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Simple Summary: Predicting the spreading trend of the COVID-19 epidemic is one of the hot topics
in the modeling field. In this study, we applied a continuous Markov-chain model to simulate
the spread of the COVID-19 epidemic. The results of this study indicate that the herd immunity
threshold should be significantly higher than 1 − 1/R0. Taking the immunity waning effect into
consideration, the model could predict an epidemic resurgence after the herd immunity threshold.
Meanwhile, this Markov-chain approach could also forecast the epidemic distribution and predict the
epidemic hotspots at different times. It is implied from our model that it is significantly challenging
to eradicate SARS-CoV-2 in the short term. The actual epidemic development is consistent with our
prediction. In the end, this method displayed great potential as an alternative approach to traditional
compartment models.

Abstract: To address the urgent need to accurately predict the spreading trend of the COVID-19
epidemic, a continuous Markov-chain model was, for the first time, developed in this work to predict
the spread of COVID-19 infection. A probability matrix of infection was first developed in this
model based upon the contact frequency of individuals within the population, the individual’s
characteristics, and other factors that can effectively reflect the epidemic’s temporal and spatial
variation characteristics. The Markov-chain model was then extended to incorporate both the
mutation effect of COVID-19 and the decaying effect of antibodies. The developed comprehensive
Markov-chain model that integrates the aforementioned factors was finally tested by real data to
predict the trend of the COVID-19 epidemic. The result shows that our model can effectively avoid the
prediction dilemma that may exist with traditional ordinary differential equations model, such as the
susceptible–infectious–recovered (SIR) model. Meanwhile, it can forecast the epidemic distribution
and predict the epidemic hotspots geographically at different times. It is also demonstrated in our
result that the influence of the population’s spatial and geographic distribution in a herd infection
event is needed in the model for a better prediction of the epidemic trend. At the same time, our
result indicates that no simple derivative relationship exists between the threshold of herd immunity
and the virus basic reproduction number R0. The threshold of herd immunity achieved through
natural immunity is significantly higher than 1 − 1/R0. These not only explain the theoretical
misconceptions of herd immunity thresholds in herd immunity theory but also provide a guidance
for predicting the optimal vaccination coverage. In addition, our model can predict the temporal and
spatial distribution of infections in different epidemic waves. It is implied from our model that it is
challenging to eradicate COVID-19 in the short term for a large population size and a wide spatial
distribution. It is predicted that COVID-19 is likely to coexist with humans for a long time and that it
will exhibit multipoint epidemic effects at a later stage. The statistical evidence is consistent with our
prediction and strongly supports our modeling results.
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1. Introduction

By 1 January 2022, the COVID-19 epidemic had caused 290 million infections and
more than 5.4 million deaths worldwide. This makes it the most significant public health
crisis faced by the world since World War II. It is of significant value to predict the trend of
the COVID-19 epidemic situation. Therefore, it is necessary to answer several questions
urgently, including, but not limited to, whether the infection of COVID-19 can be completely
eliminated by adopting group immunization and what the relationship is between the
threshold of group immunization and the virus reproduction constant R0 [1,2].

Predictive mathematical models play a crucial role in understanding the course of
the epidemic and in designing strategies to quickly contain spreading infectious diseases
in the face of the lack of any specific antivirals or effective vaccines [3–6]. For COVID-19
mathematical modeling, many attempts have been made to predict the epidemic trend
based on the pioneering model developed by Kermack and McKendrick [7] in 1927, which
is the original classic SIR model (namely susceptible (S), infected (I), and removed (R)
classes). Most of these COVID-19 modeling studies achieved a good fitting result when
overlined onto the statistical data. The models mainly extended the original SIR model by
adding new compartments to get a more accurate simulation of the actual scenario. For
example, Chen et al. [8] extended the transmission network into four compartments: bats,
hosts, reservoir, and people. Kankan et al. [9] extended the SEIR (susceptible–exposed–
infectious–removed) model by incorporating three additional compartments: asymptomatic
(A), isolated infected (Iq), and quarantined susceptible (Sq). Subhas et al. [10] studied the
epidemic in India with intervention strategies by using a mathematical model that consists
of six subpopulations, susceptible S(t), exposed E(t), asymptomatic A(t), symptomatic or
clinically ill I(t), hospitalized or isolated H(t), and recovered R(t) individuals, in a total
population of N(t) = S(t) + E(t) + A(t) + I(t) + H(t) + R(t) individuals. Piu et al. [11] studied
the COVID-19 transmission dynamics in India using a mathematical model with four
compartments: the SAIU model, with SAIU standing for susceptible or uninfected (S)
→ asymptomatic (A)→ reported symptomatic infectious (I)→ unreported symptomatic
infectious (U).

Through the model fitting process, some critical parameters can be estimated and then
the virus basic reproduction number R0 can be derived based on these parameters using
the concept of the next-generation matrix [12–14]. The R0 value could vary significantly in
different regions. For example, R0 in different states in India varied in the range from 1.12
to 2.47 in the epidemic dynamics modeled by Kankan et al. [9]. R0 would also be different
even for the exact same location, given a different period to fit the model. For instance, Wu
et al. [15] studied an SEIR model to investigate the dynamics of COVID-19 infections based
on the data from Wuhan, China, from 31 December 2019 to 28 January 2020 and calculated
that the basic reproduction number was approximately 2.68. In a fractional-order model
studied by Khan and Atangana [16] that simulates the dynamics of the COVID-19 outbreak
in Wuhan, China, the authors computed the basic reproduction R0 as 2.4829 based on the
data from 21 January to 28 January.

The analysis of viral dynamics using mathematical models has helped gain an under-
standing of viral infections such as tuberculosis, dengue, and zika virus [17–19]. However,
the majority of the classic ODE mathematical models, if not all, cannot predict the epidemic
trend well, although most of them have an excellent fitting result. Here are some potential
reasons for this. Firstly, suppose we fit the models by using the early surging section of
the first epidemic wave. In that case, the parameter estimation process always returns
a minimal S0 [9–16,20–23], which is unrealistic since we know S0 stands for the initial
susceptible people in a particular population and it should be at least in the same order of
magnitude as the entire population. The majority of the human population is susceptible
to COVID-19 without vaccination, as revealed by experiments and cohort studies [24,25].
Secondly, in an opposite way, if we treat S0 as a constant approximately equal to the
group population, using transmission parameters obtained by data fitting, we will find the
epidemic growth rate is too sharp and the virus reproduction number R declines slowly.
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The epidemic growth rate in the early period is almost exponential. This prediction also
contradicts the actual situation. Thirdly, while most of the traditional ordinary differential
equation (ODE) models would be able to predict the infection’s turning point, few of them
would be able to predict when and how the second wave or the third wave will begin.
The configuration of ODE models with fixed parameters allows them to produce only one
round of the epidemic. From our point of view, a crucial reason behind this drawback
is the ignorance of the population’s geographic distribution. Without considering the
spatial distribution characteristics of the population, it is difficult to accurately estimate
the development of epidemic situations by using the traditional SIR model. ODE models
with a fixed transmission coefficient face the challenge of providing more accurate and
reliable prediction results. With the development of the COVID-19 epidemic, people grad-
ually realized that the transmission coefficient is a varied term. To reproduce and fit the
multiple-wave pattern of the epidemic trend, researchers are more inclined to adopt a
revised compartment model. Most of the model revisions are concentrated on defining
a time-dependent transmission coefficient. The attempts can achieve good fitting results,
especially when handling the fluctuated epidemic situation [26–31]. Nevertheless, there are
two major limitations of these approaches. Firstly, they lack physical background, especially
to the critical problem of why the transmission coefficient β varies through time. However,
without the derivation of the physical background, these equations are less likely to be
ubiquitous and transformative to other cases. Secondly, adding more parameters typically
returns better fitting results, especially on making some parameters time dependent. This
may cause the issue of overfitting and damage the prediction capacity. Some ODE models
have even integrated artificial intelligence approaches, such as the neural network, to
further define the varied transmission coefficient [32–34], but it is still hard for these models
to give a reliable prediction about when and how the next epidemic wave would occur.
In particular, the driving forces at different epidemic stages are different. For instance,
the second and third waves in the United States were mainly contributed by geographic
diffusion. However, the fourth and fifth waves are mainly contributed by the vanishing
immunity against reinfection (more details will be provided the Section 3).

The rapid development of computation power enables agent-based approaches for
modeling complex systems with highly interacting individuals [35,36]. The influential
modeling property of the agent-based model enables its wide application, such as in the
optimization of supply chains [37], in the interpretation of corruption in ancient civiliza-
tions [38], and in modeling the dynamics of the immune system [39]. The agent-based (also
called the individual-based) approach represents a new paradigm to model the spread
of infectious disease and incorporate population heterogeneity and spatial information.
In particular, agent-based models can make a more accurate and reliable prediction in
conditions where it is required to forecast the development of the epidemic at a more
fine-context level. Therefore, many agent-based strategies have been proposed to forecast
the infection possibility of each element and the overall behaviors of the epidemic. For the
study of COVID-19, Hoertel et al. proposed a stochastic agent-based model to simulate
the early epidemic in France [40]. Hinch et al. built an agent-based framework named
“OpenABM-Covid19” to study the non-pharmaceutical interventions against COVID-19 in
the UK [41]. Cuevas proposed an agent-based model with position movement to evaluate
the transmission risk of COVID-19 [42]. Under the agent-based methodology, several
interesting basic global patterns have been proposed to simulate complex phenomena, such
as diffusion, concentration and insolating, fire spreading, and segregation [43,44]. These
behavioral patterns have been analyzed in terms of the simple rules that provoke them.
The traditional agent-based model assumes that the agents can move freely within the
environment. While this assumption can emulate the contact dynamics between agents,
it has several critical disadvantages. First, the binary decision, which is represented as
being infected or not, cannot accurately predict the epidemic trend, especially using a
small-scale system. The simulation will return a stochastic result under the same initial
condition per run. Second, the physical movement will add to the computational cost.
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Meanwhile, it does not obey the actual population interaction principles. To be specific,
humans tend to interact with their neighbors around their living community. However,
many agent-based models adopt a constraint-free movement, which will lead to significant
position fluctuations after a certain period. Third, most of these models assume a life-long
immunity to COVID-19 infection. Therefore, they will treat the recovered agent as not
susceptible to infection. This assumption has been verified to be highly unreliable since
tremendous breakthrough infection has occurred in COVID-19.

To address the above limitations of traditional agent-based models, a continuous
Markov-chain agent-based model that simulates the epidemic development was developed
in this work. Applications of Markov chains can be found in many fields, from statistical
physics to financial time series [45–47]. Here, we applied the Markov-chain approach
to the prediction of the COVID-19 epidemic. The proposed model is distinct from the
traditional agent-based model in three ways. Firstly, a continuous number range from 0
to 1 is used to represent the infection possibility so that the solution is unique and more
accurate, even for a small-scale system. Secondly, the position of each element is assumed
to be fixed to reduce the computational load and make it applicable for a more extensive
system. Meanwhile, this assumption follows the actual patterns of human population
movement, according to which most individuals are settlers instead of pastoralists. Finally,
the proposed comprehensive Markov-chain model does not assume a life-long immunity
existing toward COVID-19 infection. This is consistent with the experiments and cohort
studies that indicate that the protection brought by infection or vaccination fades over time.
Therefore, the recovered patient who has different susceptibility to reinfection is treated
based on the time interval between the two infections. While the details of the proposed
approach are given in Section 2, the three key components are summarized as follows: (1) a
synthetic population that emulates the natural population’s demographic distribution, (2) a
social contact network among the agents in the model where the contact frequency can
be simplified to be negatively correlated with their distances, and (3) transmission rules,
which could translate the edge weights in the interaction network into an overall infection
probability toward each agent at specific time points. With these key components, the
proposed model can take the information of population contact into account to simulate the
spreading dynamics more accurately. Besides, this approach can integrate many features
into the model, such as the virus mutation factor, population age distribution, public
prevention, and control measures, to further generate a more reliable prediction. This model
can predict the epidemic development in actual cases and provide valuable information
for the development of the epidemic and the epidemiological tracking of infection cases.
It can finally help explain the first questions: whether the infection in COVID-19 can
be completely eliminated by adopting group immunization and what the relationship is
between the threshold of group immunization and the virus basic reproduction constant
R0 [1,2].

2. Methods
2.1. Derivation of the Markov-Chain Model for COVID-19 Infection
2.1.1. Derivation of a Simplified Markov-Chain Model without Considering
COVID-19 Mutation

The continuous Markov-chain model of infection occurrence proposed in this work
is briefly described below. It is assumed that there are N individuals in a population and
there are different contact probabilities among those individuals. The infection probability
is positively correlated with contact probability. For the simplified model, the relation
constant is 1, which means the infection probability equals contact probability. The contact
probabilities with themselves are zero. In this way, a matrix with N column × N rows is
established, which has the following characteristics:

Minteraction(i, i) = 0 (1)

Minteraction(i, j) = Minteraction(j, i) (2)
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where Minteraction(i, j) stands for the interaction possibility between individual i and indi-
vidual j.

An accurate contact matrix can be obtained by tracking the individual contact prob-
ability in a natural population group. For example, each person’s mobile phone can be
recorded to obtain the population contact matrix within a particular time phase. The contact
matrix is temporal and dynamic, which means it changes over time. However, it is difficult
to obtain such accurate data at present. Therefore, the contact frequency is determined
according to the relative distance between individuals, as shown in Equation (3).

Minteraction(i, j) = min
(

c1,
c2

distance(i, j)n

)
(3)

where c1 is the maximal contact possibility between agent i and agent j. A detailed explana-
tion of c1 can be found in the model description section below, and c2 is a constant used to
quantify the interaction possibility between two agents given a spatial distribution. The
contact probability between two different individuals, the second term in the parenthesis
on the right, equals the constant c2 divided by the n-th power of the distance between them.
c2 and n can be adjusted in order to generate a reasonable R0 value, and if we use a larger
c2 value and a smaller n value, we obtain a bigger R0 value correspondingly. In particular,
the values of c1, c2, and n are preliminarily determined according to the initial reproduction
constant R0 of the virus. More details will be provided in Section 2.2. The approach for
calculating the basic reproduction number R0 is given below.

The virus basic reproduction number R0 is the expected number of secondary cases
produced, in a completely susceptible population, by a typical infective individual [12,13].
This dimensionless basic reproduction number is an essential indicator of the virus trans-
mission ability. In a more general way, R0 can be stated as the number of new infections
created by a specific infective population at a disease-free equilibrium and R0 represents
the original transmission potential. As infections spread, the virus reproduction number R
will decline while R0 is a fixed number. Therefore, the basic reproduction number R0 is not
the same as the reproduction number of virus R. The basic reproduction number R0 can be
computed using the next-generation matrix concept (see [12–14] for details). Since ordinary
differential equations are not used in the proposed model, a new way is used to represent
R0, that is, R0 is initially estimated by the contact frequency of people multiplied by the
transmission coefficient of the virus in Equation (4):

R0 =
1
N∑N

i ∑N
j Minteraction(i, j) (4)

The matrix Pin f ection(i, t), which contains N rows for individuals of the studied group
and M columns for the total number of generations, is defined to represent the probability
of infection of individual i in the t-th generation of infection. The number t represents
the current virus generation or the current time. It can be estimated through the follow-
ing equations:

P1 = Psusceptibility(k) = 1−∑t−1
i=1 Pin f ection(k, i) (5)

P2 =

N

∑
i=1

Pin f ection(i, t− 1)× Psusceptibility(k)×Minteraction(i, k) (6)

Pin f ection(k, t) = min(P1, P2) (7)

where Pin f ection(i, t− 1) represents the probability of infection of individual i in the previous
generation and Psusceptibility(k) represents the susceptibility probability of individual k in
the t-th infection generation, which is between 0 and 1.
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2.1.2. Derivation of a Comprehensive Markov-Chain Model with Terms for Virus Mutation
and Age Impact

To incorporate the impact of virus mutation on COVID-19 infection, a mutation term
is added to Equation (5) for the susceptibility probability, as shown below.

Psusceptibility(k) = 1−∑t−1
i=1 Pin f ection(k, i)×Mmutation(k, i) (8)

where Mmutation(k, i) represents the attenuation effect caused by virus mutation and anti-
body attenuation and it is defined by Equation (9). If there is no antibody attenuation and
virus mutation effect, then Mmutation(k, i) = 1.

Mmutation(k, i) =
(

1− rantibody_ f ading

)t−i
× (1− rmutation)

t−i (9)

where rantibody_ f ading represents the attenuation constant of the antibody with time (i.e., the
number of infected generations). Since it represents the attenuation constant of a single gen-
eration, it is a small number. Similarly, the mutation rate rmutation represents the variation
constant of a virus with time (i.e., the number of infected generations). Since it represents
the variation constant during a single generation, it is also a small number. Although
the values of these two constants are small, the iteration effect of several generations can
cause a significant decrease in Mmutation(k, i). For instance, if an individual gets infected at
the (t − 1)-th time point, it will provide a strong protection against reinfection at the t-th

time point because of the mutation term of
(

1− rantibody_ f ading

)1
× (1− rmutation)

1, which
is close to 1. However, this protection effect will vanish with time, as Mmutation(k, i) will
decrease with k increasing. Therefore, it will lead to a further increase in Psusceptibility(k)
according to Equation (8). Equation (8), together with Equation (9), is used to describe a
vanishing immunity against reinfection, which is a key feature of the proposed model.

The two constants rantibody_ f ading and rmutation are estimated according to the following
procedure: According to literature and news reports [48], the average infection cycle in
COVID-19 is 7 days. The vaccine protection caused by the Indian mutant B.1.617.2 is about
1 − 88% = 0.12, and the Indian mutant occurs around the 50th infection cycle. The decline
in vaccine protection caused by the British mutant B.1.1.7 is about 1 − 93% = 0.07, and the
occurrence time of the British mutant is about the 30th infection cycle, so it is preliminarily
inferred that rmutation = 0.002. According to the statistical data of reinfection after infection,
for people under 65 years old, the average protection rate of preventing the second infection
after infection within 50 infection cycles is 80%. We speculate that the protection rate after
50 infection cycles is much lower than 80%, calculated to be 70% [49]. Based on the mutation
constants of viruses, we can preliminarily infer the antibody attenuation constant = 0.005.

In the proposed Markov-chain model, the relationship between age and infection
probability is incorporated. A more accurate mathematical model should also take the
influence of the population’s immune variation into consideration. Our model mainly
considers the influence of age-related immunity vibration on infection risk. According to
the statistical results of infection distribution at different ages, the relationship between
infection probability and age is further derived as Equation (10).

f (age(k)) =

(
1− 1

1 + e
age(k)

25

)2

(10)

where f (age(k)) is a correction factor describing the susceptibility of the population of a
certain age. It will increase as the age increases. The term age(k) indicates the age of the
k-th individual in the population.

In addition, the dose effects on infection are considered in the model. According to
our research, the occurrence of infection is related to the initial number of virus invasions.
Therefore, for people with low infection probability, their contagious potentials are much
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smaller than those with high infection probability. The infected person does not necessarily
have symptoms or even a positive diagnosis in the nucleic acid test. Therefore, a correction
term Ptransmission(k, t) is added to quantify the relationship between the infection rate and
the development of an individual into an infectious individual.

Ptransmission(k, t)= Pin f ection(k, t)× 0.1(
1−Pin f ection(k,t)

5 ) (11)

where Ptransmission(k, t) represents the transmission capacity of individual k at the t-th
generation of infection. Equation (11) represents a nonlinear relationship between the
infection possibility and its spreading capacity. For example, Ptransmission(k, t) becomes 1 if
one individual has 100% infection possibility at time point t. It represents that the further
spreading capacity of the virus would be 1. However, when an individual has a 50% chance
of getting infected at time point t, the further transmission capacity will decline to 39.7%
rather than 50% according to Equation (11).

After the aforementioned factors are considered, the final Markov-chain model turns
out to be:

P1 = Psusceptibility(k) = 1−∑t−1
i=1 Pin f ection(k, i)×Mmutation(k, i) (12)

P2 = f (age(k))×
N

∑
i=1

Ptransmission(i, t− 1)× Psusceptibility(k)×Minteraction(i, k) (13)

Pin f ection(k, t) = min(P1, P2) (14)

Equation (12) differs from Equation (6) in that two correction terms are added, i.e.,
Ptransmission(i, t− 1) and f (age(k)). Besides that, the comprehensive Markov-chain model
returns a different value of Psusceptibility(k) because of the addition of a vanishing immunity
term described in Equations (8) and (9).

Accordingly, the virus reproduction coefficient R0 becomes:

R0 =
1
N∑N

i ∑N
j Minteraction(i, j)× f (age(i))× Ptransmission(i) (15)

2.2. Model Framework

The methodological section above briefly defined the function terms used in the model,
and the equations are further used to describe the model framework here. The proposed
model quantifies the possibility of a person being infected using a continuous probability
rather than simply using two states (infected and not infected). Thus, for a population
containing individuals {a1, a2 to an}, the probability of each individual having the infection
is a continuous number from 0 to 1. This is the rationale for defining the proposed model
as a continuous Markov-chain model with the following steps:

Step 1, define and quantify the agent contact probability: We consider the probability
that an individual i is infected at moment t − 1 as Pin f ection(i, t− 1) and the probability
that this person infects individual j during an infection cycle as Minteraction(i, j). Our model
considers each individual to be location fixed. Fixing the location of each individual has the
following advantage: in case we do not have access to the true frequency of contact in the
population, we can establish the probability of transmission as a function of the distance
between them to roughly calculate the probability of transmission between them. The
disadvantage of using a dynamic model is that, while increasing the computational effort,
moving individuals without restrictions will result in significant shifts in the locations
of individuals in the population over time, which does not conform to the population
movements in the actual scenarios. For most people, they have position alternations
centered on the place of residence, so a static model of location is a better reflection of
population contact.
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The diagram of agent-contact probability is displayed in Figure 1. Figure 1A repre-
sents the contagion model with a distance constraint. For the continuous Markov-chain
model with distance constraints, the element in the interaction matrix Minteraction(i, j) is
determined by Equation (3) if the distance between two individuals (i.e., indexed by i and
j) is less than the threshold. Otherwise, a zero value is set to Minteraction(i, j). The constant
c1, a constant representing the maximal infection possibility from agent i to agent j, is a
constant chosen from 0 to 1. It is set to 0.8 in the simulation based on the preliminary data
for COVID-19. One rationale for this is that if two agents are too close to each other, such
as 1© and 2©, the infection probability might exceed 1 if the term c1 is not incorporated
in the model. This is unrealistic. Different combinations of c1, c2, and n would lead to a
different R0 value. Instead, arbitrarily assigning values to these parameters, we have to
guarantee that these parameters will generate a reasonable R0 value based on Equation (4).
Figure 1B shows the contagion without the distance constraint, from which it can be seen
that the probability of the virus transmitting to individual j from individual i is determined
by Minteraction(i, j) in Equation (3).
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Step 2, quantify the contribution of agent i toward agent j in infection: Since the
probability that agent i is infected at moment t − 1 is Pin f ection(i, t− 1) and the proba-
bility that agent i infects agent j during an infection cycle is Minteraction(i, j), the value
of the contribution of agent i to the infection of agent j is defined by Equation (13), i.e.,
Pin f ection(i, t− 1)× Psusceptibility(j)×Minteraction(i, j), where Psusceptibility(j) is the coefficient
of susceptibility of j to infection at moment t. This coefficient is illustrated in Table 1. Table 1
shows the calculation of the susceptibility coefficient Psusceptibility(j) in a simplified Markov-
chain model. As a simple example, suppose the calculated probability of infection of agent
j in the previous t − 1 time periods is Pin f ection(i, t− 1), the corresponding susceptibility
coefficient in the next time period is 1−∑t−1

i=1 Pin f ection(j, i), as shown in Equation (5). This
is based on the assumption of the lifetime immunity model, which indicates that the proba-
bility of a secondary infection for an infected individual after recovery is 0. To relax this
constraint, Table 2 shows a schematic representation of the calculation of Psusceptibility(j) for
a more comprehensive Markov-chain model with more factors (e.g., mutation) considered,
as shown in Equation (12). As a simple example, suppose the probability of infection calcu-
lated for agent j at the first t − 1 time periods is Pin f ection(j, t− 1). Then, the susceptibility
factor of this person at the next time period is 1−∑t−1

i=1 Pin f ection(j, i) ∗Mmutation(j, i). This
assumption is for the non-lifelong immunity model, which means that once an individual
has been infected, the probability of a second infection after recovery is no longer 0. The
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susceptibility coefficient tends to increase over time. The susceptibility factor Psusceptibility(j)
is a continuous number from 0 to 1, and Mmutation(j, i) is expressed in Equation (9).

The difference between a simplified Markov-chain model (Equations (5)–(7)) and a
comprehensive Markov-chain model (Equations (12)–(14)) is that the latter one considers
other factors, such as the age (i.e., the term f (age[k])) and the viral dose (i.e., the term
Ptransmission(k, t)). As shown in Equation (10), the probability of infection and the probability
of exposure in the comprehensive model show a certain exponential relationship and the
probability of infection is not equivalent to the probability of exposure.

Table 1. An illustration of definition of susprobability(j) of agent j in the simplified Markov-chain model.

Time Points Infection Possibility Psusceptibility

1 Pin f ection(j, 1) 1

2 Pin f ection(j, 2) 1 − Pin f ection(j, 1)

3 Pin f ection(j, 3) 1 − Pin f ection(j, 1)− Pin f ection(j, 2)

k Pin f ection(j, k) 1−∑k−1
i=1 Pin f ection(j, i)

Table 2. An illustration of definition of susprobability(j) of agent j in the complex Markov-chain model.

Time Points Infection Possibility Psusceptibility

1 Pin f ection(j, 1) 1

2 Pin f ection(j, 2) 1 − Pin f ection(j, 1)×Mmutation(j, 1)

3 Pin f ection(j, 3)
1 − Pin f ection(j, 1)×Mmutation(j, 1)−

Pin f ection(j, 2)×Mmutation(j, 2)

k Pin f ection(j, k) 1−∑k−1
i=1 Pin f ection(j, i)×Mmutation(j, i)

Step 3, calculate the probability of infection of individual j at time t: On the basis of the
first two steps, an overall calculation of the probability of infection of individual j at time
t is calculated in the last step. For the simplified model, this probability is quantified by
Equation (7), while Equation (14) indicates the infection probability when the effect from
mutation, age, and viral dose on infection is considered.

3. Results
3.1. An Illustration of the Simplified Markov-Chain Model

The detailed description of the Markov-chain model is explained in Section 2. Here,
we use a simple but concrete case to further illustrate our approach. Firstly, we study a
simplified Markov-chain model without considering complicated factors. This model has
the following assumptions: (1) the individual immunity to certain infectious diseases is
homogeneous, and there is no individual variation, (2) there is neither virus mutation nor
an antibody attenuation effect with time, (3) all infections will have the same transmission
potential (i.e., if an individual is infected, they will produce antibodies and at the same
time, they are contagious), and (4) individuals will recover after an infection cycle without
death, that is, the overall population size will not change.

Taking this model as an example, three individuals A, B, and C are listed in Table 3
for their infection possibility in the first few virus transmission cycles to be studied. Ac-
cording to the contact matrix shown in Table 3, the initial virus reproduction coefficient
R0 = 1/3 × (0 + 0.8 + 0.5 + 0.8 + 0 + 0.6 + 0.5 + 0.6) = 1.267, according to Equation (4). If A
gets sick firstly, the calculated infection probability of A, B, and C are shown in Table 4.
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Table 3. Interaction frequency matrix among three individuals.

Interaction Matrix A B C

A 0 0.8 0.5
B 0.8 0 0.6
C 0.5 0.6 0

Table 4. Infection probability of three individuals at different time points.

A B C

1st generation 1 0 0
2nd generation 0 0.8 0.5
3rd generation 0 0.06 0.24
4th generation 0 0.02016 0.00936
Nth generation 0

Our Markov-chain model is continuous. Each individual’s infection in a specific
period is treated as a probabilistic problem rather than a simple infected or uninfected
state, which would be represented as a Boolean number. The number of infected patients
in a population at a particular time point is the sum of the infection probabilities of each
individual. This probability could better reflect the actual epidemic dynamic when the
population size scales up to a certain level.

3.2. The Prediction Capacity of the Markov-Chain Model Is Significantly Better Than That of the
SIR Model

We expanded this model to 10,000 people. We randomly assigned the coordinates of
these 10,000 people to the square zone with X-direction (0–250) and Y-direction (0–250).
Using Equation (3), we calculated the contact matrix of the population. When c1, c2, and n
were set to 0.8, 5, and 4, respectively, the initial virus reproduction number R0 was equal to
2 from Equation (4). The prediction of the epidemic curve was compared for three different
model trails, and the results are shown in Figure 2.
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It can be seen from Figure 2 that the early rising trend of the infection curve predicted
by the SIR model is steep, while that of the Markov-chain model, considering population
contact, is relatively mild. Our Markov-chain models are separated into two types. One is
the constraint model, considering population contact distance. The contact probability of
all people is inversely proportional to the fourth power of the distance between them. It is
represented as the red curve in Figure 2. The other is a model with a population diffusion
limitation, that is, within a specific distance range, the contact frequency of all people is
inversely proportional to the fourth power of the distance between them. Besides that, the
contact frequency of individuals beyond this distance threshold is set to be 0. This model is
displayed as a blue dotted line in Figure 2.

The individual contact frequency of the actual scenario may be somewhere in between
these two theoretical models. It can be seen from Figure 2 that the epidemic curve generated
by the Markov-chain model with a population diffusion constraint rises slowly. The
epidemic growth of the Markov-chain model without a population diffusion constraint is
significantly milder than that of the SIR infection model. Compared with the SIR model, the
infection curve predicted by the Markov-chain model better matches the actual infection
statistical data. The simulation results generated by the SIR model may deviate significantly
from the actual situation. One important reason for this deviation is that this model does
not comprehensively consider epidemic development time and space factors, especially the
influence of the population contact matrix brought by geographic population distribution
on the overall infection curve. ODE models are inclined to forecast a significantly steep
epidemic rising trend. However, forced data fitting often results in a tiny number of
susceptible people, which is unrealistic compared with the actual situation, as stated in
the introduction. The main reason for this phenomenon is that the traditional ODE model
presumes that infected people have infinite flow or diffusion ability. After that, when
only a small number of people are infected in a vast population, the change in the virus
reproduction number R can be almost ignored, so the early epidemic prediction is often
exponential. However, this is not the case in the actual situation. Even without any means
of prevention and control, the epidemic’s growth may not follow the exponential trend,
mainly due to diffusion’s spatial effect. To be more specific, the infected individual will
prioritize causing infection to nearby people instead of equally transmitting the infection
to people in random areas. This transmission mode will lead to a significant decrease
in R-value even when only a small number of people are infected. This spatial effect of
this epidemic-spreading dynamic can be well reflected by our Markov-chain model. As
displayed in Figure 2, the infection curve predicted by the Markov-chain model can more
accurately reflect the complicated epidemic fluctuation when multiple features, such as
spatial population distributions, are considered. At the same time, our model can predict
and track the hotspots during epidemic development, which is shown in Video S1. It can
effectively simulate the dynamic process of the epidemic situation at different geographic
and time scales.

Generally speaking, one of the biggest problems with the compartment, or SIR, model
is that it assumes a homogeneous system, which is the basis for using fixed parameters.
Take the transmission coefficient β as an example. In reality, the spatial structure of the
population causes the mobility of this system to be deficient, so the spatial structure
causes the transmission coefficient to undergo a rapid decrement. This rapid decline
starts much earlier before a significant decline in the number of susceptible people S. This
sub-exponential growth is mainly contributed by a contact ratio decrement caused by a
specific population spatial distribution. As a simple illustration, we assume a virus with
R0 = 3 starts to spread in a large population. In this case, we assume one person can only
come in contact with three neighboring people. The first person will infect three more
people after the first infection cycle. However, the newly infected person will definitely
infect fewer than two people because at least one of the neighbors has been infected.
Therefore, the virus reproduction number will show a significant decline much earlier
before a significant decline in the of overall susceptible population S.
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The SIR model and derivatives are the framework of choice to capture population-level
processes. The basic SIR model, similar to many other epidemiological models, begins
with an assumption that individuals form a single large population and that they all mix
randomly with one another. This assumption leads to early exponential growth dynamics
in the absence of control interventions and susceptible depletion and greatly simplifies
mathematical analysis (note, though, that other assumptions and models can also result in
exponential growth). The SIR model is often not a realistic representation of the human
behavior driving an epidemic, however. Even in huge populations, individuals do not mix
randomly with one another—they have more interactions with family members, friends,
and coworkers than with people they do not know. This issue becomes especially important
when considering the spread of infectious diseases across a geographic space, because
geographic separation inherently results in nonrandom interactions, with more frequent
contact between individuals who are located near each other than between those who are
further apart. It is important to realize, however, that there are many other dimensions
besides geographic space that lead to nonrandom interactions among individuals. For
example, populations can be structured into age, ethnic, religious, kin, or risk groups. These
dimensions are, however, aspects of some sort of space (e.g., behavioral, demographic, or
social space), and they can almost always be modeled in a similar fashion to geographic
space. However, it is difficult to divide the overall system into small systems that guarantee
homogeneity among each small system. As we mentioned above, even if we divide the
overall system into relatively small communities, such as different age groups or groups
in different geographic spaces, we still cannot guarantee homogeneity among those sub-
compartments because contacts happened at the unit level of the individual. If we divide
the overall system in an extreme way, then it turns out to be an individual-based approach,
which is the same as we used. This Markov-chain model is individual based. The infection
possibility of each individual at a specific time unit is calculated based on their infection
susceptibility and the infection possibilities of their neighboring agents. The infection
susceptibility is calculated based on their infection possibility at historical time stages. This
model can capture the infection possibility of each individual at discrete times. The overall
epidemic development can be reflected as the summation of infection possibilities of all
individuals. Since each individual is spatially located, this Markov-chain model can reflect
the spatial distribution of epidemic hotspots at different times, as further described in
Video S1.

3.3. There Is No Simple Derivation Relationship between the Virus Basic Reproduction Number R0
and the Final Herd Immunity Threshold

As shown in Figure 3, the threshold of group immunity predicted by different R0 val-
ues is significantly different based on different methods. The threshold of group immunity
predicted by the SIR model is the highest, while the value of group immunity predicted
by our Markov-chain model is also significantly higher than the value determined by R0
directly. For COVID-19, assuming its R0 is equal to 3, the threshold of herd immunity
predicted by the simplified Markov-chain model is above 95%, significantly different from
the 66.6% (derived from 1 − 1/R0) presumed by using the R0 value. The correct predic-
tion of the group immunity threshold plays a vital role in guiding public policies such
as vaccination coverage. The herd immunity threshold predicted based on the simplified
Markov-chain model ignores many features, such as virus variation and individual immu-
nity differences, so the predicted group immunity threshold is not necessarily accurate.
However, our simplified Markov-chain model can reflect a problem. The simple method
of inferring the group immunity threshold based on the R0 value may not be completely
accurate and reliable. Although there is a significant positive correlation between the virus
reproduction coefficient R0 and the group immunity threshold, the presumed relationship
represented in the equation, i.e., threshold = 1 − 1/R0, is not satisfied. This presumed
equation significantly underestimates the actual threshold of herd immunity in a natural
infection event.
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Figure 3. Herd immunity threshold predicted by three different approaches.

We further studied the influence of vaccination rate on the final number of infections.
We assumed that the vaccination could be achieved instantaneously. The effect of vaccina-
tion on our model was equivalent to indirectly reducing population density. For example,
assuming the vaccine is 100% effective, a 70% vaccination rate is equivalent to 3000 people
randomly distributed in the original area instead of 10,000 people. The relationship between
the vaccination rate and the final number of infected people is shown in Figure 4.
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simplified Markov-chain model.

It can be seen from Figure 4 that for a virus with a basic reproduction number R0 = 3,
on the premise of 100% vaccine effectiveness, there is a negative linear correlation between
the vaccination rate and the basic reproduction number R0 after vaccination. The yellow
curve represents the infection ratio of uninoculated people predicted by the Markov-chain
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model. The results indicate that 90% pre-vaccination coverage will cause a 1.2% infec-
tion probability in the remaining 10% population, 80% vaccination coverage will cause a
7.2% infection probability in the remaining 20%, 70% vaccination coverage will cause a
22.8% infection probability in the remaining 30%, and 60% vaccination coverage will cause
a 40.9% infection probability in the remaining 40%. Since there is no available method
in guiding the public to decide what vaccination coverage percentage is the best, the
Markov-chain model provides a mathematical solution to this optimization problem.

In the method part, we compare the definitions and calculations of R0 between previ-
ous models and the models developed in this work. The reason why people tend to compare
R0 with 1 originated from the pioneering work of Diekmann et al. [12], who pointed out
that under an initial infection of 0, the value of R0 less than 1 would make the whole system
in a disease-free equilibrium state. This background is the origin of a misunderstanding.
R0 < 1 determines that an infected population creates less than 1 new infected population
during its infective period and the infection can die out. On the contrary, R0 > 1 determines
that each infected population creates, on average, more than 1 new infection and the dis-
ease can spread over the population. Therefore, in our public policymaking, policymakers
linked the vaccination rate with R0. There is nothing wrong with the previous mathematic
deduction, but people confuse the R0 value with the R-value. Once infection occurs, the
virus reproduction number R will change constantly. The number of infected people and
disseminators in the population increases and the virus reproduction number R is no longer
equal to R0. Therefore, the concept of herd immunity should be interpreted as follows: for
viruses with a reproduction number R0, assuming that the vaccine is 100% effective, an
infection can be prevented given (1− 1/R0) pre-vaccination population. However, it cannot
halt infection when massive infections have already begun. Group immunity may not be
explained in this way. In the case of natural infection, (1 − 1/R0) people will eventually
become infected. For the case of natural infection, both the ordinary differential equation
model and our Markov-chain model will predict an overall infection rate much higher
than (1 − 1/R0). Then, it is reasonable to explain the phenomena that occurred in Iran,
Brazil, Britain, and Israel. For example, the antibody-positive rate in Manaus had reached
76% in October 2020, but there was still a large-scale outbreak in December 2020 [50]. In
some areas of Iran, where natural immunization was adopted, and in August 2020, in some
provinces with a difficult epidemic situation, such as Rasht City, the positivity rate of the
antibody had exceeded the threshold of herd immunity [51]. Meanwhile, countless reports
indicate that massive infection could occur even at a group immunity level higher than
1 − 1/R0. For instance, a serum prevalence study in Britain [52] indicated that more than
93% of adults had antibodies against COVID-19 in late July 2021. However, mass infections
were still happening in Britain. Israel [53] also noticed that 70% of vaccination coverage
was not protective against COVID-19 infection. Figure 3 can calculate the proportion of
people who caused the final infection under different initial vaccination proportions. More
importantly, once a particular scale of infection occurs, the R-value can be quickly reduced
by vaccination, but even if the R-value is reduced to a value below 1, it will be difficult
for us to eliminate the virus in a short time. The higher the vaccination rate, the faster the
virus elimination rate. We can no longer stick to the value of 1 − 1/R0, which does not
reflect the threshold of group immunity. To sum up, the ratio of 1 − 1/R0 is the threshold
of population immunity in the absence of any infection but not the threshold of population
immunity to prevent infection. However, all those calculations assume a lifelong immunity
for certain viruses and that herd immunity could be achieved. For COVID-19 infection, the
situation is much more complicated, as shown in Section 3.4.

3.4. Simulation of the COVID-19 Epidemic Using a Complicated Markov-Chain Model

For realistic epidemic modeling, we often need to consider more variables, such
as the influence of virus mutation and antibody attenuation effects, regional population
distribution effects, and population age structures’ impact on the epidemic development.
At the same time, another essential aspect that we must consider is the dose effect on
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infection probability, that is, the relationship between the infectivity and the initial amount
of invading virus. A notable phenomenon in COVID-19 infection is the emergence of a
large number of asymptomatic patients. Moreover, an interesting investigation feedback
is that the proportion of serum prevalence is much higher than the reported number of
infected people [54]. Experiments have confirmed that the severity of patients’ symptoms
is positively correlated with viral load in vivo [55,56]. Our model shows that different
infection degrees will possess different transmission potentials. The definition of “infection”
in our model is based on the existence of antibodies. The individual with a small chance of
being infected would have a smaller transmission potential. Therefore, a correction function
(Equation (11)) was added to transform its infection possibility into the transmission
potential after being infected. We simulated the epidemic dynamics of a specific region
with a population distributed in four different cities. Most people in different cities have
no contact opportunity with each other, except for a few of them. These few people
become the links that connect the interactions in different regions. In the simulation, the
following parameters were used: the mutation constant of the virus as 0.002, the attenuation
constant of antibody as 0.005, the relationship between infection occurrence and age as in
Equation (10), and the correction relationship between infectivity and contact probability
as in Equation (11). Other specific parameters are provided in the supplementary materials.
The simulation results are shown in Figure 5.

From Figure 5A, we can see that although the public prevention policies could sig-
nificantly affect the development of the epidemic situation, the geographic population
distribution is an essential factor or even a dominant factor in driving the trend of the
epidemic. Under a relatively stable public prevention strength, the spatial distribution
of the population will lead to wave-like epidemic fluctuations and display multiple peak
points. This trend was fully reflected in countries and regions suffering under the COVID-
19 epidemic. Therefore, when we forecast epidemic development, we need to consider
the spatial and geographical factors. A short-term decline does not necessarily indicate an
overall decline in the epidemic situation but maybe a signal of the epidemic spreading from
one region to another. From Figure 5B, we can see the spatial migration of infection hotspots
more clearly. For example, at time point B, the infected people mainly concentrated in
city 1. However, at time point C, the infection hotspot moved to city 2 and the epidemic
situation in city 1 subsided to a certain extent. Another critical application of Figure 5A is
to evaluate the impact of virus mutation and antibody decay on the epidemic development.
The function of virus mutation and antibody decay we used is a simplified function that
lacks sufficient data support, but it can roughly mimic the actual situation to a certain
extent. Unlike the simplified model, modeling results predicted by the developed com-
prehensive Markov-chain model indicated that we might never reach herd immunity. We
have to be prepared to coexist with COVID-19 for a long time because there is a possibility
theoretically that the virus may not be completely eliminated by natural immunization or
vaccination. Due to COVID-19’s natural attributes, for instance, high mutation rate and the
existence of the antibody fading effect, which means antibodies produced by the human
body fade away over time, the future epidemic may not have hotspots. However, it will
be randomly distributed worldwide with a relatively small probability and COVID-19
will become a wildly disseminated disease. In our model, as shown in Figure 5G, at time
point G, when a complete herd immunization cycle has been realized, the epidemic may
have a reoccurrence in city 1. At that time, the epidemic situation is characterized by
a small probability of a lack of concentrated hotspots and a wild distribution. As our
whole human society, the complexity of its population, and its spatial distribution far
exceed the scale of our model, this would provide a more favorable breeding ground for
the evolution of viruses, so the probability of reinfection will significantly increase. The
epidemic recurrence is already on its way, even after high vaccination coverage. This had
already been confirmed by the third epidemic wave in Britain, starting from June 2021 [57].
According to epidemic data, a similar situation is still happening in some high-vaccination
countries, such as the U.S. and Israel, and many other highly vaccinated countries [57].



Biology 2022, 11, 190 16 of 22

This phenomenon is consistent with our prediction. A more vivid example is the local
epidemic caused by the delta variant started on 20 July 2021, in China. Unlike the early
epidemic cases, the government found it hard to trace the infection [58]. This epidemic has
already been disseminated into many other provinces. It will take more effort and longer
time to control the infection compared with several former cases. This is because the delta
variant has a more robust transmission capacity and because the social immunity structure
has been dramatically reshaped due to the massive vaccination process. Since more than
50% of the Chinese have been vaccinated against COVID-19, the scenario would resemble
point G displayed in Figure 5G. A wild-spread diffusion characterizes the latter stages of
the epidemic.
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At the same time, we can predict the infection proportion in the overall population
after the first round of infection through parameter estimation. This infection proportion
does not simply correlate with R0, and it is closely related to the population age structure
and the population contact matrix. For the simulation described above, the calculated
virus basic reproduction coefficient R0 is 2.1175, corresponding to the traditional group
immunity threshold of 52.7%. However, the actual serum prevalence reached 66.2% after a
natural herd immunization cycle (1–210 generations), among which 1.3% of infected people
had a second infection. A similar phenomenon has been reported by a serum prevalence
study in Iran, indicating that at epidemic hotspots, the antibody-positive rate has further
exceeded the herd immunity threshold derived directly from R0. Specifically, Nazemipour
and colleagues stated that 72·6% seroprevalence in Rasht City did not follow the presumed
herd immunity threshold [51]. Using the Markov-chain model, we can also calculate the
serum prevalence in different age groups. We also noticed another interesting phenomenon.
As shown by the purple dotted line in Figure 5, the average age of infection does not
engage a significant alternation, which means that the virus’s infectivity to different age
groups will not change in the spatial diffusion process. The change in the average infection
age during the epidemic may be caused by other factors, such as the change of exposure
frequency caused by age factors or some intrinsic features at the virus genome level.

While interesting findings have been shown in the simulation results, the real-world
data are yet to be integrated into the proposed models due to the following two reasons.
Firstly, it is not easy to obtain the accurate population distribution for large areas such as
a state or a country and the communication fluxes need to be integrated among different
regions. Another efficient way in the future is to track individual contacts based on their
mobiles. However, it is also impossible for us to access this kind of data in the short-term
future. Secondly, the computational cost is linearly proportional to the square of the agent
number. Therefore, it is not feasible now to predict the actual epidemic trend at a population
scale over 10 million. Nevertheless, the actual large-size epidemic development can be also
well reflected in our small-scale modeling attempt. In Figure 6, we illustrate how our model
can be used to roughly predict and interpret the real-world epidemic development. Here,
we adopt the United States as an example. Figure 6 represents the epidemic development
in the U.S., with the data extracted from one epidemic surveillance data site [57]. In general,
the U.S., epidemics can be roughly categorized into five waves. There is an important time
point, which is marked in Figure 6. That is the time point that herd immunity threshold
had been reached, when over 2/3 of the American people had been vaccinated or infected.
This time point is equal to the time point between time points F and G in Figure 5, which
is displayed as a bottom point in daily infection in Figure 5. The second wave and the
third wave were partly caused by the vanishing immunity against new infection and were
mainly contributed by the epidemic diffusion effects, as shown from Figure 5B–F. To be
more specific, the first wave was mainly contributed by the infections on the East Coast;
the second wave was mainly contributed by the infections in big cities in the middle and
on the West Coast; the third epidemic wave was mainly contributed by a further spreading
to the rest of the country, especially rural areas. One of the most important implications
of our approach is that it can predict the recurrence of an epidemic wave even after the
so-called herd immunity threshold. Since our model is based on a vanishing immunity
function, we predict that there would be new epidemic waves one after another even after
massive vaccination coverage. The fourth and the undergoing fifth epidemic waves in the
U.S. are consistent with the model prediction. In Figure 5A, we illustrate that there would
be new epidemic resurgence, as shown at time points G, H, and I. Furthermore, nowadays,
the epidemic spatial distribution has a good match with our prediction. We predicted that
although the overall infections might be worse than the previous few epidemic waves,
there would be no epidemic hotspots, as shown from Figure 5G–I. The infections after herd
immunity threshold are more equally distributed within the whole country and are almost
proportional to the population densities of certain areas.



Biology 2022, 11, 190 18 of 22
Biology 2022, 11, x FOR PEER REVIEW 19 of 23 
 

 

 

Figure 6. An implication of our prediction for the real-world scenario: an interpretation of the epi-

demic in the United States. 

4. Discussion 

John von Neumann had a great saying: “With four parameters I can fit an elephant, 

and with five, I can make him wiggle his trunk.” He meant that one should not be im-

pressed when a complex model fits a data set well. With enough parameters, a researcher 

can fit any data set. Compared with the traditional SIR method, the SIR method with in-

creased parameters, including various susceptible–infected–recovered–death (SIRD) 

models, susceptible–exposed–infected–recovered–death (SEIRD) models, etc., can 

achieve good fitting results [8–11,20–23,59–61]. Nevertheless, these models all fall into the 

trap of pure mathematical fitting. Using multi-parameters, one can produce better fitting 

results. However, multiple parameters can also bring several critical problems: Firstly, the 

solution of parameters is not unique. Secondly, the lack of a robust physical mechanism 

does not have a good prediction effect, confirmed in many early studies of the COVID-19 

epidemic. These classic models can rarely accurately predict the inflection turning point 

of the epidemic, let alone the repeated fluctuations of the epidemic. With the development 

of the compartment model with time-delay distribution, people gradually realized that 

the transmission coefficient is a time-varying term. Many research groups have done ex-

cellent research on recapturing the resurgence of epidemic. However, as we discussed in 

the introduction part, these attempts lack physical background. It is hard to judge which 

factors dominate the change in the transmission coefficient. Is the alteration in the trans-

mission coefficient due to the lockdown, the population distribution, or the fluctuating 

human immunity against this virus? To answer this question and to give a better predic-

tion about the future epidemic development, we decided to adopt an agent-based ap-

proach that can integrate more specific individual information into the entire system, in-

cluding people’s age and their geographic distribution.  

Based on this idea, we established a Markov-chain model of virus infection for the 

first time. Our model can effectively consider the impact of the actual contact probability 

of the population on the epidemic development. The population contact probability ma-

trix can be roughly calculated according to the spatial population distribution. Besides 

that, we can further integrate in vivo individual contact frequencies reflected in the actual 

situation into our model. Compared with SIR and other ordinary differential equation 

system models, the proposed Markov-chain model can integrate more information, such 

Figure 6. An implication of our prediction for the real-world scenario: an interpretation of the
epidemic in the United States.

4. Discussion

John von Neumann had a great saying: “With four parameters I can fit an elephant,
and with five, I can make him wiggle his trunk.” He meant that one should not be im-
pressed when a complex model fits a data set well. With enough parameters, a researcher
can fit any data set. Compared with the traditional SIR method, the SIR method with
increased parameters, including various susceptible–infected–recovered–death (SIRD)
models, susceptible–exposed–infected–recovered–death (SEIRD) models, etc., can achieve
good fitting results [8–11,20–23,59–61]. Nevertheless, these models all fall into the trap
of pure mathematical fitting. Using multi-parameters, one can produce better fitting re-
sults. However, multiple parameters can also bring several critical problems: Firstly, the
solution of parameters is not unique. Secondly, the lack of a robust physical mechanism
does not have a good prediction effect, confirmed in many early studies of the COVID-19
epidemic. These classic models can rarely accurately predict the inflection turning point of
the epidemic, let alone the repeated fluctuations of the epidemic. With the development of
the compartment model with time-delay distribution, people gradually realized that the
transmission coefficient is a time-varying term. Many research groups have done excellent
research on recapturing the resurgence of epidemic. However, as we discussed in the intro-
duction part, these attempts lack physical background. It is hard to judge which factors
dominate the change in the transmission coefficient. Is the alteration in the transmission
coefficient due to the lockdown, the population distribution, or the fluctuating human
immunity against this virus? To answer this question and to give a better prediction about
the future epidemic development, we decided to adopt an agent-based approach that can
integrate more specific individual information into the entire system, including people’s
age and their geographic distribution.

Based on this idea, we established a Markov-chain model of virus infection for the
first time. Our model can effectively consider the impact of the actual contact probability of
the population on the epidemic development. The population contact probability matrix
can be roughly calculated according to the spatial population distribution. Besides that,
we can further integrate in vivo individual contact frequencies reflected in the actual
situation into our model. Compared with SIR and other ordinary differential equation
system models, the proposed Markov-chain model can integrate more information, such
as the contact frequency of different individuals, closely related to spatial location and
individual relationship.
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Meanwhile, it can comprehensively consider the virus mutation effect, the antibody
attenuation effect, the population age structure, and other factors. These advantages endow
this model with better capacity for robust prediction, evidenced by the model’s prediction of
the epidemic dynamics through time and the detection of the epidemic hotspot distribution
at different times. If we could access accurate data for analysis, we could further refine
the parameters in our Markov-chain model. We could also effectively forecast the spatial
and temporal trends of epidemic situations and predict the herd immunity threshold using
these parameters. We have to reiterate that the herd immunity threshold does not have a
simple relationship with its R0. The actual herd immunity threshold might be significantly
higher than the presumed one derived from R0. This finding might significantly influence
the future public decision, which indicates that higher vaccination coverage needs to be
reached to rapidly reduce infection cases. There is still space in our model for improvement.
For example, the computational cost is proportional to the square of the population size.
Although our model has a great potential to stimulate more realistic statistical data, we
have not applied it to an in vivo scenario due to the availability of the data. The future
research mainly includes improving the algorithm efficiency, integrating in vivo data to
obtain more reliable parameters, and verifying the reliability of this method in the analysis
of confirmed cases.

5. Conclusions

In this study, we developed a continuous Markov-chain model to simulate the dynamic
behavior of the COVID-19 epidemic. This Markov-chain approach can be classified as one
of the agent-based approaches in which individual contacts are considered. Therefore, the
heterogeneity and the population spatial distribution can be considered. Using this model,
we demonstrated that the herd immunity threshold (1 − 1/R0) could not provide robust
protection against infection at the population level. The herd immunity threshold should be
significantly larger than the previous estimation even of the life-long immunity assumption.
Furthermore, taking the immunity waning effect, the complex Markov-chain model can
predict the multi-wave trend of the COVID-19 epidemic both at the time and spatial levels.
Although the virulence of SARS-CoV-2 might show a significant alteration in the future,
it is challenging to eradicate SARS-CoV-2 in a short time without strong interventions.
This Markov-chain model can be treated as a robust alternative method to the traditional
compartment modeling approaches.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11020190/s1, Video S1: the forecasted epidemic geo-
graphic distribution using a multi-factors Markov-chain model. The MATLAB codes can be accessed
through the following link: https://github.com/zhaobinxu23/A-Continuous-Bayesian-Model-for-
the-Simulation-of-SARS-CoV-2-Epidemic.
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