the 
underlying mechanisms and identifying the crucial factors for a mild or severe course of 
infection is highly desirable. 

The Gram-negative, facultative anaerobe pathogen, Yersinia enterocolitica (Ye), has 
been used previously to study pathogen interactions in the GIT within the host to identify 
virulence factors that are crucial for the successful colonization of Ye and to find out how 
individual virulence factors interact with the host [14–23]. Within the small intestine (SI), 
Ye can adhere to, and invade, the intestinal epithelial lining, mainly via the adhesins, 
Yersinia adhesin A (YadA) [24] and Invasin [25–28]. Upon attachment, Ye can engage its 
type-three secretion system (T3SS). The T3SS facilitates the injection of effector proteins 
(Yersinia outer proteins, Yops), which contribute to the immune evasion and the 
establishment of infection [28,29]. Ye can invade the Peyer’s patches (PP) to form abscesses 
and disseminate into peripheral lymphatic tissues [30,31]. YadA is the most crucial 
individual virulence factor of Ye. It was shown that a YadA-deficient strain was impaired 
in the colonization and systemic spread in mouse infection [19]. The first line of host 
defense against invading Ye is a massive infiltration of phagocytic cells. However, Ye can 
counteract phagocytosis via its T3SS [28,29]. This Ye virulence trait seems crucial to 
evading phagocytic killing in vivo [28]. Together, both the T3SS and YadA, presumably, 
contribute to the efficient colonization of the intestinal tract, while Ye, at the same time, 
induces an inflammatory response that might account for a reduction in the density and 
complexity of the commensal microbiome [8,9]. 

In recent years, several models were developed to mirror bacterial gastrointestinal 
infections [32–37], viral infections at epithelial sites [38], and inflammatory disorders, such 
as IBD [39,40]. This study aims to utilize quantitative data to understand the mechanisms 
driving such gastrointestinal diseases. To this end, we derived a mechanistic model of 
gastrointestinal infection based on ordinary differential equations (ODEs) as a method to 
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identify parameters that are decisive for the infection course. In contrast to previous 
models, our model allows us to simultaneously modulate the virulence and growth rate 
of the causative pathogen, as well as modulating of underlying host conditions, such as 
the immune competence and the presence of a microbiome. Therefore, it may contribute 
to extending our knowledge about their role in the course of infection. We used 
experimental data from a basic mouse model of infection setting to parametrize our 
model, experimentally determine several accessible parameter values, and justify our 
model design by fitting experimental data with distinct changed parameters. In sum, we 
want our computational model to provide hints about which parameters are decisive for 
the infection course, as well as serving as a hypothesis generator of how Ye–host–
microbiota interactions take place in vivo, and, therefore, use this as a starting point for 
the development of more elaborate models of gastrointestinal infection.  

2. Materials and Methods 
2.1. Bacterial Strains and Growth Conditions 

The Ye wt and mutant strains used in this study are listed in Supplementary Table 
S2. All strains were cultured overnight at 27 °C in a Luria Bertani broth (LB). All selective 
antibiotics, such as nalidixic acid (10 µg/mL), kanamycin (50 µg/mL), spectinomycin (100 
µg/mL), and chloramphenicol (25 µg/mL) (all Sigma-Aldrich) were supplemented in 
combinations according to the indicated resistances (Table S2). For the preparation of 
bacterial suspensions for oral infection, overnight cultures were diluted and subcultured 
for 3 h at 27 °C. Bacteria were then washed once with Dulbecco’s phosphate-buffered 
saline (DPBS, Gibco, Thermo Fisher Scientific, Waltham, MA, USA), and the OD600 was 
determined to prepare the desired inoculum. 

2.2. Generation of Ye Strains Containing Different Antibiotic Selection Markers 
A chloramphenicol resistance cassette, derived from pASK IBA4C (IBA Lifesciences, 

Göttingen, Germany), was chromosomally introduced into the YenI locus of the Ye WAC 
strain to discriminate between the Ye wt and the Ye YadA0 or the T3SS-deficient strain 
(T3S0). The YenI gene encodes for a Ye-specific restriction-modification system, the 
interruption of which allows for a higher efficiency of genetic manipulations [41,42]. The 
resistance cassette was inserted by homologous recombination using the suicide plasmid 
pSB890Y, as described previously [23], and the insertion was verified by PCR, antibiotic 
resistance testing, and sequencing. Finally, the respective virulence plasmids were re-
transformed into Ye WAC CmR. All plasmids and primers used for the insertion of 
selection markers are listed in the Supplementary Tables S2 and S3. 

2.3. Animal Handling 
Ethics statement: All animal infection experiments were approved by the regional 

authority of the state of Baden-Württemberg in Tübingen (permission number H2/15). 
Female C57BL/6J OlaHsd mice were purchased from Envigo (Horst, Netherlands). 
MyD88-deficient mice (MyD88−/−) with a C57BL/6J genetic background were obtained 
from a local breeding colony (breeding pairs were purchased from Jackson Laboratories, 
Bar Harbor, ME, USA). Animals were housed in the animal facility of the University 
Hospital Tübingen under specific pathogen-free (SPF) conditions. Germ-free (GF) animals 
were bred in the germ-free core facility of the University Hospital Tübingen or were 
provided by the Institute for Laboratory Animal Science (Hannover Medical School, 
Hannover, Germany). All animals were housed in individually ventilated cages in groups 
of five animals and were supplied with autoclaved food and drinking water ad libitum. 
Infection experiments were performed with female mice at 6–10 weeks of age. 
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2.4. Oral Mouse Infection 
Prior to the intragastric administration of bacteria, mice were deprived of food and 

water for 3–4 h. For oral coinfection experiments, animals were infected with a 1:1 mixture 
of 2.5 × 108 CFU of Ye wt and Ye YadA0, or Ye T3S0, respectively. Upon the oral 
coinfection, SPF wild-type and GF mice were sacrificed at time points indicated within 
the figures describing the results of individual experiments. The MyD88−/− mice were 
infected for two days only because of the expected rapid systemic spread in these 
immunocompromised animals. Oral infections for subsequent RNA analyses from small 
intestinal mucosal scrapings were performed for two days. 

2.5. Determination of Bacterial Load from Feces 
Fresh fecal pellets were collected after the manual stimulation of individual mice, 

were weighed using a high-precision laboratory scale, and were resuspended in 500 µL 
of sterile DPBS. Pellets were homogenized, serially diluted with DPBS, plated on selective 
agar plates, and incubated at 27 °C for 48 h. Afterward, colonies were counted, and the 
CFUs per gram of feces were calculated. 

2.6. Calculation of Competitive Indices in Mixed Infections 
Competitive indices (CI) from fecal and tissue samples were calculated as the CFU 

output of the Ye mutant/Ye wild-type strains, divided by the input (initial oral inoculum) 
of these strains (CFU Ye mutant strain input/CFU Ye wild-type strain input). The output 
was determined in the individual experiments, as described above. The initial oral inocula 
(= the input) were verified by serial dilution and their subsequent plating on LB with 
appropriate antibiotics. A CI, with a logarithmic value of zero, indicates the identical 
fitness of the wild-type and the mutant strains, while a negative CI indicates that the 
mutant strain is impaired in colonization [43]. 

2.7. 16S rRNA Sequencing from SI Luminal Samples 
For the analysis of the microbiota composition within the SI of mice, and to assess 

changes in microbiota composition upon infection with Ye, mice were initially co-housed 
for ten days. After the oral infection with Ye, as described before, or after the gavage of 
the same volume of DPBS, mice were sacrificed at the indicated points in time. The entire 
GIT was dissected, and the SI was removed. The intestinal contents were isolated by 
gently squeezing them into tubes using sterile forceps. After that, the samples were 
immediately snap-frozen and stored at −80 °C until DNA isolation. DNA was extracted, 
as described in the International Human Microbiome Project Standard (IHMS) Protocol H 
(http://www.human-microbiome.org/index.php?id=Sop&num=007, accessed date: 2022-
02-10 ) [44]. The library preparation and 16S rRNA amplicon sequencing were performed 
by the CeMet Company (Tübingen) using variable regions v3-v4. Paired-end sequencing 
was performed on the Illumina MiSeq platform (MiSeq Reagent Kit v3) with 600 cycles. 
Raw read quality control was done using the FastQC tool 
(https://www.bioinformatics.babraham.ac.uk/projects/fastqc/, accessed date: 2022-02-10 
[45]). To this end, reads were merged, and quality filtering was performed using 
USEARCH [46]. The taxonomy data annotation of sequences was done by comparison 
against the National Center for Biotechnology Information (NCBI) bacterial 16S rRNA 
database using MALT [47]. Abundance tables at the taxonomic rank of interest were 
generated using MEGAN6 [48] and were further analyzed using the software R 
(https://www.r-project.org, accessed date: 2022-02-10 [49]). Before applying statistical 
analyses, all samples were normalized to 14,947 reads (the lowest number of reads across 
all samples) using the tool rrarefy, which is part of the VEGAN package [50]. The VEGAN 
package diversity function was used to calculate the Shannon diversity. An unpaired 
Wilcoxon sum-rank test determined the significant differences between groups. Vegsdist 
and prcomp (part of the VEGAN package) were used to perform a principal component 
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analysis (PCA) on the Bray–Curtis dissimilarities. For the generation of graphical output, 
ggplot2 [51] was employed. The 16S rRNA sequencing data will be published at the 
European Nucleotide Archive database (accession number: PRJEB50711). See 
supplementary Figure S1 for details. 

2.8. Isolation of RNA from Gut Mucosal Scrapings 
For the isolation of the total RNA from gut mucosal scrapings, five mice per group, 

harboring either an SPF microbiome or GF, and the genetic backgrounds indicated earlier, 
were infected with a 1:1 mixture of 2.5 × 108 CFU of Ye wt, and Ye T3S0. As controls, five 
mice of each colonization state and genetic background were orally administered with 100 
µL DPBS instead of bacterial suspensions. Two days after infection, the mice were 
sacrificed, and the distal 10 cm of the small intestine was dissected and shortly incubated 
in RNAlater (Qiagen, Hilden, Germany). Then, the tissue was flushed with ice-cold DPBS 
to remove the fecal content and was opened longitudinally on ice using scissors. After the 
removal of the residual feces by flushing again with ice cold DPBS, the mucosa was 
scraped off with the blunt side of a scalpel and was incubated overnight in RNA at 4 °C. 
The RNA was then removed, and scrapings were homogenized in a TRI-Reagent (Zymo 
Research, Freiburg, Germany) by rinsing them successively through syringe needles with 
decreasing diameters. The remaining cell debris was removed by centrifugation, and the 
supernatants were finally used for the RNA purification using the DirectZol RNA 
Miniprep Plus Kit (Zymo Research) according to the manufacturer’s protocol. This 
protocol included a step for the removal of genomic DNA. The resulting RNA was 
quantified using a Nanodrop photometer (Thermo Fisher Scientific, Waltham, MA, USA) 
and the integrity was confirmed by agarose gel electrophoresis. 

2.9. Quantification of Immune Parameters by Quantitative Real-Time-PCR (qRT-PCR) 
The relative mRNA levels of target genes were determined using qRT-PCR. After an 

additional treatment for the removal of genomic DNA included in the QuantiTect reverse 
transcription kit (Qiagen), mRNA was reverse transcribed according to the 
manufacturer’s protocol using 1 µg of RNA as the input for a 20 µL reaction. For the 
subsequent qRT-PCR, the TaqMan gene expression master mix (Applied Biosystems; all 
assays are listed in Table S3) was used with thermal cycling conditions, according to the 
manufacturer’s protocol. Absolute quantifications were performed on a LightCycler 480 
instrument (Roche) using the LightCycler 480 Software 1.5. The relative gene expression 
levels of target genes to the reference gene beta-glucuronidase (accession number, 
AI747421) [52] were determined to apply a kinetic PCR efficiency correction, according to 
the method of Pfaffl [53], and were normalized to the expression levels of the uninfected 
SPF-colonized mice. 

2.10. Determination of the Distribution of Ye along the Mouse GIT 
To determine the ratio of Ye and the cultivable commensal bacteria in the different 

compartments of the GIT, three mice were orally infected with 5 × 108 CFU of the Ye wt 
strain. Seven days after infection, mice were sacrificed, and the gut was dissected. A piece 
of tissue, 1 cm in length, that was directly adjacent to the stomach was removed, and the 
residual small intestine was split into three pieces of equal length: a proximal part (SI 1), 
a middle part (SI 2), and a distal part (SI 3). Additionally, the cecum and the colon were 
dissected. The contents of the three small intestinal pieces, the cecum, and the colon were 
isolated by gently squeezing them into tubes using sterile forceps. For each compartment, 
the CFU per gram of intestinal content was determined, as described above for feces, using 
selective agar to determine the Ye CFUs, as well as the brain-heart infusion agar (BHI; 
incubated in anaerobic pots) for the determination of the approximate number of 
cultivable commensal bacteria. 
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2.11. Systemic Administration of Gentamicin for the Cleansing of a Potential Niche Colonized by 
Ye 

To investigate the existence of extra-luminal Ye that drained into the lumen of the SI, 
we tested if the systemic administration of an antibiotic that can kill Ye, but that is not able 
to enter the lumen of the GIT, might reduce the Ye burden in feces. To this end, 14 mice 
were coinfected with Ye wt and Ye YadA0 for two days. At this point in time, we assumed 
the successful colonization of a niche and a high bacterial burden in the feces. Mice were 
then split into two groups, of which one was administered intraperitoneally with 40 
mg/kg gentamicin (Ratiopharm, Ulm, Germany) in 200 µL of 0.9% sterile NaCl (Braun, 
Kronberg, Germany). The other group was administered sterile saline only. Ye CFUs were 
determined from the feces of mice before the gentamicin/saline administration (i.e., on 2 
dpi) and one day after treatment (i.e., on 3 dpi), as described above. The 3 dpi mice were 
sacrificed, and Ye CFUs were additionally determined from Peyer’s patches. 

2.12. Determination of GIT Passage of Time 
SPF C57BL/6 wild-type or MyD88−/− mice, as well as GF wild-type mice (2 

mice/group), were orally challenged with 100 µL DPBS containing 1 × 109 fluorescent 
polystyrene beads (1 µm) (Thermo Fisher), plus 5 × 108 CFU Ye wt, in order to simulate 
infection conditions. After the gavage, fecal pellets were collected hourly over 24 h, 
weighed, snap-frozen, and stored at −20 °C, until analyses. Next, samples were 
homogenized in 1 mL of PBS, and debris was removed by a centrifugation step of 20 min 
with 50× g [54]. To determine the number of fluorescent events per gram of feces, the 
resulting supernatant was spiked with a defined number of compensation beads (BD 
biosciences, Heidelberg, Germany) to determine the number of fluorescent beads in a 
defined volume by flow cytometry. The cumulated bead-hours were then calculated by 
multiplying the number of beads detected by the time spent in the gut until excretion. The 
mean residence time per bead was finally calculated by dividing the number of 
summarized events/g feces by the total bead-hours. 

2.13. Determination of the Water Content of the SI Content and Fecal Pellets 
Three mice each, with either SPF or GF microbiota, were used for this experiment. 

Two to five fecal pellets were collected before the dissection of the GI tract to determine 
the water content. Then mice were sacrificed, and the entire GI tract was removed. 
Afterward, the stomach was discarded, and the small intestine was cut into two pieces of 
comparable length. The cecum and colon were dissected. All the pieces and the fecal 
pellets were placed into individual, weighed Petri dishes. The wet weight of all samples 
was determined. The SI pieces, the cecum, and the colon were then cut open, and the 
content was scratched off and transferred into a Petri dish. The remaining emptied tissue 
was removed and weighed again, and the wet weight of the contents was determined. 
The Petri dishes were placed into an incubator without lids, and the material was dried 
overnight at 65 °C. Then, all samples were weighed again to determine the dry weight. 
Finally, the total water content was calculated by subtracting the dry weight from the wet 
weight. 

2.14. Calculation of the Thickening Factor for SPF and GF Mice 
Our model predicted the dynamics of the number of Yersinia (i.e., CFU) within the 

SI, whereas our experimental observations were based on colony counts derived from the 
plating of fecal pellets (log10 CFU per g of feces). To align model output to our 
experimental data, we determined the mean percentage of water in different sections of 
the gastrointestinal tracts of SPF or GF mice. We considered that the small intestinal 
content is massively concentrated to be excreted as a solid fecal pellet. Based on these data, 
we calculated a “thickening factor.” The content of the SI of SPF mice had a reasonably 
different percentage of water (77%) compared to that of the fecal pellets (29%; Table S1). 
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Therefore, the model predictions were multiplied with a correction factor to relate the 
model output to the laboratory observations. This factor is obtained by dividing the 
product of 1 g of fecal pellets and its content of solid matter (100–29%) by the product of 
the mass of the SI content of SPF mice (which is about 2.3 g) and its content of solid matter 
(100–77%); i.e., the factor is (1 g × 71%)/(2.3 g × 23%) ≈ 1.3. Thus, our model output needed 
to be multiplied by 1.3 before it can be compared with experimentally determined CFU 
levels for SPF mice. GF mice differ in several aspects, compared to SPF mice. They have a 
massively enlarged intestine (we measured the mass of intestinal contents to be about 10 
g). The average water content of the fecal pellets is 49% in these mice. Using the same 
calculation as above, we obtain a multiplication factor of (1 g × 51%)/(10 g × 23%) ≈ 0.2 for 
GF mice. 

2.15. Alignment of Model Simulation and Lab Observation Time 
We determined the passage of time of the GIT to take, on average, 4 h in SPF wild-

type mice, 5.5 h in MyD88−/− mice, and 12 h in GF mice (Figure S5). Assuming a 1 h passage 
time in the stomach and 1 h in the colon, this leaves a sojourn time of 2 h (3.5 h in MyD88−/− 
mice and 10 h in GF mice) in the SI, in which Ye are assumed to multiply. Our model only 
describes what is happening in the SI, starting when Ye leaves the stomach. This 
corresponds to one hour post-infection (hpi). An additional hour is needed for the colon 
passage until the CFUs can be counted. Thus, the observation in the laboratory at, e.g., 24 
h after oral infection must be compared with the model results after 22 h of model 
simulation. This time shift of 2 h is taken into consideration whenever modeling results 
and experimental data are compared. 

2.16. Parameter Optimization 
We derived a seven-dimensional ordinary differential-equation system, describing 

Ye population dynamics, with seven unknown parameter values in SPF mice and eight 
unknown parameters in GF and MyD88−/− mice. For the estimation of the unknown model 
parameters in this study, the performances of different optimization algorithms were 
compared systematically. We applied the steepest descent method, whose convergence 
depends on gradient-like Lipschitz conditions for a finite number of dimensions [55,56] 
or an infinite number of dimensions [57–61]. However, the results were not robust with 
this approach, and the method has a slow prediction convergence. We subsequently used 
the particle swarm optimization (PSO) method [62], which is particularly suited to solve 
problems where the optimal solution is a point in the multi-dimensional space of the 
parameter (real-valued optimization) [63]. This method, however, easily falls into 
premature solutions, leading to low accuracy. 

The method that turned out to be most appropriate for the model system, and was 
finally applied, was the maximum log-likelihood method. This method was modified to 
an integrated likelihood approach to account for experimental data points which had 
values below the limit of detection (LOD). Experimental values below the LOD of the 
bacterial load per g feces, in a given volume of fecal suspension, were set to log10 CFU/g 
feces of 2.05 (corresponds to the LOD in the experimental setting in C57BL/6J wild-type 
SPF). These values were estimated by applying a fitness function and solving the 
optimization problem using the maximum log-likelihood method. The objective function 
was defined to minimize the Euclidean distance between the measurements and model 
output. 

To collect repeated measurements from each mouse and to avoid using each point in 
time as an independent measurement, we calculated the median of repeated 
measurements for each point in time. To ensure that the algorithm converged to the global 
minimum of our objective function, we ran the algorithm 100 times with multiple starting 
points and selected the resulting parameter values that corresponded to the minimum 
value obtained for the objective function. We solved the optimization problems using 
multi-start local optimization. This approach has been shown to perform well in systems 
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and computational biology [64]. We assumed the standard deviation as an estimated 
parameter in the maximum likelihood method. Therefore, the standard deviation was 
estimated with each run with other unknown model parameters. We applied this method 
to determine whether the estimated parameters were the best fit for our model. This 
maximum likelihood approach, combined with the iteration count, increased the chance 
of convergence [65]. Eventually, the optimization was implemented using the bound-
constrained optimization package FMINSEARCHBND in MATLAB 2019 (MathWorks 
Inc., Natick, MA, USA). 

3. Results 
We first conducted laboratory experiments to generate experimental datasets and we 

summarized the current knowledge of infection scenarios with Ye in (i) 
immunocompetent hosts with complex microbiomes, (ii) immunocompetent hosts with 
no microbiome, and (iii) immunodeficient hosts with the complex microbiome. The 
initially generated experimental dataset described the Ye infection scenario (i). We further 
elaborated on the presumptions for the mathematical description and introduced the 
ordinary differential expressions describing the mathematical model. This dynamic 
population model was then validated using parameter estimation, parameter fitting, and 
parameter sensitivity analyses based on the generated experimental dataset. Additional 
experimental datasets were generated in laboratory experiments to cover the infection 
scenarios (ii) and (iii). These datasets were eventually used to refine the dynamic 
population model. 

3.1. Generation of Experimental Datasets to Generate a Dynamic Population Model 
3.1.1. Ye Population Dynamics Are Investigated in the Presence of a Complex  
Microbiome and an Intact Host Immune Response 

The starting point of our study was to generate an experimental dataset to develop 
our model of bacterial population dynamics in gastrointestinal Ye infection. We used an 
immunocompetent host harboring a complex microbiome. The C57BL/6J wild-type (wt) 
and specific pathogen-free (SPF) mice were infected with a 1:1 mixture of the Ye wt and 
either a Ye YadA0 mutant strain that lacked the adhesin YadA, or a mutant strain 
impaired in type-three secretions (T3S0). Although this is seemingly counterintuitive, we 
consciously decided to use this coinfection setting to create a situation where the mutant 
and the wild-type strains faced comparable immune responses. Single infections with Ye 
YadA0 or Ye T3S0 would have raised an immune response that was different compared 
to each other, and to that of the wild-type strain, making the reasonable comparison of 
infection scenarios questionable. As a high pathogen burden within the GIT increases the 
likeliness of systemic dissemination, the CFUs (colony-forming units) in feces may serve 
as an indicator to identify individuals that have an increased risk of developing a systemic 
infection. Thus, we determined the bacterial counts of Ye wt and the coinfected mutant 
strains in feces by plating them on selective media (Figure 1A,C). We found that the Ye 
wt strain was able to stably colonize the GIT of all animals over the entire observation 
period of 14 days. In contrast, the bacterial counts of both the YadA0 and the T3S0 mutant 
strains never reached the Ye wt level and dropped below our limit of detection at ten days 
post-infection (dpi). The competitive indices (Figure 1B,D) clearly show the reduced 
virulence of Ye YadA0 and Ye T3S0 compared to the wt. 

The most striking difference between the YadA0 and T3S0 coinfection was that the 
bacterial counts of the Ye T3S0 strain peaked later and at considerably lower levels 
compared to Ye wt and compared to that of the YadA0 mutant strain. 

In summary, these data indicate that the pleiotropic functions of YadA and, even 
more compelling, the effector functions mediated by the T3SS seem to be crucial for the 
effective immune evasion and colonization of the GIT in the presence of a complex 
microbiome and an immunocompetent host. This effect has been shown in coinfections 
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for the first time, but has been demonstrated previously in oral single infections using the 
YadA deficient strain, and in coinfections with a strain lacking the single effector protein, 
Yop H [14,66]. 

 
Figure 1. Ye population dynamics during coinfection of SPF-colonized mice. (A) Colony-forming 
units (CFU) in feces of individual animals (n = 14) at different points in time (days post-infection; 
dpi) and the median after oral 1:1 co-infection of C57BL/6J SPF mice with a Ye wild-type (wt) strain 
and an attenuated mutant strain lacking the Yersinia adhesin A (Ye YadA0). The limit of detection 
is indicated by a dashed line. (B) The competitive index (CI) of the Ye wt:Ye YadA0 coinfection was 
calculated as indicated. A negative CI is indicative of an attenuation of the mutant strain. (C) CFU 
in feces of individual mice after co-infection with Ye wt, and a mutant impaired in type-three 
secretion (Ye T3S0). (D) CI of the Ye at Ye wt:Ye T3S0 c-infection. 

3.1.2. The Integration of Experimental Mouse Infection Data, Specific Parameters  
Determined in Wet-Lab Experiments, and Published Knowledge Are Used to Generate a 
Conclusive View of Ye Mouse Infection 

We summarized our current conception of the gastrointestinal Ye infection of a 
healthy, immunocompetent host, colonized with a complex microbiome by a tangible 
visualization (Figure 2A). The figure includes the presumed development of CFU in feces 
and the strength of CR and the immune response of the host over time (Figure 2B). We 
also tried to devise scenarios for a host lacking a microbiome (Figure 2C,D) and an 
immunocompromised host (Figure 2E,F). We depicted all entities that should be 
considered in our model, and the events taking place during homeostasis (before 
infection), upon the initiation of coinfection, and at a later time point after coinfection. 
During homeostasis in SPF wild-type animals (Figure 2A, left side “Homeostasis”), basal 
levels of AMPs, produced by specialized epithelial cells that are present in high 
concentrations in the dense mucus layer, restrict the access of microbiota components to 
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the epithelium, thereby contributing to the maintenance of the steady-state [67–69]. Upon 
coinfection with the Ye wt and a mutant strain (Figure 2A middle panel, “Ye co-
infection”), some Ye will enter locations near the epithelium. In the following paragraphs, 
we refer to these locations as the mucosal compartment, comprising the mucosa, the 
epithelium, and the gut-associated lymphatic tissues, such as the Peyer’s Patches (PP) and 
the overlying microfold cells (M-cells). Therefore, they elicit an innate immune response, 
with an increased AMP and increased cytokine production and infiltration of the 
professional phagocytes to the mucosal compartment [19,70]. For the sake of clarity, our 
model considers these factors not individually, but summarizes them into one abstract 
immune response. We assumed that this immune response affects, more strikingly, the 
endogenous microbiome and especially those commensals located at the mucosal 
compartment compared to Ye. In line with this, we observed a reduction in the diversity 
of the SI microbiome upon infection with Ye (Figure S1). The reduced complexity and 
density of the mucosa, near the microbiome, would then allow Ye to colonize and replicate 
there, if it is able to resist the host’s immune defense. Assuming a limited capacity of this 
mucosal compartment, all Ye exceeding the maximum capacity will drain into the lumen 
and finally end up in measurable CFUs in feces. Since only the Ye wt strain can cope 
adequately with the attack of phagocytes, both a YadA- and a T3SS-deficient strain will 
be quickly eliminated, despite the initial colonization, as experimentally observed by us 
(Figure 1) and others [19,28,29] (Figure 2A right panel; “after infection”). 

The situation is very different in germ-free (GF) animals (Figure 2C, D). Here, no 
microbiota is present with which Ye would have to compete. Consequently, we assume 
that both the Ye wt and the mutant strain can expand within the gut lumen (Figure 2D). 
Additionally, the number of immune cells, M-cells, and the amount of AMP present in the 
mucus lining are presumably reduced, compared to SPF animals [71–73]. Thus, upon 
coinfection, the innate immune response to Ye is less intense compared to SPF-colonized 
animals (Figures 2D and S2). Nonetheless, we expect that the Ye mutant strains may still 
be eliminated more efficiently compared to Ye wt at the mucosal compartment. This 
elimination might lead to a slow reduction of the mutant strain at late points in time after 
infection. Due to the lack of a microbiome in GF mice, we assume that both the Ye wt and 
the mutant strains will colonize the GIT at high numbers. 

In the SPF-colonized MyD88−/− mice that have a constricted immune response (Figure 
2E,F), we also assume a weaker immune response. MyD88−/− mice were reported to be 
highly susceptible to enteric infection [74–77]. Thus, we expect a faster progression of the 
infection. Moreover, we anticipate an amelioration of the difference between Ye wt and 
mutant strain CFUs during the infection course, because the better survival of Ye wt is 
primarily a result of its ability to cope with, and survive, the host’s immune reaction. As 
the immune system is only weakly active here, having the full capacity of the immune 
evasion mechanisms is no longer a clear advantage for the Ye wt strain. Thus, different 
outcomes of infection are conceivable (undecided, mutant wins, or wild-type wins); 
however, this depends on the total population size. As long as the total population size is 
reasonably large, one would expect equal levels of mutant and wild-type bacteria. 

Additionally, we devised diagrams that depict our assumptions for the development 
of Ye CFU in feces for the strength of the host’s immune response (as assumed according 
to literature and some of our own qRT-PCR data; Figure S2). We performed a relative 
quantification of the mRNA levels of Reg3γ, Lipocalin-2, and S100A8 from mucosal 
scrapings as indicators of intestinal inflammation in SPF, GF, and MyD88−/− mice that were 
coinfected with Ye wt and T3S0. Essentially, we found that in the SPF mice, all markers 
had higher basal levels compared to GF and MyD88−/− mice, and that upon coinfection, all 
three markers of inflammation increased. An induction of S100A8 was also observed in 
the coinfected GF mice, but otherwise, the investigated markers were not significantly 
induced in the GF and MyD88−/− mice. We are aware that this is a relatively shallow 
characterization of the host’s immune response at only a single point in time, but we think 
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that, in the light of published data, it is justified to presume the immune response is most 
robust in SPF mice, less pronounced in GF mice, and weakest in the MyD88−/− mice. 

 
Figure 2. Schematic overview of the presumed infection progression after coinfection of different 
mouse models with Ye wt and mutant strains. (A) Scheme of the small intestine of SPF-colonized 
C57BL/6J wild-type mice during homeostasis (left), after initial disturbance (mid), and expected 
outcome after co-infection with a 1:1 mixture of Ye wt and an attenuated mutant strain. Initially, the 
gut lumen in SPF mice is densely colonized with a complex microbiota. Ye infection, associated with 
an infiltration of microfold cells (M-cells) mainly conducted by the wt strain, leads to an unspecific 
antimicrobial immune response accompanied by the release of phagocytic cells into the gut lumen 
and augmented expression of antimicrobial proteins (AMPs, Reg3γ, defensins) by epithelial cells. 
Both the antimicrobial response and inflammation affect at least parts of the microbiota and reduce 
its complexity and density. Whereas Ye wt can counteract phagocytosis by injection of effectors into 
immune cells, thereby killing them, the Ye mutant strain is more susceptible to phagocytosis and 
killing by immune cells and, thus, is finally outcompeted 14 days after infection onset. (B) Schematic 
overview of expected Ye wt and mutant CFU in feces during the infection course (upper diagram) 
and the presumed strength of host immune response and colonization resistance (CR; bottom 
diagram). (C) In germ-free (GF) mice that lack a microbiota that confers CR and harbor an immature 
immune system, Ye wt and mutant strains are both able to colonize the gut lumen and do not 
necessarily need to enter a site near the mucosa to colonize the gut effectively. This leads to weak 
antimicrobial responses that Ye can cope with, without the necessity to possess specific virulence 
traits (such as YadA or a functional T3SS). This results in comparable numbers of wt and mutant 
strains at the end of the observation period. (D) Presumed CFUs of Ye wt and mutant strain in feces 
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of GF mice (upper diagram). The immune responses in GF animals are less potent as compared to 
C57BL/6J wild-type mice, while microbial CR is absent (bottom diagram). (E) In SPF-colonized 
MyD88−/− mice, we assume that the strongly limited immune reaction does not significantly affect 
the CR that is mediated by the endogenous microbiota. This will, presumably, result in a lower 
overall Ye cell count in the gut compared to the SPF wild-type and GF mice. The immune deficiency 
entails an almost contingent infection outcome (right panel), resulting in either comparable numbers 
of the Ye wt and the mutant strains, or one of the strains becoming more abundant at two days after 
infection. Please note that the infection course in the MyD88−/− mice can only be monitored for a 
shorter period due to adherence to animal welfare regulations. (F) The presumed coincidental CFU 
development in feces is illustrated by overlapping, shaded areas (upper diagram). Limited immune 
responses reduce CR to a low level (bottom diagram); dpi = days post-infection. 

3.2. Mathematical Description of the Dynamic Population Model 
3.2.1. Presumptions Are Made for the Dynamic Population Model 

We devised the most critical interactions among Ye, the host immune system, and 
the microbiota upon host entry and their impact on Ye population dynamics. We wanted 
these interactions to be included in the model and described them mathematically. The 
following presumptions for the computational modeling of Yersinia population dynamics 
were considered: 

(1) The arrival in the SI and the colonization of a mucosal site: After an oral 
coinfection with a Ye wt and a mutant strain, both enter the lumen of the SI. A portion of 
these luminal Ye is then able to enter an extraluminal location, the mucosal compartment. 
If it is not attached to surfaces within the SI, bacteria will inevitably be transported 
towards the colon due to peristalsis. Within the colon, water will be reabsorbed from the 
intestinal content, and all bacteria finally end up in feces. Both the retention time and the 
replication rate of the bacteria determine how many bacteria will be detected in the feces 
at a distinct point in time. As Ye cells, presumably, have a lower replication rate than the 
endogenous microbiota, their CFU in feces would decline rapidly, compared to that of the 
commensals, if they do not establish a replicating population within the SI. However, 
experimental data show that the Ye CFU per g of content in the SI, at a later time of 
infection (7 dpi), is relatively high, especially in the distal part of the SI (Figure S3), and 
we have hints that there actually exists a niche within the GIT that can be colonized by Ye 
(Figure S4), see also the explanation under the following consideration, (2)). We 
hypothesize that Ye located in this mucosal compartment can resist its removal by 
peristalsis and can even replicate. Since this compartment would have a restricted 
capacity only, one basis of our model design is that all Ye cells exceeding this capacity will 
re-enter and feed the luminal populations and contribute to the CFU in feces. 

(2) Bacterial interactions in the mucosal compartment: In our model, the mucosal 
compartment is considered a complex site which includes the mucosa, the epithelial 
lining, the lamina propria, and lymphatic tissues, such as the PP. Ye are known to adhere 
to mucus, degrade it, and invade the epithelium and PP [30,78,79]. Moreover, Ye expresses 
several virulence factors that facilitate an efficient immune evasion. This capability is 
especially important in the mucosal compartment, where the number of immune cells and 
the concentration of AMPs are high. Therefore, we assume that Ye can proliferate in the 
mucosal compartment, which is also colonized by a small number of commensal bacteria. 
The growth dynamics of both Ye and the commensal bacteria are determined by their 
initial numbers and their specific growth rates. Our model assumes that the whole 
endogenous microbiome has a higher growth rate compared to Ye (e.g., because the 
microbiome members are rather diverse and do not necessarily compete for nutrients or 
suitable niches). Notably, the combined number of all mucosal bacterial populations are 
restricted by a fixed capacity. Hence, Ye and members of the microbiota compete for the 
colonization of this compartment, and the further expansion of the population is only 
possible if the capacity limit has not been reached yet. Our own experimental data support 
our model hypothesis that an extra-luminal site is potentially feeding luminal Ye 
populations. We addressed this experimentally by orally coinfecting mice with Ye wt and 
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Ye YadA0. Two days after infection, we assumed a successful colonization of the 
postulated niche (as seen before in comparable experimental settings). A systemic 
treatment with gentamicin (which does not permeate across the epithelial barrier) on 2 
dpi considerably reduced Ye populations in the PP (Figure S4A). At the same time, Ye 
populations in feces were reduced (Figure S4B). As we could not observe a drop in total 
bacterial numbers at 3 dpi after the gentamicin treatment, we assumed that gentamicin 
did not enter the lumen (Figure S4C). Thus, we decided to integrate the abstract “mucosal 
compartment” as a Ye-specific niche into our model. However, the biological role of this 
niche remains to be elucidated. 

(3) The influence of the immune system: Host immunity involves humoral and 
cellular factors. For the sake of simplicity, we summarized all host defense activities in 
one abstract immune action that only affects the mucosal compartment but is negligible 
in the luminal compartment. We hypothesize that the presence of Ye in the mucosal 
compartment activates the immune system. This activation increases proportionally to the 
number of Ye cells. The concentration of immune system effectors is highest close to the 
epithelium; therefore, we assume the immune system to influence the bacterial 
populations primarily at the mucosal site, compared to the bacteria within the lumen. As 
only the Ye wt strain has a full arsenal of virulence factors that allow for an efficient 
immune evasion, we assume that the Ye mutant strains and the commensal bacteria are 
killed more efficiently compared to the wild-type. 

(4) Population dynamics and competition in the lumen: Most of the Ye applied orally 
during the initiation of the infection enter the luminal compartment that is already 
populated with microbiota. We assume the same bacterial growth rates in the luminal and 
mucosal compartments and set a limit to the total bacterial capacity of the lumen. It is 
known that within the SI, the bulk mass of bacteria resides in the lumen, whereas the host 
has evolved mechanisms to keep the majority of the microbiota distant from the epithelial 
surface lining. This bacterial distribution indicates that the capacity of the luminal 
compartment is conceivably larger than that of the mucosal compartment, which is also 
reflected by our model. The CFU of Ye in the luminal compartment over time is—as in the 
mucosal compartment—determined by the initial quantity of Ye and its distinct growth 
rate. Additionally, bacteria that exceed the capacity of the mucosal compartment spill over 
into the luminal compartment and, thereby, contribute to the CFU in the lumen. The most 
crucial difference between the two compartments in our model is that the immune 
reaction only affects the mucosal populations, and the luminal bacterial populations are 
reduced by the discharge of the intestine only. This choice neglects the role of, e.g., 
granulocytes in the intestinal lumen for the killing of Ye. However, we consciously 
decided to design the immune action this way because we wanted to keep the model 
manageable. We summarized and depicted all our considerations in Figure 3. 

(5) The alignment of model output with experimental data: For technical reasons, the 
outputs of our wet-lab infection experiments are not the Ye CFU/g of content in the 
luminal compartment, but the CFU determined from feces after the colon passage, which 
has been concentrated by the reabsorption of water. Our model aims to simulate the 
population dynamics within the intestine. To be able to align our model output to our 
experimental data, we determined the mean percentage of the water content of different 
sections of the mouse gastrointestinal tract (Supplementary Table S1), carrying either SPF 
or GF microbiota, considering that the small intestinal content is massively thickened to 
be excreted as a solid fecal pellet. Based on these data, we have calculated a “thickening 
factor” that allows us to align our model output and the experimentally determined CFU 
values derived from fecal pellets (for a detailed description of the calculation, please refer 
to the Material and Methods section). 
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Figure 3. Schematic graphical depiction of the model composition and interaction networks. The 
model calculates population dynamics of the Ye wt (YL(wt); YM(wt)) and mutant strains (YL (mut), YM(mut)), 
as well as of commensal bacteria (BL; BM) at two different sites of the small intestine (SI), the luminal 
site and the extra-luminal mucosal site (“mucosa”; “lumen”). Additionally, it includes an abstract 
immune response with a distinct immune cell population (I). Bacterial and immune cell populations 
are illustrated as reservoirs. Individual growth rates determine the growth of bacterial populations. 
The decrease in populations is caused by intestinal peristaltic movement in the lumen and by 
immune killing in the mucosa. In addition, movement of bacteria from the mucosal compartment 
to the luminal compartment takes place. Upon entry of Ye wt or mutant strains to the mucosal 
compartment, they stimulate an immune response, which reciprocally affects all Ye and commensal 
populations within this compartment. The Ye wt strain, equipped with immune evasion factors, is 
less affected by the immune response than the Ye mutant strain, whereas both are more resistant 
than the commensal bacterial population (BM). Replicating populations that exceed the limited 
capacity of the mucosa drain into the lumen and, thereby, feed luminal populations. As a result of 
these bacterial population dynamics in the lumen, the model output is the calculated CFU of the 
bacteria ending up in feces. These curves are equivalent to experimental CFU data generated from 
the feces of orally infected mice. 

3.2.2. Ordinary Differential Equations Describe the Dynamic Population Model 
Based on the experimental data and theoretical considerations, we came up with the 

following mathematical model. As pointed out above, we assume that, following oral 
infection, a 1:1 mixture of the Ye wt and the mutant strains enter the SI. Most of the Ye 
remains in the lumen, but a small number enters the mucosal compartment. We assume 
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that commensal bacteria already populate this location. The growth dynamics of the 
commensal bacteria BM, the wild type 𝑌ெ(௪௧), and the mutant strain 𝑌ெ(௠௨௧) in the mucosal 
compartment are determined by their quantities and by their growth rates, as described 
by a logistic growth with a maximum possible size. The growth rate α(B) of the endogenous 
commensal bacteria is, presumably, higher than the Ye growth rates α(wt) and α(mut), 
respectively. 

Moreover, the growth rates α(wt) and α(mut) are assumed to be equal. The capacity CM 
limits the expansion of the bacterial population in the mucosal compartment. When 
bacterial counts exceed this capacity, bacteria spill over to the lumen at the following rates 𝜎: 𝜎ெ→௅ (௪௧) = 𝛼(௪௧) ஻ಾା௒ಾ(ೢ೟)ା௒ಾ(೘ೠ೟)஼ಾ , 𝜎ெ→௅ (௠௨௧) = 𝛼(௠௨௧) ஻ಾା௒ಾ(ೢ೟)ା௒ಾ(೘ೠ೟)஼ಾ , and 𝜎ெ→௅ (஻) = 𝛼(஻) ஻ಾା௒ಾ(ೢ೟)ା௒ಾ(೘ೠ೟)஼ಾ . 

A variable that determines the infection course is the host’s immune system 𝐼. In the 
presence of Ye in the mucosa YM, 𝐼 is stimulated at rate 𝜅 but its strength is limited to a 
capacity CI, resulting in a logistic growth (𝑌ெ(௪௧) + 𝑌ெ(௠௨௧)) ∙ 𝜅 ∙ ஼಺ିூ஼಺ . 

I directly acts on the bacteria present in the mucosa but indirectly influences the 
luminal populations by affecting the spillover from the mucosal compartment into the 
lumen. The immune system kills 𝑌ெ(௠௨௧)  more efficiently than 𝑌ெ(௪௧) , which has a full 
arsenal of virulence factors that allow for an efficient immune evasion. However, 
members of the commensal microbiome BM are the most susceptible to killing by I. This 
killing is modeled by using the term (𝛾 ∙ 𝐼 ∙ 𝐵ெ), where 𝛾 is the immunity action rate. We 
use the adjustment factors 𝑓ఊ(௪௧) and 𝑓ఊ(௠௨௧) to account for the different susceptibilities of 𝑌ெ(௪௧)  and 𝑌ெ(௠௨௧)  towards killing by 𝐼  and the even higher susceptibility of BM. The 
following differential equations describe the resulting dynamics of bacterial populations 
and immunity strength at the mucosal site: 𝑑𝑌ெ(௪௧)𝑑𝑡 = (𝛼(௪௧) − 𝜎ெ→௅(௪௧) − 𝛾 ∙ 𝑓ఊ(௪௧) ∙ 𝐼) ∙ 𝑌ெ(௪௧) (1)

ௗ௒ಾ(೘ೠ೟)ௗ௧ = (𝛼(௠௨௧) − 𝜎ெ→௅(௠௨௧) − 𝛾 ∙ 𝑓ఊ(௠௨௧) ∙ 𝐼) ∙ 𝑌ெ(௠௨௧)  (2)

𝑑𝐵ெ𝑑𝑡 = (𝛼(஻) − 𝜎ெ→௅(஻) − 𝛾 ∙ 𝐼) ∙ 𝐵ெ (3)

𝑑𝐼𝑑𝑡 = ൫𝑌ெ(௪௧) + 𝑌ெ(௠௨௧)൯ ∙ 𝜅 ∙ 𝐶ூ − 𝐼𝐶ூ  (4)

Most of the Ye from the oral infection enter the lumen of the SI. Additionally, luminal 
populations are fed by bacterial spillover from the mucosal compartment. The lumen is 
already populated with commensal bacteria. For the sake of simplicity, we use the same 
bacterial growth rates α(B), α(wt), and α(mut) in the lumen, as at the mucosal site. When we 
limit the total bacterial capacity of the lumen to a large number of CL, we obtain the 
following logistic growth for the luminal compartment: 𝛼௅(௪௧) = 𝛼(௪௧) ஼ಽି(஻ಽା௒ಽ(ೢ೟)ା௒ಽ(೘ೠ೟))஼ಽ , 𝛼௅(௠௨௧) = 𝛼(௠௨௧) ஼ಽି(஻ಽା௒ಽ(ೢ೟)ା௒ಽ(೘ೠ೟))஼ಽ , and 𝛼௅(஻) = 𝛼(஻) ஼ಽି(஻ಽା௒ಽ(ೢ೟)ା௒ಽ(೘ೠ೟))஼ಽ . 

Bacteria in the lumen move along the intestinal tract and are finally excreted at a 
removal rate β. Combining this, the following set of equations gives the dynamics of the 
bacterial populations in the lumen: 𝑑𝑌௅(௪௧)𝑑𝑡 = ൫𝛼௅(௪௧) − 𝛽൯ ⋅ 𝑌௅(௪௧) + 𝜎ெ→௅(௪௧) ⋅ 𝑌ெ(௪௧) (5)
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𝑑𝑌௅(௠௨௧)𝑑𝑡 = ൫𝛼௅(௠௨௧) − 𝛽൯ ⋅ 𝑌௅(௠௨௧) + 𝜎ெ→௅(௠௨௧) ⋅ 𝑌ெ(௠௨௧) (6)

𝑑𝐵௅𝑑𝑡 = ൫𝛼௅(஻) − 𝛽൯ ⋅ 𝐵௅ + 𝜎ெ→௅(஻) ⋅ 𝐵ெ (7)

The resulting ordinary differential equation system, described in Equations (1)–(7), 
includes the dynamics of bacterial populations at the mucosal and luminal sites, as well 
as the immunity strength. 

3.3. Validation of the Dynamic Population Model 
3.3.1. The Dynamic Population Model’s Parameters Were Estimated 

To test the validity of the model and to see how well our computational model  
(Equations (1)–(7)) was defined, we estimated unknown parameter values in the ordinary 
differential equation system (Equations (1)–(7)) based on experimental data. We first 
aimed to reduce the number of parameters. This was achieved through experimental 
approaches, if possible, involving estimating biologically meaningful ranges for unknown 
parameters (based on the literature and our own data), or, at least, by defining the 
relations between distinct parameters (higher/lower/same). To this end, we 
experimentally determined the gut passage of time of C57BL/6J wild-type SPF (termed 
SPF from now on), C57BL/6J wild-type GF (termed GF from now on), and MyD88−/− SPF 
(termed MyD88−/− from now on) animals and found that in the GF animals, the gut passage 
of time was much longer than in SPF and MyD88−/− animals (Figure S5). We also 
determined the immunological parameters of SPF, GF, and MyD88−/− animals, thus 
supporting our assumptions regarding the relative strength of the immune response in 
the three particular systems (Figure S2). 

To find reasonable values for parameters that either cannot be determined 
experimentally or can only be determined with a non-justifiable cost and effort, we started 
a computational parameter optimization to yield fits in the best agreement with the 
experimental data. Therefore, we used built-in optimization methods in MATLAB (see 
Materials and Methods). Detailed information for all parameters (such as definitions, the 
source of parameter values, functions, and relations to other parameters) is given in Table 
1. 
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Table 1. Overview of all parameters and variables within the model. This table lists all sources of 
values, functions, relations to other parameters, and preset boundaries, as well as the exact values 
used for parameter calculation and the assumptions that we made to justify the choice of 
relations/preset boundaries. 

Paramet
er 

Definition 
Source Of 
Parameter 

Value 
Function 

Relation to 
Other/Comment 

Preset 
Boundary/ 

Exact 
Value 

Assumptions Made to Justify the 
Choice of Preset Boundaries 

Growth 

ɑ(B) 
Growth rate of 

commensal 
bacteria 

Estimated 
Adjustable growth rate of 

commensal bacteria 

Higher compared 
to growth rate of 

Ye 
0.4-2.0 

High diversity and different 
requirements for growth enable 

overall faster growth compared to 
Ye. 

ɑ(wt) 
Growth rate of 

the Ye wt 
Estimated 

Adjustable growth rate of 
the Ye wt strain 

Same as growth 
rate ɑ(mut) 

0.4-2.0 

Growth optimum of Ye is at 30 °C; 
all Ye have the same requirements 

and compete for nutrients. Therefore, 
they grow slower compared to the 

microbiota. 

ɑ(mut) 
Growth rate of 
the Ye mutant 

strains 
Estimated 

By adjustment of the Ye 
mutant growth rate, the 
model can account for 
growth deficiencies. 

Same as growth 
rate ɑ(wt) 

0.4-2.0 

Mutant Ye do not have a growth 
defect, they just lack a virulence 

factor dispensable for normal 
growth; in vitro growth did not 

reveal a difference in the growth rate 
of wt and mutant Ye. 

Discharge 

β(SPF) 
Discharge rate 

of intestines 
Experimental 
data (0.22/h) 

Adjustable rate accounting 
for varying GIT passage 
times in different host 

models. 

Higher as in 
MyD88-/- and GF 

0.22 Justified by experimental data. 

β(GF) 
Discharge rate 

of intestines 
Experimental 
data (0.08/h) 

Adjustable rate accounting 
for varying GIT passage 
times in different host 

models 

Lower than in SPF 
and MyD88-/- 

0.08 Justified by experimental data. 

β(MyD88-/-) 
Discharge rate 

of intestines 
Experimental 
data (0.18/h) 

Adjustable rate accounting 
for varying GIT passage 
times in different host 

models 

Lower than in SPF, 
but higher 

compared to GF 
animals 

0.18 Justified by experimental data. 

Immunity action related 

γ 
Immunity 
action rate 

Adjustment 
factor for the 

immune 
action; 1 

means 100% 
activity 

Allows adjustment of the 
global immune action to 

account for immune 
deficiencies in a specific 

host. 

Lower in GF and 
MyD88-/- 

0.1-1.0 

It is known that GF animals have a 
less developed immune system. 

MyD88-/- animals suffer from 
reduced activity of the immune 

system (see Introduction for 
references).   

κ 
Rate of 

immune 
growth 

Estimated 
Allows adjusting the rate 

at which the immune 
response is activated. 

Unknown 0.004-0.1 No justification. 

fγ(wt) 

Immunity 
adjustment 

factor of the Ye 
wt 

Estimated 

Allows adjustment of 
resistance of the Ye wt 

strain to immune killing 
and thereby accounts for 

immune evasion 
mechanisms of a 

pathogen. 

Lowest compared 
to fγ(YadA0) and 

fγ(T3S0) 
0.001-0.11 

The Ye wt strain is most resistant to 
killing by the immune system due to 
its ability to evade the host immune 
system, e.g., by engaging its T3SS, or 
by recruiting negative regulators of 

complement by YadA (see 
Introduction for references). 

fγ(YadA0) 

Immunity 
adjustment 

factor of the Ye 
YadA0 strain 

Estimated 

Adjustment allows 
accounting for an 

increased (or reduced) 
susceptibility to immune 
killing due to mutations 

affecting Ye immune 
evasion mechanisms. 

Higher compared 
to fγ(wt) but lower 

or equal in 
comparison to 

fγ(T3S0) 

0.11-0.2 
Ye YadA0 is less resistant to killing 
by the immune system compared to 

Ye wt. 
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fγ(T3S0) 

Immunity 
adjustment 

factor of the Ye 
T3S0 strain 

Estimated 

Adjustment allows 
accounting for an 

increased (or reduced) 
susceptibility to immune 
killing due to mutations 

affecting Ye immune 
evasion mechanisms.   

Higher compared 
to fγ(wt) and higher 
or equal compared 

to fγ(YadA0) 

0.11-0.2 

Ye T3S0 is less resistant to killing by 
the immune system compared to Ye 
wt and less resistant compared to Ye 

YadA0. 

Compartment capacities 

CI 
Capacity of the 

immune 
response 

Predefined 
Caps the maximum 

activity of the immune 
system. 

CI = 1 means that 
the immune 

system is fully 
operative 

≤ 1 Not applicable. 

CM 
Capacity of the 

mucosal site 
Estimated 

Caps the replication of the 
populations within the 

mucosa to an adjustable 
maximum capacity. 

Lower than CL 103-107 
Assumed range of commensal 

bacteria in proximity to the 
epithelium based on literature [73].  

CL 
Capacity of the 

luminal site 
Estimated 

Caps the replication of 
populations within the 
intestinal lumen to an 
adjustable maximum 

capacity. 

Higher than CM 106-1010 
The total number of commensal 

bacteria in the distal small intestine 
is ~107-1010 per mL. 

Alignment of experimental data with model output 

Thicken
ing 

factor 

Reflects water 
extraction from 
fecal material 

during the 
colon passage 

Experimental 
data 

Allows adjusting 
experimentally measured 
CFU in fecal pellets and 
model-calculated CFU 

(within intestines). 

-            

SPF (1.3); 
MyD88-/-

(1.3); GF 
(0.2) 

Justified by experimental data 

Of note, the model implementation and the optimization process were, at first, based 
on the dataset generated from the coinfection of SPF wild-type mice with the Ye wt and 
the YadA0 mutants. 

3.3.2. Parameters Were Fitted Based on the Coinfection Experiments in SPF Mice 
We fitted our model to the Ye CFU data that were determined experimentally in 

coinfections of SPF mice with Ye wt and Ye YadA0 (Figure 4A). The independent 
estimation of parameters based on the second experimental dataset that was obtained by 
the coinfection of SPF mice with Ye wt and Ye T3S0 delivered slightly different, but 
comparable, absolute parameter values compared to Ye wt:Ye YadA0 coinfection. Hence, 
we observed a concordance of the model output with the experimental data (Figure 4B). 
Strikingly, the model even reflects a difference between the dynamics of CFU 
development of the Ye YadA0 and the Ye T3S0 strains; however, for the Ye wt:Ye T3S0 
coinfection, the fit is relatively poor. This result has been predicted, since coinfection is 
one of the different mechanisms which occurs in multi-strain models. This mechanism is 
mathematically called the coexistence scenario, which refers to the simultaneous 
persistence of multiple infection populations with different life-history strains. In a further 
analysis of the differential equation model (Equations (1)–(7)), it was shown that a 
coexistence scenario could take place if the growth rates of the wt and mutant strains 
differed, even if this difference was subtle [80]. 

Moreover, our experimental finding, that Ye T3S0 is more susceptible to killing 
compared to Ye YadA0, is also corroborated by the model. Looking at the relative values 
of Ye wt (𝑓ఊ(௠௨௧)/ 𝑓ఊ(௪௧)), the Ye YadA0 strain is approximately 5 times more susceptible to 
killing by the immune system, whereas Ye T3S0 is approximately 40 times more 
susceptible, compared to Ye wt. The calculated parameter values obtained for these 
experimental datasets are depicted as insets in Figure 4. 

Taken together, we were able to fit our experimental data and the model calculations 
for both coinfection settings in SPF mice. Therefore, we show that the model can reflect 
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the processes taking place in the in vivo experiments. Despite the high number of free 
parameters, we obtained a proper fit. 

 
Figure 4. Overlay of model output and experimentally determined CFU values during Ye 
coinfection of SPF wild-type mice. When fitting the model to our experimental data, we obtained 
the parameter values listed in the inset tables. (A) Model output for CFU of Ye wt and Ye YadA0 
shown as an overlay with experimental data. CFU values of individual animals at indicated points 
of time are shown for Ye wt and Ye YadA0. The dotted line indicates the limit of detection of our 
experimental system. (B) Model output for CFU of Ye wt and Ye T3S0 as an overlay with 
experimentally determined CFU values from the Ye wt:Ye T3S0 coinfection of SPF wild-type mice. 
The tables indicate fixed and calculated parameter values with green or red backgrounds, 
respectively; dpi = days post-infection. 
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3.3.3. A Sensitivity Analysis of the Estimated Parameters Was Conducted 
To better comprehend how sensitive the model is to changes in parameters, we 

analyzed the dynamic range of the model output by adopting different relations of the 
parameters  𝑓ఊ(௪௧)  and 𝑓ఊ(௠௨௧)  and checking the impact of these modulations on CFU 
development (Figure S6). This analysis revealed that the model is sensitive to changes 
within a range of relations of the parameters 𝑓ఊ(௪௧) and 𝑓ఊ(௠௨௧) of up to approximately 10, 
depending on the overall susceptibility of the individual mutant strains. 

Essentially, models with estimated parameters can be validated in two ways: either 
the parameters are estimated for one dataset and are used to achieve the results from a 
second dataset, or the parameter values are estimated for two datasets and are, 
subsequently, compared. Therefore, we checked whether we could fit our experimental 
data for the Ye wt/YadA0 coinfection while using the parameter set obtained for the Ye 
wt/T3S0 coinfection, and vice versa (Figure S7; see Figure 4A,B for original values 
obtained for 𝑓ఊ(௪௧), 𝑓ఊ(௠௨௧), 𝜅 ). Missing parameters were estimated by running an 
optimization with the parameter values for γ, β, and CI fixed, and using the experimental 
dataset of the Ye wt/YadA0 coinfection (Figure S7A). The same was done in reverse, using 
the wt/YadA0 parameter set and the wt/T3S0 experimental dataset (Figure S7B). We found 
that the parameter  𝜅  (rate of immune growth), which adopted similar values in the 
independent estimations (7.83 × 10−1 for the Ye wt/YadA0, compared to 4.28 × 10−1 for the 
Ye wt/T3S0 setting; see Figure 4), was now widely diverged (8.61 × 10−4 for the Ye 
wt/YadA0 compared to 9.72 × 10−1 for the Ye wt/T3S0). In principle, the only differences 
between the wt/YadA0 and the wt/T3S0 coinfections were the different susceptibilities to 
killing by the immune system, compared to the wt. On the one hand, these validations 
corroborated our previous findings, with Ye T3S0 being most susceptible to killing by the 
immune system (approximately factor 25 compared to Ye wt) and Ye YadA0 being more 
susceptible compared to the wild-type (approximately factor 6), but much less susceptible 
compared to T3S0. However, our findings also mean that we can obtain a proper fit only 
when allowing all unknown parameters to run free. When using parameters derived from 
the other respective experimental settings, the model can calculate a CFU development 
roughly in line with the experimental data; however, it is with poor precision, as shown 
in Figure S7B. This underlines the strong relationship between the accuracy of parameter 
values and the quality of the model output and shows that the current model has clear 
limitations. It also demonstrates how the model can serve as a hypothesis generator that 
could be validated experimentally to refine the model. Further analyses on parameter 
sensitivity were conducted in [80]. 

3.4. Refinement of the Dynamic Population Model 
3.4.1. The First Model Refinement Was Based on Coinfection Experiments in GF Mice 

To decipher how the model should be refined in different scenarios, we first 
generated a dataset using GF mice to mimic the lack of microbiota. Different basic 
parameter settings for microbiota-derived CR and host immune competence were 
adapted, and the resulting model calculations were analyzed by fitting them to 
experimental coinfection data. To decipher the effect of the absence of the microbiota on 
CFU development, we defined the number of BM and BL (i.e., number of bacteria in 
mucosal (M) and luminal compartment (L)) to be 0. Moreover, we considered that the 
fecal pellets have a higher water content in GF mice, as experimentally determined (Table 
S1). The higher water content was reflected by using a different thickening factor (0.2 
instead of 1.3; for the calculation of the factor, please refer to the Materials and Methods 
section) to align the model output with the experimental data. Furthermore, we 
considered the lower discharge rate of intestines in GF mice (12 h mean residence time 
instead of 4.5 h in SPF animals), which we had also determined experimentally (Figure 
S5). The experimental coinfection of GF mice with Ye wt + Ye YadA0 or Ye wt + Ye T3S0, 
respectively, revealed that both the Ye wt and the mutant strains reached remarkably 
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higher cell counts in feces compared to CFU levels in SPF-colonized mice. The T3S0 strain 
exhibited a slight attenuation, resulting in apparently lower CFUs, particularly from 7 dpi 
onwards, whereas Ye wt and Ye YadA0 counts remained constant at a high level over the 
entire observation period of 14 days (Figure 5). Our data, thus, indicates that in the 
absence of a commensal microbiome, both YadA and the T3SS seem to be dispensable for 
the effective colonization of the GIT. 

We ran the model for the Ye wt/YadA0 coinfection setting only having defined 
boundaries for some parameters that were justified from a biological point of view (Table 
1), as well as values we had determined experimentally. We obtained a proper fit of the 
model output and the experimentally determined course of CFU development (Figure 
5A). The same was true for the Ye wt/T3S0 coinfection setting (Figure 5B). The most 
striking differences in parameter values, compared to the values we had obtained 
previously for the SPF wild-type model, were the higher capacities CM and CL for the 
mucosa and the lumen, respectively. This makes sense from a biological point of view, as 
GF animals have massively enlarged intestines. Interestingly,  𝑓ఊ(௪௧)  and 𝑓ఊ(௠௨௧)  were 
estimated to be very similar (0.110 for Ye wt and 0.119 for Ye YadA0). This finding might 
support our interpretation of the infection course in GF mice. Here, the Ye YadA0 strain 
does not have any disadvantage compared to the Ye wt strain and can expand within the 
gut to the same extent. Similarly, also in the model, YadA seems to be dispensable for 
colonization in the absence of a microbiota. By estimating the immunity action rate γ using 
this setting, we obtained an optimized value of approximately 0.997 (Figure 5A), which is 
very similar, compared to SPF. This finding was rather surprising as we had expected a 
lower activity of the immune system in the GF setting, according to the literature and our 
own data. However, our model calculates that the overall influence of γ on the expansion 
of Ye is only subtle (see Figure S8, where the CFU development of Ye wt and Ye YadA0 
was calculated in the GF system while adopting values for γ between 1 (where the 
immune system is fully active) and 0 (no immune activity)). This can be explained by the 
absence of the endogenous microbiota that competes with Ye to fill the capacity of the 
small intestine in the SPF animals. We also modeled the GF Ye wt/T3S0 coinfection and 
obtained very similar results, compared to the Ye wt/YadA0 coinfection. The most 
apparent difference was that the fit for the T3S0 mutant strain CFU dropped slightly 
towards the end of our observation period, which is in line with our experimental data. 
Again, this difference in the behavior of Ye YadA0 and Ye T3S0 can be explained by their 
different susceptibilities to killing by the host’s immune system. In the absence of a 
microbiome, both strains can expand very quickly, and the effect of the enhanced killing 
of Ye T3S0 by the immune system is not as notable as in the SPF model system (Figure 
5B). Taken together, we can obtain a fit where the model output is in alignment with our 
experimental data under GF conditions. 
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Figure 5. Infection course in the absence of microbiota. (A) Overlay of model output for CFU of 
Ye wt and Ye YadA0 or (B) Ye wt and Ye T3S0, and experimentally determined CFU levels from 
coinfections of GF mice. All parameters were estimated based on respective experimental data 
(parameter values are listed in the inset table); dpi = days post-infection. 

3.4.2. An Immunocompromised Host Is Mimicked 
The host’s immune system fundamentally influences the outcome and course of 

infection. Severe infections often occur when the function of the immune system is 
impaired. Thus, we wanted to test if we could get a proper fit for our experimental data 
and model output when simulating a host with impaired immune function. MyD88 is one 
of the key adaptor molecules involved in the activation of a sophisticated antimicrobial 
program that is initiated upon the binding of pathogen-associated molecular patterns to, 
e.g., toll-like receptors [81]. We made use of MyD88−/− C57BL/6J mice that were colonized 
with a complex SPF microbiome as a model to decipher the role of a restricted immune 
response for Ye population dynamics. We assumed a more rapid and frequent invasion 
due to the reduction of the immune response, as depicted in Figure 2E,F (middle panel; 
“Ye coinfection”). As in the SPF wild-type model, Ye encounters the mucosal 
compartment occupied by commensals in the MyD88−/− animals. Because of the MyD88 
deficiency, a much weaker immune response is induced. This, primarily, has two 
consequences: (i) The microbiota is less disturbed and is reduced. Therefore, Ye is less 
successful in establishing a population in the mucosal compartment, and the Ye counts 
will be lower. As the mucosal compartment feeds the luminal Ye population by its 
spillover, we will observe a lower Ye CFU in the GIT, compared to C57BL/6J wild-type 
animals. (ii) Due to the weak immune response of the MyD88−/− animals, we assume that 
the disadvantage of the mutant strains, in competition with Ye wt, is much less 
pronounced. 
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Finally, we coinfected SPF-colonized MyD88−/− mice, as described before. To compare 
the experimental results and modeling data, we created an overlay of the model output 
and the experimental data (Figure 6). 

Due to the high frequency of systemic dissemination that has been observed with 
Salmonella typhimurium and Citrobacter rodentium [74,76,82], infections with Ye were 
conducted for two days only. To get a better temporal resolution within this shorter 
observation period, the Ye counts in feces were determined at two additional points of 
time (i.e., after 16 and 40 h). Within 48 h post-infection, the CFU of the Ye wt showed a 
slight increase compared to earlier points in time, but it never reached the high counts we 
observed in SPF wild-type mice. The mean CFU of the Ye YadA0 was marginally lower 
compared to that of Ye wt (Figure 6A), whereas the difference in CFU of Ye wt, compared 
to Ye T3S0, was more pronounced, but also subtle (Figure 6B). In some of the MyD88−/− 
mice, the YadA0 and, to a lesser extent, the T3S0 strains reached a comparable, or higher, 
CFU, compared to the Ye wt strain, at 48 hpi. The stochastic detection of the mutants or 
wild-types are, presumably, the result of a very small total population size. As the CFU 
data are more scattered compared to the previous infection experiments, the fit is 
obviously less satisfying. This might be caused by the infection becoming systemic in 
some animals at these early points in time. However, we cannot control for this 
appropriately in this infection model. In summary, our experimental data show that, in 
the MyD88−/− SPF animals, a proper immune response outreaches the importance of the 
presence of the microbiome in preventing colonization and infection with Ye, and both 
YadA and the T3SS seem to play only a minor role in the colonization of the GIT. Again, 
we were able to fit our experimental data and the model calculations for both coinfection 
settings in MyD88−/− SPF mice. However, as the CFU data are relatively scattered due to 
the intrinsic properties of the mouse model, our fit is less reliable. 
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Figure 6. Infection course with an impaired immune response (MyD88−/−). (A) Overlay of model 
output and experimentally determined CFU levels from coinfections of SPF MyD88−/− mice with Ye 
wt and Ye YadA0 and (B) Ye wt and Ye T3S0. All parameters were estimated based on the respective 
experimental data (parameter values are listed in the inset table); dpi = days post-infection. 

4. Discussion 
The complex interplay of a specific pathogen with host factors, as well as the integrity 

and composition of the endogenous microbiome, determines the outcome of a 
gastrointestinal infection. Herein, we developed a mechanistic model and tried to fit 
original mouse infection data to it to identify differences between distinct experimental 
settings. By our attempts to rebuild the in vivo situation, we aimed to generate hypotheses 
that can explain our findings and can be validated experimentally in the future, to further 
improve the model design. Compared to other computational models of infection, the 
strengths of our model is the comprehensive experimental dataset underlying our study 
and its flexibility that can account for different host and pathogen properties. Based on 
experimental data obtained by oral mouse infections with Ye, we devised the specific 
entities and parameters that should be included in the model. Three distinct entities, with 
their particular population dynamics, were defined: a luminal compartment, a mucosal 
compartment, and the host’s immune response. Within these entities, the model considers 
the following aspects: (I) bacterial growth and release by fecal shedding, (II) the 
presence/absence of CR, mediated by the microbiome, (III) the role of specific virulence 
traits of the pathogen counteracting host immune factors, and (IV) the action of the 
immune system. The replication of all bacterial populations is the main contributor to 
population growth in both the luminal and the mucosal compartments. Populations 
exceeding the capacity of the mucosal compartment (whose capacity is assumed to be 
smaller than that of the luminal compartment) additionally feed the luminal populations. 
The distinct growth rates of the pathogen and the microbiota, as well as the capacities of 
the locations, were estimated. We assumed an overall higher growth rate of the complex 
microbiota, with its higher density and various requirements with regards to, e.g., the 
preferred nutrients and the oxygen availability. Its high diversity may reduce competition 
among the different phyla, as compared to the Ye populations that, presumably, have 
comparable requirements for optimal growth. Several approaches have been used in the 
past to unravel the growth dynamics of specific bacterial species within the gut microbiota 
[32,83–85]. Myhrvold et al. [83] determined that an E. coli strain, engineered for distributed 
cell division counting, had a doubling time of approximately three hours in orally-infected 
mice harboring a complex microbiota. The values we have estimated by our parameter 
optimization (α(wt) = 0.44–1.89) were determined by in vitro cultures for the growth rates 
of Ye, which were in a comparable range to that of the mentioned E. coli strain. The growth 
rates we have estimated for the microbiota, as an entity, were surprisingly similar (α(B) = 
0.48–2.00); however, in almost all settings, they were slightly higher compared to that of 
the Ye strains. The absolute values we obtained for the growth rates of the Ye strains were 
moderately different between the Ye wt/YadA0 and Ye wt/T3S0 coinfection scenarios, e.g., 
in SPF animals, which aggravated an easy comparison of values. Therefore, we calculated 
the ratio of α(wt)/α(B). This ratio turned out to be quite stable at approximately 0.9, which 
means that the endogenous microbiota only has a subtle growth advantage, compared to 
Ye, according to our model. 

One weakness of our model is that it does not discriminate between the growth rates 
of the Ye wt and the mutant strains. Of course, we have determined their growth rates in 
in vitro liquid culture and have found them to be comparable, but we cannot rule out that 
they might behave differently within the host. Thus, one potent measure to enhance our 
model further would be to experimentally determine both the growth dynamics of Ye wt, 
YadA0, and T3S0 (in the different mouse models we used) and that of several 
representatives of the mouse gut microbiota. Alternatively, we could strive to implement 
already existing mathematical models that consider, not only the growth rate and the 
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removal by fecal shedding, but also the death of the bacteria. Such an implemented model 
could also consider adaptation mechanisms that lead to a decrease in death, which are 
crucial for creating a steady state at later points in time after infection [83]. Another level 
of complexity could be reached by additionally considering interspecies competition and 
external perturbations [85], but this is beyond the scope of this study that was meant to be 
a starting point to establish more complex models in the future. 

One crucial component of our model is the rather abstract “mucosal compartment.” 
We designed it in a way that the bacterial replication rate (per bacteria present) is constant 
within this compartment, and that the loss rate towards the lumen increases with the 
bacterial concentration in this compartment. There is some preliminary experimental 
evidence that Ye resides in such an extra-luminal site (cleaning niche experiment, Figure 
S4). However, it remains to be elucidated as to what this compartment looks like, how it 
can be occupied by Ye, which replication rate is adopted there, whether this rate remains 
stable over the entire observation period, and when Ye shed from this compartment into 
the lumen. This demands highly sophisticated experimentation and would be a project in 
itself, and is, therefore, beyond the focus of this work. Another possibility for the design 
of the mucosal compartment would have been, similar to the lumen, to assume a 
replication rate that decreases with an increasing bacterial concentration, and a fixed loss 
rate from this compartment to the lumen. However, for this design, experimental evidence 
would have to be generated. 

The distinct entities of the mucosal and the luminal compartments exhibit different 
total capacities in nature and in our model. Rather than the exact values for these 
capacities, their relationship is of primary importance for our model. Natural barriers, 
such as the mucus layer and a high concentration of AMPs, limit the access of bacteria to 
the mucosal compartment [67,69]. Therefore, we implemented a considerably lower 
capacity of the mucosal site, compared to the lumen. The estimated overall capacity of the 
lumen is in good agreement with the Ye numbers that we determined in the feces of Ye 
co-colonized GF mice (where Ye can occupy the entire capacity, Figure 5), as well as with 
the numbers of cultivable commensal bacteria determined from different intestinal 
compartments (Figure S3). Myhrvold et al. [83] estimated, in their model, a similar 
carrying capacity of 109 CFU/mL feces. Vaishnava et al. [86] assessed bacterial numbers in 
the murine mucosa and lumen of wt and MyD88−/− mice by quantitative PCR and the 
determination of the total 16S rRNA gene copy numbers. In wt mice, they detected 
considerably lower gene copy numbers in the mucosa compared to the lumen. 
Furthermore, FISH analyses of SI sections could show that secreted AMPs maintain a zone 
that efficiently eliminates bacteria close to the epithelium, and bacteria penetrate this 
barrier seldomly. In summary, these data support our model’s assumption of a capacity 
that is lower compared to that of the luminal compartment that is low in absolute 
numbers. 

Intestinal peristalsis greatly influences the mean residence time of bacterial 
populations in the GIT and is causative for the dynamics with which bacteria end up in 
measurable counts in feces [10,83,87]. Our model takes this movement into account 
exclusively for the luminal compartment. We determined the mean residence time of 
particles in the GIT as a model parameter. To this end, we orally administered mice with 
fluorescent beads and monitored the excretion of beads over a time course of 24 h (Figure 
S5). In SPF-colonized wild-type mice, we defined a mean residence time of 4 h (3–5 h, n = 
2), which was slightly different in MyD88−/− mice (mean 5.5 h, n = 2). These values are in 
fair agreement with data generated by other groups, who determined a transit time of 
approximately 6 h [83,87]. The mean residence time in GF mice was considerably higher 
than in SPF mice (12 h, n = 2). This can be explained by the enlarged cecum that lacks 
bacterial mucus degradation and has reduced peristalsis. Both are causative for a reduced 
defecation frequency and are well-known characteristics of GF animals [88]. Similar 
effects have been described for mice receiving long-term antibiotic treatment [89]. We are 
aware that the usage of GF mice has both its benefits and limitations. On the one hand, 
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GF animals allow us to simulate a situation where the endogenous microbiome has been 
extinguished; however, it is without the side effects that may have been caused by 
antibiotic treatment (such as barrier defects). This allows a clear-cut interpretation of 
experimental data with regards to the role of the endogenous microbiome for the course 
of the infection. On the other hand, GF mice suffer from immunological defects, which 
limits the relevance of findings with regards to the role of the immune system [90]. Further 
optimization of the model could, thus, be achieved by performing infection experiments 
with animals that received broad-spectrum antibiotic treatment, or with mice harboring a 
defined microbiota [91–93]. 

The dynamics of the intestinal microbiota composition have previously been 
addressed in modeling approaches, especially in the context of a Clostridium difficile 
infection. Time-dependent metagenomics data were used to analyze the influence of 
antibiotic perturbations on microbiota and pathogen overgrowth in silico [85,94]. An 
adaption of this specific model, which combines a Lotka–Volterra model of population 
dynamics and regression, could lead to more elaborate model calculations, in terms of 
microbiota perturbations due to antibiotics, in the future. 

In the current state of our model, the host’s immune response is implemented as one 
abstract parameter without a distinction between the actions of different cell populations 
of the innate and adaptive immune responses. We are aware that real life is much more 
complex. However, this integration of all immune system actions has the advantage of an 
easy adjustability of its activity that allows it to model, e.g., different peculiarities of 
immune deficiencies. In recent years, several mathematical models were developed to 
mirror bacterial gastrointestinal infection [32,34,35,95–98], viral infection at epithelial sites 
[38], and inflammatory disorders such as IBD [38,40]. Many of these studies had a clear 
focus on the host’s immune response, addressing the complex network that is activated 
by a given pathogen [38,40,96,99]. This was not the aim of this study, but future 
adaptations of the model could include a more sophisticated immune system and, 
thereby, could amplify the flexibility of the model. 

In our model setup, the immune response is stimulated by the entry of Ye into the 
mucosal compartment. The strength of the immune action correlates with the numbers of 
Ye present at this site. All bacterial populations at the mucosal site are affected by the 
stimulated immune response, but the model can account for the different immune evasion 
potentials of the infecting pathogen. The capacities to evade the immune system can be 
adjusted individually by varying the immunity adjustment factors fγ. In contrast to the 
approaches mentioned earlier, our model allows the simultaneous and independent 
modulation of virulence, the growth rate of the pathogen, and the underlying host 
conditions with respect to immune competence and CR. By modulating relevant host 
conditions (the presence of microbiota and the functionality of the immune system), we 
finally tested whether our model could reflect these profound changes. We obtained a 
good fit of our data from the infections of SPF mice. The fit even reflected the difference 
between the two mutant strains of Ye towards its killing by the immune system. However, 
one crucial issue that needed to be resolved to carry out correct parameter optimization 
was to figure out how to handle CFU values that were at, or below, our detection limit. 
This problem could be resolved mathematically (please refer to the Materials and Methods 
section for details). 

In our study, we adopted an experimental scenario where the endogenous 
microbiota was utterly lacking. To our surprise, both the Ye wt and the mutant strains 
were able to reach very high CFU levels, filling up the entire available capacity of the 
intestines. For initial model calculations, we used parameters derived from the Ye 
wt/YadA0 coinfection, but we considered a longer passage time, a higher water content 
of the feces of germ-free mice, and of course, the absence of microbiota, while assuming 
the immune system was as active as in the SPF model. We know that the immune system 
of GF animals is not as developed as in SPF wild-type animals (see Figure S2; [90]), but 
further attempts to obtain a good fit of our data revealed that the activity of the immune 
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system had only a minor impact on the CFU development in the absence of a microbiome 
(Figure S8). In sum, the model also reflected the course of infection in the GF system. 

Next, we adopted a scenario with a limited immune response, experimentally 
mimicked by the usage of MyD88-deficient mice. Again, we obtained a fit of our 
experimental data; however, this was only within a short timeframe (48 h of infection, in 
line with the shortened experimental infection setting). As we could only model 
compartments within the GIT, we could not employ it when the infection becomes 
systemic, where the pathogen enters new compartments that are not included. The 
systemic dissemination of Ye presumably happens very quickly in MyD88−/− mice due to 
the compromised epithelial barrier functions [83,86]. We conclude that colonization of the 
PP is not necessarily a prerequisite for systemic spread. In fact, we even observed a lower 
abundance of Ye wt CFU in the feces of MyD88−/− mice, compared to an infection in 
immunocompetent SPF wild-type mice. We assume that the largely restricted immune 
response in the MyD88−/− mice is not sufficient to considerably decimate the commensal 
population during Ye infection. Therefore, the Ye population cannot expand as much as 
in the SPF animals, resulting in lower CFU amounts in the feces of the MyD88−/− mice, 
compared to the SPF mice. However, this needs experimental proof. To further elucidate 
the colonization of the mucosal compartment and dissemination events, as well as cellular 
immune responses, a histological approach is needed. We aimed to quantify how many 
Ye enter the Peyer’s Patches by sampling the PPs of infected mice at a point in time where 
the CFU was at its maximum value. We then generated serial sections and performed 
immunohistology; however, even with the very high CFUs obtained in feces during the 
infection course, this approach was not sensitive enough to detect Ye in the tissue sections. 
The extent to which the immune response affects commensal species in MyD88−/− animals, 
in their number and composition, could be addressed by a sequencing approach, as 
conducted for the SPF wild-type animals. However, this question was beyond the scope 
of this study. 

Another feature that would greatly enhance the power of our model was developed 
by Miller et al. [100]. They implemented a multi-compartment model of symptomatic 
bacteremia. This could possibly be connected to our model of the GIT if the translocation 
rates of bacteria from the gut, into the bloodstream and other organs, could be determined. 
These authors also included the possibility to model the impact of antibiotic treatment on 
CFU development. 

Our main findings are that the model can reflect the infection course in different host 
settings (an immune-competent host with a diverse microbiota, no microbiota, or one that 
is immunocompromised), with the caveat that we allowed for many parameters to adopt 
any value within a predefined range. Still, we found that similar parameters were 
obtained. However, each setting involves its own distinct parameter set to obtain the best 
fit. To calculate the CFUs during the infection course reliably, it was not enough to alter 
individual parameters to adopt a change implied by a specific condition (e.g., no 
microbiota present). This could only occur if parameter values were optimized based on 
the respective experimental dataset where the curve fits were in good agreement with our 
experimental observations. The model can now be improved with further model analyses 
and enhancements, based on our findings. The differences in structural and functional 
details (e.g., GIT morphology, physiology, and gut passage of time), even in our basic 
experimental setting (comparing SPF and GF animals), presumably show that the 
parameter values are not merely exchangeable between systems. Within a consistent host 
condition and pathogen phenotype, however, the infection course should, in principle, be 
determined mathematically. A crucial step towards more reliable calculations would 
therefore be the reduction of unknown parameters. 

5. Conclusions 
We conclude, from our study, that to create a reasonable data-driven mechanistic 

model, an excellent understanding of the causative agent of GIT infection is needed: How 
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does the pathogen interact with the host? Does it produce specific virulence factors? How 
do these factors contribute to population dynamics (e.g., by mediating an immune 
evasion)? Does the pathogen have specific requirements for growth (e.g., oxygen and 
nutrients)? These, and many more, questions need to be answered, or the corresponding 
parameters need to be clarified experimentally for as many parameters as possible. 
Consequently, our current model needs further refinement. More parameters need to be 
determined experimentally. To adapt the model to other pathogens, it would be necessary 
to implement changes that more precisely reflect the pathogen’s specific peculiarities with 
regards to the above-mentioned characteristics. Such adaptations might be implemented 
more quickly with pathogens that have a lifestyle comparable to that of Ye, but this will 
require profound changes of the model setup for other pathogens. 

A good understanding of the infected host is also needed to create a model that 
delivers reasonable calculations: Is its microbiota able to mediate full colonization 
resistance? Was the microbiota already disturbed by medication? Is the immune system 
fully operable? Is the GIT physiology disturbed (leading to, e.g., prolonged or impeded 
gut passage)? The more detailed our understanding of the pathogen and the host, the 
better the model can reflect biology. 

In sum, we think that computational modeling of infection has great potential, but 
also many caveats, such as the vast complexity of biological systems even under 
laboratory conditions and the plasticity of the causative pathogens. Importantly, 
computational modeling requires the close cooperation of disciplines that receive 
profoundly different training. For us, this was not trivial, and, therefore, we strongly 
support the suggestions by Vlazaki et al. [101] to implement interdisciplinary training of 
young academics who can exploit the potential of data-driven computational models. 
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