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Simple Summary: Embryo transfer procedures have been widely implemented in bovine all around
the world. These techniques help to accelerate the increase in the genetic merit and to keep the
level of inbreeding under control, which is especially important in breeds, such as Japanese Black
cattle, in areas outside of Japan, where there are scarce individuals and few herds. Our study
describes an adequate embryo productivity of Japanese Black heifers under Spanish management
and environmental conditions, like that which has been previously reported, demonstrating the
adequate adaptation capacity of these animals. No effect on embryo production or quality was found
due to plasma metabolic parameters of the donors, suggesting an optimal nutritional and body
conditioning of the donors’ herd. Pregnant recipients after embryo transfer showed significantly
higher levels of cholesterol-related parameters, glucose, and urea, which may be related to higher
availability of nutrients for the future pregnancy. Heat stress at embryo transfer negatively impacted
conception rates as expected, while larger parity and ET number corresponded to numerically higher
conception rates.

Abstract: Multiple ovulation and embryo transfer (MOET) systems have been intensively imple-
mented in Japanese Black cattle in Japan and to create Japanese Black herds out of these areas.
Environmental conditions influence MOET efficiency. Thus, we describe results of 137 in vivo,
non-surgical embryo flushings performed between 2016–2020, in a full-blood Japanese Black herd
kept in Spain and the possible effects of heat, year, bull, donor genetic value, and metabolic condition.
Additionally, 687 embryo transfers were studied for conception rate (CR) and recipient related factors.
A total of 71.3% of viable embryos (724/1015) were obtained (5.3± 4.34/flushing). Donor metabolites
did not affect embryo production (p > 0.1), although metabolite differences were observed over the
years, and by flushing order, probably related to the donor age. CR was not affected by embryo
type (fresh vs. frozen), recipient breed, and whether suckling or not suckling (p > 0.1). CR decreased
significantly with heat (44.3 vs. 49.2%; (p = 0.042)) and numerically increased with recipient parity and
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ET-number. Pregnant recipients showed significantly higher levels of cholesterol-related metabolites,
glucose, and urea (p < 0.05). Therefore, adequate MOET efficiency can be achieved under these
conditions, and heat stress should be strongly avoided during Japanese Black embryo transfers.
Moreover, recipients’ metabolites are important to achieve pregnancy, being probably related to better
nutrient availability during pregnancy.

Keywords: donor; recipients; management; cholesterol; Japanese Black

1. Introduction

The most common beef cattle breed in Japan is Japanese Black, also known as Wagyu,
which derives from native Asian cattle. There are Japanese Black herds in Australia
and North America that export animals, semen, and embryos [1,2]. The Japanese Black
breed has different characteristics from other bovine breeds, such as higher oleic acid
concentration in intramuscular fat (52.9% of oleic acid in subcutaneous fat) [3,4], which lead
to different beef aroma and palatability, as well as a high level of marbling or intramuscular
fat content (IMF), ultimately translating to meat of high market value [2]. The IMF in dry
matter of Japanese Black cattle at 24 months old is 23.3% [5]. The greater marbling rate
reflects metabolic features of Japanese Black purebreds: insulin concentration in plasma
correlates positively with carcass fat and negatively with carcass muscle [6], and Japanese
Black steers have higher insulin levels and lower glucose levels in plasma than Holstein
steers [7]. Japanese Black cattle also show higher levels of cholesterol, phospho-lipids and
metabolites, such as urea, than Holstein cattle, but similar levels of albumin, triglycerides,
and non-esterified fatty acids (NEFA) [7].

Japanese Black differ from other bovine breeds not only in biochemical features but
also in other parameters linked to adipose tissue, such as leptin levels. The protein leptin is
an adipocyte-derived circulating hormone that signals the body to decrease food intake,
which can halt body weight gain [8]. Leptin also regulates the expression of some genes and
the activation of certain enzymes [9,10]. Polymorphisms in the leptin gene are associated
with economically important carcass traits [11–14], milk production traits [15,16], fertility
traits [17], and immune function [18,19]. Leptin levels in Japanese Black cattle normally lie
around 2.67 ± 0.41 ng/mL [20], while levels in Holstein cattle have been reported to be
around 0.3–0.55 nmol/L [21] or 1.79 ± 0.43 ng/mL [20].

Reproductive biotechnologies, which have been widely used for decades in beef cattle
to optimize birth rates and herd genetics [22,23], have played an important role in reducing
inbreeding of Japanese Black cattle in Japan and elsewhere [24]. These techniques can
quickly generate highly valuable purebred herds [1,25] and include freezing semen from
selected bulls, artificial insemination (AI), embryo collection, and “multiple ovulation and
embryo transfer” (MOET) of fresh or frozen–thawed embryos.

Little is known about the reproductive efficiency of Japanese Black cattle. One study
reported a mean parity of 4.9 ± 2.9, a mean interval from calving to first service of
80.0 ± 46.2 days, and a first service conception rate (CR) of 53.5 ± 49.9% [26]. Another
study [27] described an average CR after AI of 47.0% in heifers and 47.8% in adult cows,
with first, second, and third AIs leading to higher CR values than fourth or subsequent
AIs. Higher CRs have been reported for other beef breeds in Europe, such as 59.3% [28]
or 63.6% [29] for Angus, 63.6% for Charolais, 63.2% for Limousine, and 56.9% for cross-
breeds [30]. Embryo transfer appears to work reasonably well in the Japanese Black breed:
in one study, 685 oocytes were collected from 8 multiparous Japanese Black cows and
120 embryos were achieved after in vitro fertilization (IVF), and transferring 36 such em-
bryos into Holstein heifers led to 20 pregnancies [31]. Another study reported similar preg-
nancy rates around 50% during embryo transfer from Japanese Black into Holsteins [24],
achieving similar results for single or twin transfer of frozen–thawed embryos.
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Reproductive efficiency of Japanese Black cattle appears to have decreased since
1990 [32]. This may reflect the cost of genetic programs prioritizing meat quality over
other characteristics [33]. Since meat quality is closely related to metabolism, optimizing
meat quality may influence reproductive performance. Several factors have been identified
that affect reproductive efficiency after MOET and other reproductive biotechnologies.
These factors include stress, nutrition, disease, and biosecurity [34–37]; environmental
temperature, asynchrony of estrous cycle between donors and recipients, and luteal insuffi-
ciency [38]; and progesterone concentrations in plasma [38,39]. How these factors interact
with metabolism to influence reproductive efficiency in the Japanese Black cattle is unclear.

We aimed to investigate environmental, management, hormonal, and metabolic factors
affecting MOET reproductive efficiency of Japanese Black heifers. We analyzed a full-blood
Japanese Black herd in Spain that was subjected to MOET for five years. The data from
this herd provide an important extension to the literature, much of which centers on
herds in Japan. Reproductive traits of Japanese Black heifers are strongly influenced by
farm management practices and the farm environment [40], which can differ substantially
between Japanese and Spanish farms. Japanese traditional management is intensive and
emphasizes limiting animal movement, even in reproductive herds [26], in order to optimize
fat infiltration and meat quality [33]. In contrast, the Spanish farm in our study emphasized
animal welfare and therefore provided each heifer with a relatively large surface area and
access to the natural environment. The typical Japanese climate is warm and features
humid summers and cold winters [26], in contrast to Spain’s hot, dry summers and mild
winters. In Japan, cattle are typically fed barley, corn and soybean, supplemented with high
fiber products such as okra, nut husks and grasses and hay, and often, rice and wheat straw;
in contrast to local cereals with olive and orange waste products on our Spanish farm [41].

Our hypothesis was that the different management and environmental conditions
on our Spanish farm would affect MOET performance by altering the physiological and
metabolism of the Japanese Black cattle.

2. Material and Methods
2.1. Animals and Herd

The study was performed on the commercial farm “Mudéjar-Wagyu” in north-central
Spain (40◦37′42.1′′ N 0◦41′08.0′′ W, Aliaga, Teruel). This herd was managed under an
intensive MOET program from 2016 through 2020. Data on flushings were analyzed for the
period 2016–2020, while data on embryo transfers were analyzed for 2018–2020.

During the study period, maximal temperatures in Aliaga occurred during the summer
(July–August), with the average maximum being 26 ◦C. Minimal temperatures occurred
in winter (December–February), with the average minimum being −2 ◦C. The highest
maximal temperature was 33.4 in July and the lowest minimal temperature was −10.9 ◦C
in January. Rainfall was strong in spring (April–May) and autumn (mainly October),
and maximal annual rainfall was 34–35 mm. January was the driest month (7 mm), but it
featured the highest snowfall (41 mm). Snow persisted between November and March,
when the monthly snowfall averaged 25 mm. Average maximal humidity was 35% and
ranged from 71.2% in March to 0.4% in June [42–44].

All flushings and transfers were part of routine veterinary work, so no additional
interventions were performed during this study that could be considered experimental
procedures. Therefore, no ethical approval was required as stipulated in the Spanish Policy
for Animal Protection (RD 53/2013), which complies with the European Union Directive
2010/63/UE on the protection of research animals.

On the study farm, three separate barns were used for the breeding herd, defined as
donor cows and recipient cow–calf pairs; growing animals, defined as those after weaning
until 22 months of age; and animals in the last phase of fattening, defined as those older
than 22 months until slaughter. All barns were open with natural ventilation and had
anti-slip concrete floors covered with chopped straw bedding. Cows in barns had access
to the outside until two weeks before calving, when they were moved to the maternity
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barn. Calves remained with their mothers until weaning at 3–5 months of age, during
which time they could move over to a shaded surface area of 20 m2. Cows had ad libitum
access to water and a total mixed ration (TMR) feed that was adjusted to their age and
physiological stage (pregnant or suckling) [45]. Calves had ad libitum access to starter food
until weaning.

Genetic consultants classified donors into one of three groups depending on their
phenotypic characteristics and the genetic value of their predecessors: high value, referred
to below as “type A”; intermediate value, referred to below as “type B”; or “ordinary”.
The study herd included 33 type A donors, for which we collected data on 109 flushings:
6 heifers were flushed once, 11 twice, 6 three times, 3 four times, 1 five times, 3 six times,
1 seven times, 1 ten times, and 1 eleven times. The herd included three type B heifers,
for which we collected data on 13 flushings: 1 heifer was flushed three times, 1 twice,
and 1 eight times. Lastly, the herd included 3 ordinary donors, for which we collected data
on 15 flushings: 1 heifer was flushed three times, 1 four times, and 1 eight times. Donors
that were found not to have produced any high-quality embryos were not included in
subsequent flushings. The intended interval between flushings was 45 d.

Recipients and donors underwent routine health examinations as well as general
and reproductive examinations in order to be included in synchronization protocols for
embryo transfer or superovulation. Recipient animals came from a herd of different breeds
(55 dams/year). These cows were selected for their special maternal characteristics and
were subjected to repeated embryo transfers after at least 6 months postpartum. Recipient
animals were excluded from the study if they had more than two unsuccessful embryo
transfers in the same cycle, a history of abortion, or a history of rejection of the previous
calf. A total of 287 Holstein recipients on three Holstein farms different from the study
farm were used, and the same inclusion and exclusion criteria and management practices
as for the recipients’ herd on the studied farm were applied. Data for 687 embryo transfers
were included in the study.

2.2. Donor Synchronization and Superovulation

Every cycling donor was submitted to estrus synchronization based on a 5–day
Ovsynch protocol and an intravaginal progesterone device (Figure 1). In brief, the protocol
consisted of intramuscular administration of 100 µg GnRH (Cystoreline®, CEVA Santé
Animale SA, Libourne, France) and insertion of a 1.55 g intravaginal progesterone device
(PRID-delta®, CEVA Santé Animale, Libourne, France) on Day 0. On Day 5, 0.5 mg clo-
prostenol (Bioestrovet®, Vetoquinol SA, Lure, France) was administered intramuscularly,
and the progesterone device was removed. On Day 6, 0.5 mg cloprostenol was adminis-
tered. Heat detection patches (EstrotectTM, Estrotec GmbH, Düsseldorf, Germany) were
placed in all donors at this time.

On Day 8, 100 µg GnRH (Cystoreline®) was administered to induce ovulation, and heat
signs were recorded based on visual inspection of patches during Days 8 and 9. On Days
15–16 (7 days after heat detection), an ultrasound examination was conducted (IBEX Pro-Ei
Medical, CO, USA). Animals with an apparently functional corpus luteum and a dominant
follicle with a diameter >0.8 mm received a double intramuscular dose (200 µg) of GnRH
(Cystoreline®).

At 36–48 h after GnRH injection on Days 15–16, follicle-stimulating hormone (FSH;
Folltropin-V®, Vetoquinol SA, Lure, France) was administered twice daily (8 a.m. and
8 p.m.) on Days 9 to 12 (days 24 to 28 of the protocol) to give a total dose of 240 mg.
The doses were decreased eight times as follows: Day 9, 50 mg each at a.m. and p.m.;
Day 10, 40 mg at a.m. and 30 mg at p.m.; Day 11, 30 mg at a.m. and 20 mg at p.m.;
and Day 12, 20 mg at a.m. and 10 mg at p.m.
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Figure 1. Hormonal protocols for superovulation and flushing in donors (A) and for embryo trans-
fer in recipients (B). Abbreviations: IPD = intravaginal progesterone device; PGF = prostaglandin;
GnRH = gonadorelin; FSH = follicle stimulant hormone; AI = artificial insemination; ET = embryo transfer.

Simultaneously, with the sixth and seventh FSH administrations on Days 27 and
28 of the protocol, luteolysis was induced using two doses of cloprostenol, 12 h appart
(0.5 mg per dose; Bioestrovet®). At 50 and 72 h after the first cloprostenol administration,
two fixed-time artificial inseminations (FTAIs) were performed, with one dose per FTAI of
conventional Japanese Black frozen–thawed semen from 12 purebred Japanese Black bulls
of high genetic quality that had been controlled for inbreeding.

2.3. Flushing of Embryos and Their Evaluation

Data were included on 137 non-surgical embryo flushings on Japanese Black heifers
aged 21.8 ± 6.79 months. Embryos were collected by the authorized embryo producer
Embriovet SL (A Coruña, Spain; EU license ES11ET05B) using the “open method”. This
method involved silicone catheters (14–16 gauge) with two-way Luer locks one ends, 50-mL
syringes and epidural anesthesia (120 mg Pronestesic® procaine; Fatro S.p.A., Bologna,
Italy). Each horn was flushed with 240 mL of flushing medium (BoviFlush®; Minitube,
Tiefenbach, Germany) through 8 inflow–outflow cycles, and the recovered fluid was filtered
through a 75 µm mesh (emSafe, Minitube).

Prostaglandin was administered after flushing and estrus was observed, as expected,
4–7 days later. Natural estrus was observed an average of 21 days later, and on the ninth
day after natural estrus, the superovulation procedure was repeated. With this system,
an objective between flushing intervals of 45 days was intended in heifers flushed repeatedly.

Immediately after each flushing, embryos were assessed under a stereoscope (Leica
S APO-10, Leica Microsystems, Bucharest, Romania) at 10×magnification within a dish
containing holding medium (ViGROTM Holding Plus, Vetoquinol). We evaluated embryos
at 80× magnification, and viable embryos were washed 10 times in 300 µL drops of
holding medium (ViGROTM Holding Plus), assessed for development stage and quality
according to IETS guidelines [46], individually labeled, and placed into 0.25 mL sterile
straws (IMV, France).

Fresh embryos graded as 1–3 were transferred to selected recipients. Only grade 1 sur-
plus embryos were frozen. Freezing was performed according to a conventional slow freez-
ing protocol for direct transfer in an automatic freezer (Freeze Control® CL5500, CryoLogic,
Victoria, Australia). This procotol involved 10 min of equilibration at room temperature in
ethylene glycol (BoviFreeze®; Minitüb GmbH Tiefenbach, Germany), seeding and holding
at −6 ◦C for 10 min, then cooling at 0.5 ◦C per min down to −35 ◦C. Finally, straws were
plunged into liquid nitrogen [47] and later used for direct, one-step embryo transfer [48].
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2.4. Recipient Synchronization and Embryo Transfer

A total of 687 embryo transfers were performed over the years of the study (2018–2020),
using a total of 11 Brown Swiss, 63 Simmental, 11 Charolais, and 23 crossbred recipient
cows located at the same farm of the donors (the Mudéjar-Wagyu-farm). These cows aged
54.9 ± 25.80 months old at the moment of ET. Additionally, further ETs were performed at
commercial dairy cattle farms. In these farms, only Holstein heifers were included, which
aged 13.3 ± 5.80 months.

Cycling, healthy recipients (heifers and post–calving cows) were synchronized using
the same 5–day Co–synch with intravaginal progesterone device explained above. Briefly
(Figure 1): on Day 0, administration was carried out with 100 µg GnRH i.m. (Cystoreline®,
CEVA) and insertion of a 1.55 g IPD (PRID-delta®, CEVA Santé Animale, Libourne, France);
on day 5 and 6, 0.5 mg cloprostenol were administered i.m. (Bioestrovet®, Vetoquinol);
and on Day 6, a heat detection patch (ESTROTECTTM) was placed; on Day 8, 100 µg
GnRH i.m. (Cystoreline® CEVA) was applied to induce ovulation, and heat signs were
recorded using hip patches. Seven days after estrus detection recipients were examined by
ultrasound exam (IBEX Pro- Ei medical, Loveland, CO, USA) confirming the absence of
genital, uterine, and ovarian pathologies, and the presence of a corpus luteum. The ovary
with the corpus luteum was recorded. Epidural anesthesia was performed with 120 mg of
procaine (Pronestesic®; Fatro) before each ipsilateral embryo transfer. The synchronization
protocol and examinations of the recipients at external Holstein heifers were the same as
described above. In these heifers, only frozen–thawed embryos were transferred.

From the total of 687 transferred embryos, 270 fresh and 277 frozen embryos were obtained
from the studied Japanese Black donors previously described, while the additional 140 were
frozen imported embryos (Blackmore Japanese Black, Alexandra, Victoria, Australia).

A pregnancy diagnosis was performed 30–35 days after ET by an experienced vet-
erinarian by ultrasound scanner (IBEX Pro-Ei medical, Colorado, CO, USA). Pregnancy
confirmation was performed on days 120–130 of gestation.2.5.

Metabolite analyses assessments were performed in blood plasma samples obtained
by coccygeal vein puncture once on one of the first 5 days of the synchronization protocol,
with a random 50% of the donors (76/137), and on the day of pregnancy diagnosis per-
formed 30–35 days after ET, on 30% of the recipients (246/687), with standard 10 mL ethy-
lene diamine tetra-acetic acid (EDTA) vacuum tubes (Vacutainer® System Europe; Becton
Dickinson, Meylan, France). Blood samples were centrifuged at 4500× g for 15 min, and the
plasma was separated and stored in polypropylene vials at −80 ◦C until later assayed
with a clinical chemistry analyzer (Konelab 20; Thermo Scientific, Thermo Fisher Scientific,
Waltham, MA, USA) according to the manufacturer’s instructions. Beta-hydroxybutyrate
(BHB, mmol/L), non-esterified-fatty acid (NEFA mmol/L), plasma total cholesterol (TC,
mg/L), high density lipoprotein cholesterol (HDL, mg/L), low density lipoprotein choles-
terol (LDL, mg/L), glucose (GLU, mg/L), lactate (LAC, mg/L), triglycerides (TG, mg/L),
urea (UR, mg/dL) and fructosamine (FRU, mg/L) were measured. Plasma leptin con-
centrations (LEP, ng/mL) were also determined by using a multispecies ELISA kit (Linco
Research Inc., St. Charles, MO, USA; assay sensitivity 1.0 ng/mL and intra-assay variation
coefficient 3.1%).

2.5. Statistical Analysis

All data were analyzed using SPSS® 25 (IBM, Armonk, NY, USA) except for the
normality test for all variables, which was the Shapiro–Francia test, only available at
STATA® software V. 17 (StataCorp LLC, Lakeway Drive, Texas, TX, USA). Variables showing
a skewed distribution were reported as median and range instead of average and standard
deviation as best measures of centrality and variability for skewed distributions; intergroup
differences in these variables were assessed for significance using a Kruskal–Wallis test or
Mann–Whitney U test for independent samples. Potential pairwise relationships between
donor characteristics and metabolic traits and embryo transfer outcomes were explored
using Pearson correlation.
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Logistic regression was used to assess effects of different factors on the probability of
pregnancy after embryo transfer. In this process, stepwise forward modeling based on the
Wald statistic criterion of p > 0.10 was used. The model included embryo type, embryo
origin, embryo quality, recipient breed, body condition score (BCS), parity, open days, heat
stress at embryo transfer, suckling status at embryo transfer, as well as pairwise interactions
between these effects. Recipient and farm were included as fixed factors.

For all analyses, statistical significance was defined at a 5% threshold (p < 0.05), while
tendencies were defined at p < 0.10.

3. Results
3.1. Embryo Flushings and Donor Metabolite Analyses

A total of 137 flushings, performed from 2016 to 2020 at the Mudéjar-Wagyu farm, were
included in the study. The Japanese Black animals aged 21.8 ± 6.79 months (range 12 to
4 months old) were flushed; average amount of flushings per heifer was 3.27 (range from 1 to
11 times), with the average interval between flushings being 73± 40 days (range 41 to 238 days).
Body condition score (BCS) average was 3.5 ± 0.57 (BCS measured 1 to 5) [49].

Embryo flushings were distributed over time (2016–2020) as follows: 10 flushings in
2016 (7.3%, 10/137), 26 in 2017 (19.0%, 26/137), 36 in 2018 (26.3%, 36/137), 38 in 2019 (27.7%,
38/137), and 27 in 2020 (19.7%, 27/137). From these 137 flushings, 102 were performed
under no heat stress (74.5%, 102/137; from 16 September to 14 June), and 35 under heat
stress conditions (25.5%, 35/137; from 15 June to 15 September). Most of the animals (75.2%)
were flushed one to four times, and the rest (24.8%) were flushed more than four times.

A total of 1015 embryos were produced from these 137 flushings with an average of
7.4 ± 5.18 embryos per collection. Viable embryos were 724 (71.3%; 5.3± 4.34 viable embryos
per flushing), 165 degenerated embryos (1.3 ± 1.56/flushing), and 126 non-fertilized oocytes.
From these 724 viable embryos, 440 were freshly transferred and 284 embryos were frozen.
From these embryos, a total of 270 fresh embryos and a total of 277 frozen–thawed embryos
were transferred since 2018 and included in the transfers study (described below).

We found no statistically significant effect of the donor genetic line (p > 0.05) on the
embryo production. The average of the total embryos produced by donors with values
“A” and “B” was 8.5 ± 3.92, vs. 7.4 ± 5.53 embryos, respectively (p > 0.05). Other factors,
such as bull used for insemination, year (8.5 ± 5.19 in 2016, 8.5 ± 3.56 in 2017, 7.4 ± 3.81 in
2018, 7.7 ± 6.16 in 2019, and 5.5 ± 6.25 in 2020), or heat stress (8.2 ± 4.88 under heat stress,
vs. 7.2 ± 5.28 without heat stress) did not affect the number of total embryos obtained
(p > 0.05). These factors did not affect the percentage of viable embryos obtained (p > 0.05).

The results obtained from the donors’ metabolite assessment at embryo flushing are
summarized in Table 1.

The donor plasma metabolites revealed that the concentrations of BHB and TC de-
creased with the years of study, while glucose and TG increased.

The Pearson correlation test revealed no statistical correlations between the metabolite
values of the analyzed donors and their embryo production (total embryos and viable
embryos). Very slight but significant correlations were demonstrated between the value of
NEFAs and the percentage of degenerated embryo/cells (r = −0.275; p = 0.0018).
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Table 1. Donor blood plasma metabolites at embryo flushing and factors affecting Japanese Black heifers submitted to a MOET program at a Spanish farm.

Year Flushings Order

Metabolite Median (Min–Max) 2018 2019 2020 p-Value 1 to 4 >4 p-Value

BHB (mmol/L) 0.42 (0.06–0.89) 0.80 (0.29–0.89) 0.37 (0.06–0.60) 0.43 (0.28–0.76) <0.0001
NEFA (mmol/L) 0.24 (0.06–0.77)

TC (mg/L) 110.0 (64.0–181.0) 114.0 (101.0–167.0) 134.0 (67.50–181.0) 86.50 (64.0–134.0) <0.0001 103.60 (74.63–158.28) 133, 25 (121, 30–141, 25) 0.022
HDL (mg/L) 46.0 (19.0–84.0) 55.90 (35.0– 65.70) 54.00 (19.0– 84.0) 32.50 (26.0–43.0) <0.0001 42.65 (31.50–66.93) 61.43 (52, 39–67, 36) 0.002
LDL (mg/L) 14.0 (3.0–28.0)
GLU (mg/L) 82.0 (60.0–154.0) 76.0 (62.0–92.0) 80.0 (60.0–93.0) 89.50 (73.0– 154.0) <0.0001 84.0 (73.0–107.50) 71.69 (68, 25–75, 75) <0.0001
LAC (mg/L) 19.60 (4.45–87.0) 25.67 (11.27–30.48) 17.0 (4.45–53.80) 20.0 (7.0–87.0) 0.047
TG (mg/L) 23.0 (14.0–62.0) 23.0 (14.0–29.0) 21.0 (14.0–43.0) 36.0 (22.0–62.0) <0.0001 26.50 (14.75–45.0) 24.09 (21, 13–27, 31) 0.033

UR (mg/dL) 24.0 (11.0–41.0)
FRU (mg/L) 275.0 (200.0–508.0)
LEP (ng/mL) 0.19 (0.01–2.28) 0.11 (0.06–0.27) 0.84 (0.06–1.48) 0.08 (0.01–0.39) <0.0001 0.29 (0.08–2.28) 0.74 (0, 54–1, 09) 0.016

Abbreviations: BHB (beta hydroxybutyrate; mmol/L), NEFA (non-esterified-fatty acid; mmol/L), TC (plasma total cholesterol; mg/L), HDL (high density lipoprotein cholesterol; mg/L),
LDL (low density lipoprotein; mg/L), GLU (glucose; mg/L), LAC (lactate; mg/L), TG (triglycerides; mg/L), UR (urea; mg/dL), FRU (fructosamine; mg/L), and LEP (leptin, ng/mL).
* Measurements from 76/137 donors.
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3.2. Embryo Transfers and Recipients’ Pregnancy Results

From the 687 Japanese Black embryos obtained and transferred, a total of 270 were
fresh embryos and 417 embryos were transferred after a direct, one-step frozen–thawed
procedure. From the fresh transferred embryos, 92 were performed 2018 (92/270; 34.07%),
114 ET, 2019 (114/270; 42.22%) and 64 ET, 2020 (64/270; 23.70%). All transfers of fresh
embryos were performed at the Mudéjar-Wagyu farm, on the recipients’ herd previously
described. The time distribution of the performed ETs with frozen embryos was the
following: 2018: 49/417; 11.75%; 2019: 88/417; 21.10%, 2020: 148/417; 35.49% and 2021:
132/417; 31.65%). A total of 140/417 transferred frozen–thawed embryos were imported
and 277 were own embryos obtained from the flushings performed on the Mudéjar-Wagyu
farm heifers. Frozen–thawed embryos were randomly transferred at Holstein dairy farms
or in the recipients’ herd at the Mudéjar-Wagyu farm.

We found no statistical differences in conception rates (CR) depending on the embryo
type (p > 0.05): 50.0% CR for fresh embryos (135/270) vs. 47.5% for frozen–thawed ones
(198/417), or regarding the origin of the embryos: 48.3% for the own (264/547) vs. 49.3%
for the imported embryos (69/140). In the subset of fresh embryos, the embryo quality did
not significantly affect CR (p > 0.05): 50.9% of CR for embryos type 1 (110/216), 44.0% for
type 2 (22/50), and 75.0% for type 3 (3/4).

The factor “farm of recipients” did not significantly affect conception rates (p > 0.05)
with a CR of 50.6% at the Mudéjar-Wagyu farm (203/401) vs. 44.0% at the external farms
(130/286). No statistically significant differences in conception rates were observed by the
breed of the recipients (p > 0.05). The CR was 51.4% for Simmental (142/276), 53.1% for
Charolais (17/32), 41.0% for Brown Swiss (22/41), 52.0% for crossbred recipients (22/52)
and 45.5% for Holstein (130/286). Similarly, having suckling or not suckling calves did not
reveal a significant effect on CR. Cows with suckling calves obtained 50.0% (50/101) of CR,
vs. 51.0% (153/300) for cows without suckling calves (p > 0.05).

Regarding the numerical variables measured on the recipients at the ET procedure,
BCS, and open days (OD, days from the last calving to ET), none of them differed signifi-
cantly between pregnant and non-pregnant cows after ET. The BCS of the non-pregnant
recipients was 3.7 ± 0.37 vs. 3.7 ± 0.39 for the pregnant ones (p = 0.13), and the open
days values were 190 ± 109d vs. 196 ± 103d, respectively (p > 0.05). However, heat stress
did affect conception rate outputs, while donor parity and transfer number matched with
numerically different CR values (Table 2).

Table 2. Conception rate after embryo transfer (ET) of Japanese Black bovine embryos by recipients’
parity, transfer number, and heat stress at ET.

CR (%; n/N) p-Value OR 95% CI

Recipients’ Parity Heifers 44.3% (148/337)
Primiparous 58.3% (67/115)
Multiparous 58.8% (118/235)

ET number 1 47.0% (235/499)
>1 52.1% (98/188)

Heat Stress at ET Yes 44.3% (47/106) 0.042 2.06 1.026–4.153
No 49.2% (286/581)

Abbreviations: CR = conception rate, OR = odds ratio, CI = confidence interval.

A total of 44 animals lost pregnancy before day 120 of pregnancy (pregnancy loss rate
or PL), which made a PL rate of 13.2% (44/333).

Although the regression model did not show statistical differences in CR values
induced by the recipients’ parity and the number of ET, the chi-square analyses did, with a
p-value of 0.006 for the CR of heifers vs. primiparous and multiparous and the differences
between CR after the first ET or further ETs (p = 0.04).

A total of 246 ET recipients were blood sampled: 124 pregnant and 122 non-pregnant
after ET. Results from the metabolite analyses are summarized in Table 3.
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Table 3. Recipients’ plasma metabolites at embryo transfer (ET) of Japanese Black bovine embryos by
the final pregnancy status of the recipients after the ET (pregnant vs. non-pregnant).

Metabolite Recipient’s Outcome Concentration
Median (Min–Max) p-Value

BHB (mmol/L) Pregnant 0.38 (0.10–0.58) 0.32
Non-pregnant 0.39 (0.21–47.0)

NEFA (mmol/L) Pregnant 0.19 (0.02–0.97) 0.89
Non-pregnant 0.18 (0.02–0.86)

TC (mg/L) Pregnant 129.0 (53.0–336.0) 0.025
Non-pregnant 138.0 (68.0–353.0)

HDL (mg/L) Pregnant 51.0 (25.0–87.50) 0.33
Non-pregnant 53.0 (26.0–88.0)

LDL (mg/L) Pregnant 17.0 (4.0–43.0) 0.031
Non-pregnant 20.0 (2.50–40.0)

GLU (mg/L) Pregnant 78.0 (41.0–106.0) 0.005
Non-pregnant 83.0 (47.50–127.0)

LAC (mg/L) Pregnant 14.0 (3.50–53.0) 0.93
Non-pregnant 14.0 (3.0–73.0)

TG (mg/L) Pregnant 23.25 (10.0–118.0) 0.113
Non-pregnant 21.0 (7.50–83.0)

UR (mg/dL) Pregnant 19.0 (7.0–49.0) 0.024
Non-pregnant 22.0 (2.0–49.0)

FRU (mg/L) Pregnant 309.5 (197.0–398.0) 0.158
Non-pregnant 311.0 (246.0–415.0)

Abbreviations: BHB (beta hydroxybutyrate; mmol/L), NEFA (non-esterified-fatty acid; mmol/L), TC (plasma
total cholesterol; mg/L), HDL (high density lipoprotein cholesterol; mg/L), LDL (low density lipoprotein; mg/L),
GLU (glucose; mg/L), LAC (lactate; mg/L), TG (triglycerides; mg/L), UR (urea; mg/dL) and FRU (fructosamine;
mg/L). p values obtained the U test of Mann–Whitney. * Measurements from 246/687 recipients.

Among the pregnant animals, only the total triglycerides tended to differ between
cows that suffered PL after having gotten pregnant (90.0 ± 32.04 mg/L for cows with PL
vs. 10.0 ± 42.85 mg/L for those without PL; p = 0.14). Finally, the Spearman correlation test
demonstrated no statistically significant correlations between any variable.

4. Discussion

Our study demonstrates MOET efficiency in a Japanese Black herd in Spain similar
to the efficiency in Japanese Black herds elsewhere in the world. Moreover, our data
suggest that the efficiency of producing Japanese Black embryos and their quality were
not significantly affected by levels of leptin or key plasma metabolites in donors during
superovulation, nor were they affected by year, heat stress, bull used, or donor genetics.
In contrast, CR after embryo transfer was significantly lower in the presence of heat stress,
and it depended on recipient parity and embryo transfer number. Additionally, levels
of total cholesterol, LDL, urea, and glucose were higher in pregnant recipients than in
non-pregnant cows.

An average of 5.3 ± 4.34 viable embryos per flushing were obtained in the present
study, similar to the averages of 6.2 ± 1.2 and 5.1 ± 1.1 reported for Japanese Black cattle
in Japan after using two commercial FSH drugs [50]. These averages are also similar to
those published for different breeds by the American Embryo Transfer Association based
on data from its Annual Survey of Members [51] and averages across the USA published
by Phillips et al. [52], which were 7.46 in 2002 (n = 170,397 viable embryos), 5.69 in 2007
(n = 326,920 viable embryos), and 6.80 in 2007 (n = 301,401 viable embryos).

We did not observe a significant influence of donor genetic background or bull on
embryo production or quality, yet several studies have pointed out the importance of
selecting highly valuable animals as donors for MOET [52–54]. In fact, the heritability
of the total number of embryos or oocytes is 0.26 in Japanese Black cattle, while the
heritability of the total number of grade 1 embryos is 0.17 [55]. Our results may reflect
that we excluded from the study donors that produced no embryos, and we used only
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highly fertile bulls. Whatever the explanation, our results highlight the potential for further
genetic improvement of the breed. Our analysis suggests that more valuable Japanese
Black heifers can show embryo production and reproductive efficiency similar to those of
unselected animals.

We observed that heat stress significantly reduced CR after embryo transfer, consistent
with studies on European beef and dairy cattle [36,56–58]. Heat stress reduces bovine repro-
ductive efficiency [37]: it reduces the superovulatory response, embryo quality, fertilization
rate, and yield of transferable embryos in MOET programs [59]. Heat stress may exert these
effects by affecting secretion of reproductive hormones, interfering with embryo develop-
ment, or inducing oxidative stress in cells [59–62]. While one study of Japanese Black cows
found that heat stress did not significantly affect the quality of aspirated oocytes or their
developmental competence during IVF, it may affect follicular recruitment in non-pregnant
cows [63]. Our failure to detect a significant influence of heat stress on embryo production
may reflect the climate at the study farm, where Temperature-Humidity-Index (THI) values
are not so high and air humidity is low, so temperatures are low at night, even in summer.
For example, during the last year of the study (2020), maximal and minimal temperatures in
July were 30.2 ◦C, 14.6 ◦C in July, 29.5 ◦C, and 14.2 ◦C in August [42]. Moreover, the animals
on the study farm had access to shaded areas and well-ventilated barns.

Donors in our study had an average BCS of 3.5 ± 0.57, and no donor was over–
conditioned, implying appropriate nutritional planning that should maximize embryo
production. Intermediate BCS of 2.5–4 on a scale from 1 to 5 [49] has been associated
with significantly greater embryo production [64]. Conversely, overfeeding leads to high
peripheral concentrations of both luteinizing hormone and insulin, which reduce fertil-
ization rate and embryo quality [65], as well as in vivo embryo production [66]. Since
nutritional planning can influence donor metabolic status [56], metabolic indicators in our
donors were examined closely. Levels of key metabolites did not correlate significantly
with embryo productivity, and all biomarkers were within physiological ranges [56,67],
further supporting the idea that our donors were in homeostasis. In fact, comparison of
metabolic markers over the course of the study suggests that nutritional status improved
in the later years, as reflected in lower levels of lipidic biomarkers and leptin as well as
higher glucose levels in plasma. Lower lipid metabolism has been linked to better cattle
health [68]. The present study found a significant, low intensive, correlation between levels
of BHB and the number of unfertilized oocytes. Higher BHB level indicates negative energy
balance, which may impair reproductive efficiency [69]. It may be possible to further
improve embryo production in the Japanese Black breed by administering rumen bypass
polyunsaturated fatty acids, which has been shown to increase the number of transferable
embryos after superovulatory treatments [70,71].

In the present study, flushing number appeared to significantly influence the levels of
certain metabolites in the donor. This result may actually reflect the influence of dam age:
dam age was 18.8 ± 4.30 months for flushings 1–4, but 30.9 ± 4.49 months for flushings
greater than 5. Consistent with this idea, Zoda and colleagues [55] reported a decrease in
the number of embryos per flushing with increasing age of Japanese Black cows. Those
authors attributed this age effect to age-dependent metabolic changes, which have also
been reported in dairy cattle [72].

The donor cows in the current study showed substantially lower leptin levels
(0.5 ± 0.75 ng/mL) than other Japanese Black cows, such as 4.7–6.5 ng/mL in one study [73]
or 2.7 ± 0.41 ng/mL in another [20]. Holstein cows in moderate body condition show even
higher leptin levels of 9–10 ng/mL [64]. Leptin regulates ovary function, oocyte maturation,
and embryo development before implantation [74]. Leptin also increases embryo quality
during superovulation [75], and there appears to be an optimal concentration, below or
above which reproductive outcomes worsen [76,77]. These comparisons may not be entirely
valid because most of those previous studies examined younger, fattening cattle, which
were likely over conditioned. In addition, leptin levels can vary with breed, nutritional
management, and body condition [78]. The low leptin levels in the present study probably
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reflect that the animals were allowed to move freely, and nutrition was strictly controlled
to avoid over conditioning. Further studies are needed to clarify the relationship between
leptin levels and reproductive outcomes in Japanese Black cattle.

CRs after embryo transfer in our study were 50.0% for fresh embryos and 47.5%
for frozen–thawed embryos, very close to the corresponding values of 51.1% and 44.0%
published for another herd of Japanese Black cattle [70]. CRs in the current study did not
differ significantly across various breeds, including Simmental, Charolais, Brown Swiss,
Holstein, or crossbreeds, which is consistent with a report of similar CRs between beef
and dairy breeds [79]. The similarity in CR between fresh or frozen–thawed embryos
in the Japanese Black cattle in the present study echoes previous results for Aberdeen
Angus [80]. In fact, embryo quality appears to be the strongest determinant of CR after
embryo transfer [81,82]. Only grade 1 embryos were frozen in our study, in accordance
with recommendations [81], while embryos of grades 2–3 were usually transferred freshly,
which improves the probability of pregnancy [47,82]. This dual practice of freezing only
the best embryos and of freshly transferring lower-quality embryos probably helped close
the gap in CR between the two types of transfer, as reported for Aberdeen Angus, Holstein,
and crossbreeds [58,80].

CR in the present study was lower among heifers than among primiparous or multi-
parous cows. This is the opposite of what is generally observed in bovine [83]. The present
finding may be explained by careful recipient selection on the Japanese Black farm, such
that only highly efficient animals were repeatedly used for embryo transfer. In addition,
most of the heifers were from external Holstein farms, where all transfers involved high-
quality frozen–thawed embryos. A regression model that included all these factors did not
detect a significant effect of parity or its interaction with other factors.

Pregnant recipients in the present study had significantly higher levels of total choles-
terol, LDL, glucose, and urea than non-pregnant recipients. Therefore, these levels may
serve as metabolic biomarkers to guide recipient selection, given the importance of appro-
priate energy metabolism for CR in beef cattle [84]. During the first stages of pregnancy,
fatty acid degradation and oxidative metabolism may increase and thereby affect the
transport of nutrients from the blood into the uterus, ultimately influencing fertility [85,86].

5. Conclusions

The results of this study demonstrate adequate non-surgical, in vivo production of
Japanese Black embryos of sufficient quality for MOET under Spanish management and
environmental conditions. Therefore, good MOET efficiency can be expected with this
breed under conditions that may differ substantially from those in Japan. Nutrition and
animal welfare should be closely managed in order to maximize the productivity of donor
heifer flushing and post-transfer pregnancy rates in recipient animals. Heat stress should
be avoided during transfers of Japanese Black embryos. These results provide a useful basis
for optimizing Japanese Black breed reproductive management as well as MOET programs
in this and other cattle breeds.
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