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Simple Summary: Pollen allergy is a highly prevalent disease affecting humans worldwide. Early
pollen identification can help allergic individuals to prevent pollinosis. Recently, automatic pollen
identification (API) has been shown to play a prominent role in pollen concentration monitoring.
Developing an accurate and effective identification system may provide new insights for polli-
nosis prevention. This paper presents a novel automatic pollen identification method integrating
localization tasks and classification tasks, thus perfectly mimicking the observation process from
palynologists. The inter-task dependence and intra-task reliability are simultaneously considered in
this method to effectively enhance the pollen identification performance. We believe that our study
will contribute to enhancing symptom control of pollen allergy and maintaining the life quality of
allergic patients.

Abstract: Existing API approaches usually independently leverage detection or classification models
to distinguish allergic pollens from Whole Slide Images (WSIs). However, palynologists tend to
identify pollen grains in a progressive learning manner instead of the above one-stage straightforward
way. They generally focus on two pivotal problems during pollen identification. (1) Localization:
where are the pollen grains located? (2) Classification: which categories do these pollen grains
belong to? To perfectly mimic the manual observation process of the palynologists, we propose
a progressive method integrating pollen localization and classification to achieve allergic pollen
identification from WSIs. Specifically, data preprocessing is first used to cut WSIs into specific
patches and filter out blank background patches. Subsequently, we present the multi-scale detection
model to locate coarse-grained pollen regions (targeting at “pollen localization problem”) and the
multi-classifiers combination to determine the fine-grained category of allergic pollens (targeting at
“pollen classification problem”). Extensive experimental results have demonstrated the feasibility
and effectiveness of our proposed method.

Keywords: pollinosis prevention; whole slide images; progressive learning; deep learning; pollen
localization and classification

1. Introduction

Allergic disease is considered a global health concern [1] and cited by the World Health
Organization (WHO) as one of the three major diseases of the 21st century [2]. Pollen allergy,
commonly known as hay fever [3], has become the most widespread allergic disease as
the continuous advancement of urban afforestation. A recent report [4,5] indicates a
general increase in the incidence of pollen allergy with a profound socio-economic impact.
Approximately more than 10% of adults and 40% of children worldwide suffer from pollen
allergy [4], and the annual cost for allergy management and drug therapy reaches up
to billions of dollars [5]. Once allergic pollen comes into contact with the oral, nasal,
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or eye mucosa of allergic patients, it will cause a spectrum of clinical symptoms (e.g.,
allergic rhinitis, exacerbating asthma and conjunctivitis, etc.) [6]. Early identification
and treatment can effectively enhance symptom control of pollen allergy and maintain
the life quality of allergic patients. Therefore, it is essential to provide accurate pollen
concentration monitoring information on the occurrence of airborne pollens for highly
allergic individuals.

The standardized workflow for pollen concentration monitoring has been established
in many countries, including twin pillars of pollen sampling and pollen identification [7,8].
In China, the Durham pollen sampler [9] has achieved significant success for pollen mon-
itoring and the Hirst volume sampler [10] is regarded as a biomonitoring gold-standard
device in Europe. The Burkhard [11] and Lanzoni samplers [12], based on the Hirst sampler,
are also widely used in other countries. The procedure of pollen identification is uniform
across countries, which always requires visual recognition of each pollen taxon under the
microscope by well-experienced specialists. However, pollen identification is accepted as
the most labor-intensive and time-consuming part of the concentration monitoring step.
This process involves a fully manual observation and takes about half the time of the whole
pollen monitoring process [13], which may result in a delay of relevant risk alerts and
negative health effects for allergic individuals.

The automatic pollen identification (API) task aims to accelerate the process of pro-
viding up-to-date concentration information of pollen grains to allergic sufferers [14]. The
API problem was first stated by Stillman and Flenley [15] more than 20 years ago. It gained
a great deal of attention as soon as it was proposed in the palynology community. The
API is expected to be applied in some cases to work on a practical operation, especially
various computer-aided systems. The current mainstream of API studies is mainly based
on Scanning Electric Microscope (SEM) [16–19] and Light Microscope (LM). SEM images
usually have high resolution, which makes the pollen grains differentiate obviously. Even
though this is technically feasible, the expensive cost and strict requirements for sample
preparation limit its practical application [20]. By contrast, LM is more common in meteoro-
logical monitoring stations due to its simple operation, convenient actual deployment, and
inexpensive cost [21,22]. Therefore, the LM-based API task has received increased attention
from researchers.

Advances in computer vision techniques have further promoted the development of
LM image-based API research [23]. Many scholars in this area have reached a consensus
that classification and detection models can independently address API problems in a one-
stage manner. The former classification model focus on categorizing all pixels in a given
image into specific pollen classes based on semantic content [24–31]. One of the significant
successes is the classic work [29], which extracts shape and texture descriptors and then
generates Support Vector Machine (SVM)-based classifiers. These approaches heavily rely
on artificial prior, making the classification process subjective. The deep learning-based
models can automatically classify pollen grains without any prior knowledge [30,31].
Convolutional neural network (CNN), a core branch of a deep learning network, is widely
developed and obtains impressive results [32–36]. For example, Sevillano et al. [30]
presented three deep learning-based models, which show 97% accuracy on the POLEN23E
pollen dataset. However, these classification models focus only on the category information
excluding the positioning information of the objects. Besides, they are always built upon a
specific assumption, namely, the image dataset only involves purified and isolated pollen
grains. The real-world pollen WSIs invariably contains more complex impurities, unlike
idealized experimental data. When they are directly input into the model, the underlying
assumptions will not be met, leading to a serious misclassification.

Another dominant solution is to implement automatic pollen monitoring programs
based on object detection models. The detection model can be seen as the generalized
version of classification models. One notable property of these models is that localization
and classification tasks can be integrated into the model as parallel branches (trained in an
end-to-end manner). That is, the position information and category information of detected
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objects can be obtained simultaneously. The introduction of detection models has given
birth to the rise of many breakthroughs in the API task. This method has shown excellent
ability in distinguishing pollen grains from diverse and complex background features
(coarse-grained: whether it is pollen). However, different allergic pollens share similar
morphological structures such as shape and texture characteristics. It is extremely hard for
detection models to focus on the detailed features that are highly useful for distinguishing
pollen subcategories (fine-grained: which subcategory of pollen it belongs to, such as
Cupressaceae, Pinaceae, etc.), which results in model over-detection and degradation of
identification performance.

As a matter of fact, palynologists tend to identify the pollen grains in a progressive
way instead of the above one-stage straightforward approaches. They usually focus on two
pivotal problems when observing the pollen under the microscope: (i) Where are the pollen
grains located? (pollen localization); (ii) Which categories do these pollen grains belong to?
(pollen classification). Therefore, they generally follow a strategy of “localization first and
then classification”, that is: the potential pollen regions will first be gazed at in the image;
subsequently, the fine-grained categories of these pollens are determined by considering
detailed features (as shown in Figure 1). The first step aims to discover all the candidate
pollen grains from other complex impurities, while the goal of the second step is to match
the predicted pollen with the target pollen one by one, thus assigning a specific subcategory
to each pollen grain. To mimic this natural processing way of human beings, the following
twofold is fully considered to design our identification model in our study:

Figure 1. The pollen identification process in a progressive manner from the palynologists.

• Inter-task dependence: From the observation process of “localization first and then
classification”, we can infer that there are inherent associations between the detection
and classification tasks. The localization information obtained from the detection
procedure indicates potential regions of pollen grains, which is excellent guidance
for the fine-grained classifiers to capture subtle discriminative patterns in specific
regions. It can be expected that better identification performance will be achieved if
we combine the detection with classification tasks in the computer vision community,
for the information of the former task will make huge contributions to the latter task.

• intra-task reliability: Influenced by the nature of pollen slide image (e.g., complex
impurity information, similar pollen features, etc.), there are some bottlenecks within
the localization and classification tasks. Specifically, it is difficult to find the potential
pollen regions due to diverse and complex impurities information. Besides, the in-
stances of different allergic pollen look similar in global appearance, which is easily
wrongly recognized as other subcategories. Intuitively, the reliability performance
boosting of each substage helps to enhance the overall identification accuracy. There-
fore, specific consideration needs to be given to how to enhance the internal reliability
in detection and classification tasks.
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Inspired by the above considerations, we propose a novel progressive pollen identifi-
cation model by incorporating localization and classification. Different from the existing
API methods that focus only on a single task, our research not only fully considers the
inherent inter-task correlation to combine the location information and classification details,
but also effectively enhances the intra-task identification performance of each stage by
introducing the multi-scale detection and multi-classifiers combination. Specifically, data
preprocessing is first adopted to cut WSIs into specific patches and filter the useless patches
containing blank backgrounds. Then, we leverage a multi-scale object detection model
to detect informative regions that are highly correlated with pollen from the candidate
patches (coarse-grained pollen localization). Finally, each region containing pollen grain is
input into a multi-classifiers combination to obtain the final pollen identification results
(fine-grained pollen classification). In this way, the localization information is served as
region guidance for the classification stage, making the classifiers pay more attention to
subtle features of local specific regions. Not only localization information extracted from
pollen detection is considered, but also fine-grained categorical information such as texture,
contour, and color learned from deep learning models are exploited. The contributions of
this paper can be summarized as follows:

• Considering the inter-task dependence of pollen detection and classification, we
present a novel multilevel progressive learning to achieve automatic allergic pollen
identification from real-world LM images. The pollen WSIs are performed by data
preprocessing to filter the useless patches containing blank backgrounds. The coarse-
grained localization provides the coarse position information that indicates the pollen
region (targeting at “localization problem”), and the multi-classifiers combination is
utilized to learn detailed discriminative features related to each pollen subcategory
(targeting at “classification problem”).

• Considering the intra-task reliability of pollen detection and classification, the multi-
scale and multi-classifiers feature learning methods are introduced for reinforcing
pollen identification performance. The multi-scale feature fusion helps to localize
pollen regions from complex impurities by enlarging the receptive field, while the
multi-classifiers feature representation combines different base classifiers in a parallel
manner, making the model more effective in distinguishing different allergic pollen
from each other.

• Extensive experiments are conducted based on the real-world pollen dataset, which
includes 2971 WSI images labeled with 8 + X categories (all other unknown pollen or
debris are aggregated in an “X” category). Results of comparison experiments and
ablation studies prove the effectiveness and superiority of our proposed method.

2. Materials and Methods
2.1. Datasets

Recent advancements in deep learning have accelerated many new applications
for automatic palynology image analysis. One of the key drivers for the success of
deep learning is the availability of large amounts of training data. Most public datasets
are sourced from abroad [25,30,31,37–39], as shown in Table 1. The geographical area
variations may result in differences in the distribution and composition of pollen
species. Thus, the collection of pollen grains from specific areas is significant for
pollen forecasting in those areas. To realize automatic palynological analysis for
Chinese patients, an allergic pollen dataset containing native pollen WSIs (APD-WSI)
is established in our study, which is strongly supported by the Beijing Meteorological
Service Center (BMSC).

2.1.1. Data Collection

Our WSIs are obtained using light microscopy which is commonly widely used
at palynological monitoring stations. The overall acquisition processing of WSI mainly
includes three pillars: pollen sampling, sample staining, and data digitization, as shown in
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Figure 2. Specifically, the staffs regularly collect pollen samples from the Durham sampler
by the gravity sedimentation method. Subsequently, prepared samples are uniformly
stained with an appropriate amount of Fuchsin to highlight the pollen grains placed on
microscope slides. Finally, we use the NanoZoomer-SQ Slice Scanner (a specialized digital
slice scanner) under an X40 magnification to digitize the entire glass slide thus generating
the pollen WSIs.

Table 1. The list of publicly available pollen datasets (all other unknown pollens are aggregated in an
“X” category).

Dataset Region Year Pollen Types Grains Image Types Resolution

Duller ’s Pollen
Dataset [37] Unknown 1999 7 630 Grayscale 25 × 25

POLEN23E [25] Brazilian Savannah 2016 23 805 Color
Varying (Minimum

250 pixel per
dimension)

Pollen73S [31] Brazilian Savannah 2020 73 2523 Color Varying (Average
size 512 × 512)

New Zealand
pollen [18]

New Zealand and
the Pacific 2020 46 19,500 Color 227 × 227

Pollen13K [38] Unknown 2020 4 + Debris >12,000 + ∼1000
examples of debris Color 84 × 84

Cretan Pollen
Dataset v1 [39] Crete 2021 20 4034 Color Varying

Ours Beijing, China 2022 8 + Debris 10,080 + X Color 110,000 × 50,000

Figure 2. The overall acquisition processing of pollen WSIs.

2.1.2. Professional Labelling

The WSI not only can completely reproduce the real morphology of pollen particles
on glass slides, but also have outstanding color fidelity compared with the glass slide.
The significant characteristics of WSI are summarized as threefold: (1) The imbalance of
foreground and background in WSI biases observation towards useless background rather
than foreground objects; (2) a large number of complex impurities (such as dust, insect
debris, plant debris, etc.) are mixed with the pollen grains; (3) the pollen subcategories
share similar visual features.

To adapt these properties of WSI, we follow the professional palynologists’ recommen-
dation and divide the labeling process of each WSI into three steps:

1. Foreground labelling. All original WSIs are firstly preprocessed into numerous patches
based on the non-overlapping cutting strategy described in Section 2.3 Subsequently,
the patches without any microscopy object (e.g., pollen, impurities, bubbles, etc.) are
labeled as blank background by the experts and the others are considered as ground
truth labels of the foreground images.
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2. Coarse-grained region annotation. Even though the patches with foreground objects
can be selected through the above step, the position information of pollen grains in
each patch has not been known. Therefore, the palynologists are invited to label the
pollen regions, impurity areas, and bubble regions in selected patches with bounding
box-level annotation. The pollen grains usually exhibit a regular shape and are pink-
like in color. In terms of the impurities, they have special-shaped objects with yellow
or brown color, while the bubbles normally present colorless and circular shapes. Our
goal is to effectively distinguish coarse-grained pollen regions from non-pollen noise
interference in this way.

3. Fine-grained subcategories labelling. Based on the above region-level annotation, the
palynologists further label allergic pollen categories for each region. A total of eight
pollen species are listed as main inhalation allergens in Beijing, include Artemisia,
Gramineae, Chenopodiaceae, Cupressaceae, Pinaceae, Populus, Salix, and Moraeeae,
respectively, since these taxa cover with 90% of the total amount of pollen in Beijing
area. Out of these eight taxa, Cupressaceae, Salix, Populus, and Pinaceae are known
to be prevalent in spring, while Moraceae, Compositae, and Chenopodiaceae are the
main pollen contributors in autumn. All the above-mentioned eight allergic pollen are
labeled in our dataset by the staff. Some examples of each pollen class are represented
in Figure 3.

Figure 3. Some examples of each allergic pollen class.

2.1.3. Dataset Statistics

The APD-WSI dataset includes a total of 2971 WSIs, each of which with gigapixels in
size (up to 50,000 × 110,000 pixels). Considering that pollen dispersal differs largely across
regions and periods, we choose 13 pollen monitoring stations in Beijing, China as primary
study plots and continuously collect pollen samples from March 1st to November 29th
annually (other months are non-flowering stages). Figure 4 shows the map of the Beijing
region and the location of airborne pollen monitoring stations. The histogram of the spatial
and temporal distribution of the APD-WSI dataset is also shown.



Biology 2022, 11, 1841 7 of 19

Figure 4. Statistics of monitoring stations, spatial distribution, and temporal distribution in our dataset.

2.2. Methods

In this section, we introduce the details of the progressive allergic pollen identification
model integrating localization and classification from WSIs. Figure 5 shows the overall
framework of the proposed method. Our proposed method contains three parts: (1) Data
preprocess: the image preprocessing is employed to cut the WSI into fixed patches and
remove blank background patches; (2) Coarse-grained pollen localization: we propose a
pollen detection network to locate pollen grains considering multi-scale image features;
(3) Fine-grained pollen classification: the multi-classifiers combination is presented to
achieve fine-grained allergic pollen classification.

Figure 5. The overall network architecture of our proposed method.
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2.3. Data Preprocessing

The original pollen WSI must be preprocessed due to its gigapixel size and extremely
imbalanced foreground-background. We first cut pollen WSIs into numerous images with
small sizes called patches. This design draws on a variety of recent ideas from [40,41]
and leverages OpenSlide[42] and NDPItools [43]. The W and P notation is defined to
distinguish between “pollen WSIs” and “image patches” that correspond to that image.
Given an image W with gigapixel resolution L*H (L refers to length, H refers to width.
L ≥ 110,000, H ≥ 50,000) at 40×magnification, it is cut into a number of non-overlapping
P with size of l*l. Considering that the WSIs are taken from pollen slide samples in a
real scene, the position distribution of pollen grains is basically random inside the image.
To adapt these properties and comprehensively retain image information, we followed
the professional palynologists’ recommendation to cut each WSI into non-overlapping
patches. This manner provides a broad view field for detection and classification programs,
enabling most of the pollen grains observed. All cropped patches form an image sequence
with the length of M. In our experiments, l is set to 512 which fits the input shape of the
subsequent step, and here M is more than 20,000 (variable due to the total area of pollen
WSIs). Subsequently, we train a CNN-based binary classifier to classify each patch as
one of the foreground classes or as the background. Each patch is passed to the CNN
model, and a probability vector is calculated to predict the label of each patch via the
Softmax function. The confidence threshold is set to 0.5. The patches are assigned to the
foreground label when their classification probabilities exceed 0.5, and to the background
label if their confidences are in [0, 0.5). When training the model using our dataset, the
results of Alexnet can pursue the best classification performance, which is much better than
other classical classifiers. In this way, we filter out the majority of irrelevant patches with
a blank background while retaining the informative patches containing the foreground
objects. The above outcome is used to generate the candidate patch set to serve as input for
the next phase. The C is used to denote the candidate patches. It is noted that solely due to
the introduction of the combination of non-overlapping cutting and a CNN-based patch
filter, M rapidly narrows down to a small number (e.g., 1–2 k), which effectively reduces
the computational burden of the subsequent module.

2.4. Coarse-Grained Pollen Localization

The detection module is responsible for locating the potential regions of pollen and
removing complex impurities in the candidate patches. Rather than most detection models
that only focus on a single feature map from the last layer of the network, we extract and
fuse multiple feature maps with different receptive fields of the given input image. The
RetinaNet [44], a classical single-shot detector [45], is used as our basic detection model (as
shown in Figure 5). Noted that this section solely detects the presence of pollen grains, and
the categorization happens in the independent next step.

Basic Multi-Scale Detection. The RetinaNet basically involves 4 dedicated deep con-
volutional neural networks. The ResNet50 [46] is first employed as a backbone network to
extract convolutional features. Then, the Feature Pyramid Network (FPN) [47] is combined
with the backbone network for integrating multiple scale features. The FPN constructs a
pyramid hierarchy to aggregate image features from low level to high level, which is imple-
mented through the top-down pathway and lateral connections. Finally, two task-specific
subnets are simultaneously performed in a parallel manner. One is for assigning anchor
boxes to pollen classes and another one is for regressing from anchor boxes to ground-truth
object boxes. The Focal loss (FL), a variant of a CE function, is used as a loss function to
penalize the classification subnet, which is responsible for forcing the CNNs to focus on
training instances that it finds most difficult to classify (as shown in Equations (1)).

FL(pt) = −(1− pt)
γ log(pt) (1)

For the regression subnet, the Smooth L1 loss is introduced to calculate the regression
loss by the offset of the coordinate. We define the bounding box information of the ground
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truth as V =
(
vx, vy, vw, vh

)
and the location information of the predicted anchor box as

T =
(
tx, ty, tw, th

)
. Accordingly, the regression Lloc loss can be expressed as:

Lloc = ∑
i ∈ (x,y,w,h)

SmoothL1(ti − vi) (2)

in which,

SmoothL1(x) =

{
x2 if |x| = 1
|x| − 0.5 otherwise

(3)

Localization guidance. The multi-scale feature enhancement during the detection
procedure makes localization performance more accurate, effectively mitigating the ir-
relevant interference of impurity areas. Besides, the potential region proposals obtained
from the pollen detection task can basically be viewed as effective guidance information
about the existence or non-existence of pollen grains. The region guidance can guide
the model to allocate more attention to pollen regions with key discriminative features.
By embedding pollen detectors before classifiers (the next stage), the inherent relations
between pollen localization and classification can be fully considered, which is helpful for
greatly improving pollen identification accuracy.

2.5. Fine-Grained Pollen Classification

After detecting the regions containing pollen grains, we further design a novel classifi-
cation model for determining final fine-grained classification results. In our practice, single
multi-class classification networks are directly used to address pollen subcategories identi-
fication. However, they fail to obtain satisfactory distinguishing results, which attributes to
the fact that some similar features shared between pollen subcategories inevitably confound
the model, resulting in disempowering the discriminative ability of the model for each
fine-grained class. Inspired by the ensemble learning mechanism [48,49], we transform
multi-class classification problems into multiple binary classification problems. In this
way, the multi-classifiers combination is proposed to boost the performance of fine-grained
pollen identification.

The multi-classifiers combination comprises a set of customized standard binary
classification networks. Encouraged by professional palynologists, they generally match
the visual features of predicted pollen with target pollen one by one when encountering a
similar pollen identification problem. Based on this practical experience, the number of
base classifiers of ensemble combination is set to the number of allergic pollen labels (here
the number of labels is eight). The OVR-based (One vs. Rest) training mechanism is used
to prepare the training data of each base classifier. Specifically, we divide the c-class dataset
into c subsets to train specific binary sub-classifiers, where the kth subset is composed of
positive instances with the kth class and negative ones with rest classes. On this basis, each
base classifier relies on individual training data.

With regards to the selection of an independent base classifier, the CNN-empowered
networks are perceived as the backbone model to learn different class-specific discrim-
inative features. The commonly used CNN models include AlexNet [27], ResNet [46],
VGGNet [50], and DenseNet [51], etc. It has been verified that deep learning methods
outperform traditional classification models driven by manual feature engineering. The fea-
ture representation ability of different CNN-based classifiers is not constant across different
pollen types, as evidenced in the experimental results in Section 3. The ideal combination
of base classifiers on the best integration performance is further explored. Accordingly, we
adopt the specific-class CNN classifiers with the highest performance metric to construct
an optimal combination of multiple learning paths.

The decision-level probability fusion is finally designed to fuse different basic clas-
sifiers as a unified probability representation. Our fusion strategy takes the maximum
probability of multiple independent models to determine the ultimate class label, each
targeting a specific pollen class. The maximum method decides the results according to



Biology 2022, 11, 1841 10 of 19

the most reliable classifier. Noted that we do not use the weighted operation to ensemble
multiple classifiers, as the balanced weight is fair for all pollen categories. In the situation
where some of the classifiers will not be chosen, our fusion model is still capable of making
predictions. For example, when the sampling date of pollen slides is known, only the
classifiers corresponding to pollen classes that are likely to occur in the current periods and
regions need to be selected. This step makes the multiple base classifiers complement each
other and improves the fine-grained classification accuracy.

3. Results

In this section, we carry out extensive experiments to evaluate our proposed approach.
The separate experiments are set up in a three-stage manner: background classification,
coarse-grained pollen localization, and fine-grained subcategories classification. Besides,
the overall identification performance was also estimated, which further reveals the predic-
tion capability of our proposed method.

3.1. Experiment Settings

We construct three image subsets based on our APD-WSI dataset for training and
testing each stage of the proposed model(they are named D1, D2, and D3), which are
labeled by professional palynologists. Specifically, the first D1 dataset consists of 18,000
background images and 18,175 foreground images. This dataset is used to train and test
CNN which is responsible for filtering background patches, where each image is labeled
with a binary value of 1 or 0. The 10,324 impurities, 10,893 bubbles, and 11,500 pollen images
are contained in the D2 dataset. These data are served for a coarse-grained detection model
with the class labels and coordinates positions of all ground truth bounding boxes. The D3
dataset includes 10,080 images covering eight pollen subcategories, which is considered the
training and testing data of the fine-grained classification task. The detailed information of
the three datasets is shown in Table 2. Figure 6 exhibits the data distribution of D1, D2, and
D3 datasets. In terms of the D3 dataset, the numbers of the Populus label and Sailx label
are imbalanced with other categories. Such data augmentation operations are employed
to balance data sampling, including random vertical flip, horizontal flip, and 90-degree
rotation. The ten-fold cross-validation is applied in this paper for evaluation purposes.

Figure 6. The data distribution of (a) D1, (b) D2 and (c) D3 datasets.

To speed up model convergence, weight training on ImageNet is used as weight
initialization in our experiments. For parameter training, the Stochastic Gradient Descent
(SGD) was selected as the optimizer with a batch size of 16. The initial learning rate and
momentum are set to 0.001 and 0.9, respectively. At each iteration, the loss of the model is
recorded to show the variations observed during the model training. The maximal number
of iterations is set to 100, which is the default value. The training is conducted until the
validation loss no longer decreases between consecutive training cycles. Our proposed
approach is implemented using the PyTorch framework.

The data preprocessing is responsible for cropping the image into patches and allowing
the distinction of background and foreground objects by modeling a novel CNN. The
different patch sizes (256, 512, and 1024 pixels) are used to train the proposed CNN model.
The accuracies of the background classification model are 90.94%,94.82%, 89.52% with
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respect to patch sizes of 256, 512, and 1024 pixels. When the patch size equals 512, we
obtain the best distinguishing ability. Accordingly, the patch size is chosen as 512 to
generate patch sequences for subsequent pollen identification.

Table 2. The detailed description of three sub-datasets for training and testing our proposed model.

Dataset Aim Data Distribution
(Class-Number) Size

D1 Data preprocessing Background-18,000/
Foreground-18,175 512 × 512

D2 Coarse-grained pollen localization Pollen-11,500/Impurity-
10,324/Bubble-10,893 512 × 512

D3 Fine-grained pollen classification

Artemisia-1640/Gramineae-
1580/Chenopodiac-
1930/Cupressaceae-

1750/Pinaceae-1400/Populus-
910/Sailx-870/Moraeeae-1020

100 × 100

3.2. Evaluation on Coarse-Grained Pollen Localization

The coarse-grained pollen localization described in Section 2.4 can locate individual
pollen in each image patch. Different from general detection models, the multi-scale feature
is additionally considered to enhance the discriminative ability of pollen grains from
complex backgrounds. In this section, we compare our multi-scale detection model with
other state-of-the-art detectors. The Average Precision (AP) is measured to evaluate the
detection performance in our experiment. The AP is the average precision over Intersection
over Union (IoU) from 0.5 to 0.95 evaluated at steps of 0.05. The IoU is the ratio, ranging
from 0 to 1, of the overlapping area of the ground truth and predicted areas to the union
area. Figure 7 shows the graph interpretation of IoU and its formula is seen as Equation (4).
Additionally, the AP50 and AP75 are adopted in our experiments, which represent the
average precision when the threshold is 0.5 or 0.75.

IoU =
area(A) ∩ area(B)
area(A) ∪ area(B)

(4)

Figure 7. (a,b) The graph interpretation of IoU. A refers to the predicted bounding box and B refers
to the ground-truth bounding box.

Table 3 shows the comparison of the detection performance between our multi-scale
detector and other state-of-the-art detection models, including Fast RCNN [52], Faster
RCNN [53], YOLO family [54] and SSD [55]. For a fair comparison, the other models
are retrained over our D2 training set. As we can see in the experimental results, our
proposed detection model has greater values of the AP, AP50, and AP75 compared with the
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other detection algorithm. Especially, the AP of our model is 0.034 higher than other best
methods, which demonstrates the effectiveness of our approach. We additionally evaluate
the impact of the multi-scale feature enhancement mechanism on pollen detection. To
this end, we simply remove the feature pyramid construction, and then investigate the
pollen localization results with and without the multi-scale feature fusion. The results are
shown in Table 4. As shown, the detection performance can be significantly enhanced
by introducing multi-scale feature fusion. In contrast, the AP value will decrease once
the multi-scale is not incorporated. Thus, the above results verify the necessity of feature
pyramid construction for pollen localization in our approach.

Table 3. The comparison results of AP between our proposed detector with the other state-of-the-art
detection models.

Model AP AP50 AP75

Fast RCNN 0.635 0.728 0.664
Faster RCNN 0.782 0.868 0.849

YoloV3 0.535 0.725 0.604
YoloV5 0.586 0.792 0.649

SSD 0.772 0.895 0.821
Ours 0.816 0.925 0.847

Table 4. The independent ablation experiments to verify the effectiveness of multi-scale feature fusion.

Method AP AP50 AP75

W/ Multi-scale Feature Fusion 0.816 0.925 0.847
W/O Multi-scale Feature Fusion 0.729 0.830 0.781

3.3. Evaluation on Fine-Grained Pollen Classification

The fine-grained pollen classification aims to solve the problem of allergic pollen
identification. Rather than current classification models, our module integrates multiple
classifiers to empower the perception ability between different pollen subcategories. The
classification performance is qualified by accuracy metric.

We first investigate the impact of different CNN-empowered classifiers on the clas-
sification performance of various pollen subcategories. The state-of-the-art classification
networks represented by Alexnet, Vgg-16, ResNet-50, and DenseNet-121 are selected as our
compared models in this experiment. Each network is designed as a binary classification
task, i.e., whether the specific type of pollen grain exists or not. Here, we consider eight
pollen subcategories as our main experimental targets, which is consistent with the dataset
described earlier. The accuracy results of each model on different subcategories are shown
in Table 5. As we expected, different classifiers have varying abilities to identify various
pollen subcategories. Specifically, the DenseNet achieves the best performance on Cupres-
saceae and Populus classification with an accuracy of 91.80% and 80.22%, yet it performs
worse than the ResNet when identifying Chenopodiaceae and Sailx. Moreover, the optimal
performance is obtained by leveraging VGG-16 on predicting Artemisia, Graminea, and
Moraeea with 87.50%, 85.10%, and 72.10% accuracy, respectively. Regrettably, the AlexNet
fails to show superior performance on across-category classification. These findings have
implications for the designing strategy of multi-classifiers combination. Inherently, the
choice of combining multiple classifiers usually is either homogeneous (e.g., using the
same type of classification subcomponents) or heterogeneous (e.g., using different types of
classification subcomponents). Due to variability in classification accuracies of different
CNN-empower classifiers on specific classes, the heterogeneous structure is ultimately
applied in our multi-classifiers combination to improve predictive performance.
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Table 5. The accuracy results of different classifiers on various pollen subcategories.

Subcategories Alexnet Vgg-16 ResNet-50 DenseNet-121

Artemisia 58.13% 87.50% 82.93% 74.70%
Gramineae 52.90% 85.10% 77.63% 59.06%

Chenopodiaceae 60.27% 64.93% 70.93% 62.43%
Cupressaceae 64.63% 84.76% 71.33% 91.80%

Pinaceae 65.71% 81.07% 85.35% 78.57%
Populus 66.53% 79.90% 77.30% 80.22%

Sailx 53.96% 56.59% 67.58% 52.19%
Moraeeae 51.93% 72.10% 63.27% 55.37%

We further explore the identification performance of our proposed multi-classifier
combination. The standard classification models are used as the representative of the
base classifiers in this section. Unlike the above-mentioned validation trial in Table 5,
one prominent experiment design is that the classification task is extended to multi-class
classification. This contributes to assuring a fair comparison in our experiment. Both
multi-classifiers combination and single multi-class classifiers are responsible for assigning
the input image to one of the main pollen subclasses of interest to us (eight items are
studied in our experiment). In detail, Table 6 presents the results of comparative analyses,
and Figure 8 shows the distribution of ten-fold cross-validation experimental results of our
proposed model. It is apparent that our multi-classifiers combination obtains significant
identification performance than the other models across all categories.

Table 6. The comparison results between single multi-class classifier and multi-classifiers combination
(Species abbreviations are composed of the first two letters from each type of allergic pollen).

Models Ar. Gr. Ch. Cu. Pi. Po. Sa. Mo.

Single Multi-class Classifier

AlexNet 55.12% 58.12% 63.11% 71.14% 67.14% 66.59% 55.40% 53.14%
Vgg-16 84.76% 83.22% 68.13% 86.29% 83.57% 78.57% 57.47% 70.10%

ResNet-50 83.23% 79.11% 72.02% 74.29% 84.29% 76.92% 70.11% 67.75%
DenseNet-121 79.27% 72.15% 61.13% 80.57% 77.14% 81.32% 54.02% 57.35%

Multi-classifiers Combination Ours 88.11% 84.49% 78.24% 90.29% 87.14% 84.09% 75.29% 72.20%

Figure 8. The boxplot of the dispersion of ten-fold cross-validation experimental results across
different pollen categories.

3.4. Evaluation on Overall Identification Performance

In the previous subsection, we have demonstrated that intra-task reliability can be
improved by multi-scale feature enhancement and multi-classifiers integration. Further
detailed experiments are performed in this section to validate the superiority of leveraging
inter-task dependence. In our approach, the final prediction results are generated by
progressively progressing three different stages, i.e., data preprocessing, coarse-grained
pollen localization, and fine-grained pollen classification. Additionally, we add a direct
sampling that only involves cutting operation without patch filtering to compare with our
data preprocessing method.
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Table 7 shows the classification performance from four cases, effectively expressing the
inter-task dependence. The dispersion of ten-fold cross-validation ablation experimental
results of our model are shown in Figure 9. We can observe that the accuracy of “Data
preprocessing+ Coarse-grained localization+ Fined-grained classification” is higher than
that of “Direct sampling+ Coarse-grained localization+ Fined-grained classification”. It
has proved that the introduction of patch filtering contributes to improving identification
accuracy. This view is also verified in the accuracy comparison between “Data preprocess-
ing+ Fined-grained classification” and the “Direct sampling+ Fined-grained classification”
combination. As shown in Figure 10, the examples are all mistaken for pollen in “Direct
sampling+ Fined-grained classification”, but it can be correctly detected as background
and successfully filtered out by the patches filtering in “Data preprocessing+ Fined-grained
classification”. Given the experiment results, the reinforcing relation between image pre-
processing and the subsequent tasks are obviously shown: the pretreatment for the original
image could effectively minimize the noise interference from complex background. It is
of great significance for overall performance enhancement. The guidance relationship
between the localization task and classification task is explored as well. As we have seen
in Table 7, the “Data preprocessing+ Coarse-grained localization+ Fined-grained classifi-
cation” combination boosts the categorization accuracy significantly, which brings 2.5%
improvements compared with “Data preprocessing+ Fined-grained classification”. We
found that “Data preprocessing+ Fined-grained classification” fails to correctly identify
the samples of Figure 11 as impurity class, but the “Data preprocessing+ Coarse-grained
localization+ Fined-grained classification” combination can accurately detect them. It is
not difficult to speculate that the localization information from the detection task can be
served as region guidance for the classification stage. This makes the classifiers obtain
better performance by focusing on subtle features of local specific regions.

Table 7. The performance of components in our progressive identification approach.

Direct
Sampling

Data
Preprocessing

Coarse-Grained
Localization

Fine-Grained
Classification Accuracy

X X X 77.82%
X X 80.50%

X X 85.70%
X X X 88.20%

Figure 9. The boxplot of the dispersion of ten-fold cross-validation ablation experimental results. The
short form is used to facilitate reading: DS refers to Direct Sampling, DP refers to Data Preprocessing,
CL refers to Coarse-grained Localization, FC refers to Fine-grained Classification.
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Figure 10. Some examples of misclassification from “Direct sampling+ Fined-grained classifica-
tion” combination.

Figure 11. Some examples of misclassification from “Data preprocessing+ Fined-grained classifica-
tion” combination.

4. Discussion
4.1. Model Performance

Through extensive experiments, we can see that our proposed progressive identi-
fication framework provides a better solution to classify fine-grained allergic pollen. It
performs better than some approaches only based on single detection or classification
task. The accuracy of a single detection-driven or classification-driven identification model
on our dataset is much lower than the results obtained by our proposed method. This
may be due to the fact that the above research typically treats two tasks independently,
without considering the inter-task dependence between them. In fact, the localization
information obtained by the detection task can make the classification task easier to focus
on specific regions that can be inferred as pollen labels. This is of great significance to resist
the interference of impurity information and ensure the accuracy of pollen detection.
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The superior performance of our proposed method is also shown in inside localization
and classification tasks. The tasks themselves proved to be challenging tasks due to the
inherent features of pollen data (e.g., complex impurity information, similar pollen features,
etc.). Despite the state-of-the-art detection models or classification models used in our
experiments, they did not work well in our designed tasks. As we can see from Table 3, the
SSD detector achieved the best performance on our dataset compared with any other basic
models, but actually only obtained an average accuracy of 0.772. Different from the above-
mentioned basic models, we introduce multi-scale feature fusion in our coarse-grained
pollen localization, which prompts the model to take into account the multiple features of
pollen images. The effect of multi-scale feature fusion on detection performance has been
experimentally demonstrated in Table 4. The 0.816 AP, 0.925 AP50, and 0.847 AP75 are
finally yielded through our multi-scale localization model, which clearly outperforms all
other detection approaches.

Table 6 exhibits the significant advantages of our proposed multi-classifiers combina-
tion in classification performance. Specifically, our algorithm achieves optimal identification
accuracy across different categories. This mainly benefits from integrating multiple classi-
fiers in a parallel manner. In our ensemble combination, the high-performance classifier
is chosen as the base classifier. The combination of the multiple optimal base classifiers
provides the basis for considerably improving the predictive power of the overall classifica-
tion model.

4.2. Practical Implication

Our proposed approach provides a basis for establishing a deep allergic pollen fore-
casting service in the meteorological and palynological community. The performance of
allergic pollen identification is an extremely urgent task. The airborne pollen is the main
outdoor allergen for early spring pollinosis, which seriously affects the quality of life for
people susceptible to allergies. Therefore, our progressive pollen identification framework
helps allergic patients to assess the risk of disease and enhance the preventive capacity of
allergic diseases in the general public. Moreover, the pollen WSIs data used in our study
can exhibit the overall vegetation characteristics and the individual features of specific plant
taxa within the pollen source area in Beijing, China. This authenticity of pollen information
helps the automatic classification system participate more accurately in identifying efforts
for allergic pollen and improves the service reliability in practice.

4.3. Limitation and Future Work

One limitation of this study is that we only focus exclusively on eight allergic pollen
in Beijing, China. In the future, more types of samples collected from wider geographic
regions are needed to increase the wide utility of the model in practice. Additionally,
we acknowledge that class imbalance hinders the equal representation of different data
types, which results in poor generalization ability of the deep learning algorithms. A larger
sample size is required to balance the data distribution between different pollen classes,
thus further increasing the identification power of the model. In future work, we will adopt
data augmentation methods and transfer learning to make up for them.

5. Conclusions

In this paper, we develop a progressive learning model integrating pollen localization
and classification to address the “localization problem” and “classification problem”. The
model considers the inter-task dependence and intra-task reliability to perfectly mimic
the manual observation process of the palynologists: The data preprocessing module is
firstly designed to cut each WSI into patches with specific sizes and filter useless patches.
Then we present the multi-scale pollen detection model to localize coarse-grained regions
of pollen grains from candidate patches (to solve the “localization problem”). Finally,
the multi-classifiers combination is proposed to determine the fine-grained categories of
allergic pollens (to solve the “classification problem”). We demonstrate through extensive
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experiments that our proposed method can work reliably with high accuracy on real-world
pollen data. However, our method only studies a relatively small number of pollen species
and suffers from the class imbalance problem, which is a serious constraint for greater
generalization and application. We hope to address these issues using data augmentation
and transfer learning methods in the future.

Author Contributions: L.-N.Z. and W.-X.C.: conceptualization, writing original draft preparation,
methodology. Z.-K.G. and S.-Q.L.: validation, resources, and data curation. J.-Q.L., X.X., C.-H.Y. and
H.-L.Y.: project administration, supervision. All authors contributed to manuscript revision. All
authors have read and agreed to the published version of the manuscript.

Funding: This study is supported by Beijing Municipal Science and Technology Project with no.
Z191100009119013.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data that support the findings of this study are available from the
corresponding author, upon reasonable request.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Pawankar, R.; Canonica, G.; Holgate, S.; Lockey, R. WAO White Book on Allergy; World Allergy Organization: Milwaukee, WI,

USA, 2011.
2. Platts-Mills, T.A. The allergy epidemics: 1870–2010. J. Allergy Clin. Immunol. 2015, 136, 3–13. [CrossRef] [PubMed]
3. Kurganskiy, A.; Creer, S.; De Vere, N.; Griffith, G.W.; Osborne, N.J.; Wheeler, B.W.; McInnes, R.N.; Clewlow, Y.; Barber, A.;

Brennan, G.L.; et al. Predicting the severity of the grass pollen season and the effect of climate change in Northwest Europe. Sci.
Adv. 2021, 7, eabd7658. [CrossRef] [PubMed]

4. Reitsma, S.; Subramaniam, S.; Fokkens, W.W.; Wang, D.Y. Recent developments and highlights in rhinitis and allergen im-
munotherapy. Allergy 2018, 73, 2306–2313. [CrossRef] [PubMed]

5. D’Amato, G.; Cecchi, L.; Bonini, S.; Nunes, C.; Annesi-Maesano, I.; Behrendt, H.; Liccardi, G.; Popov, T.; Van Cauwenberge, P.
Allergenic pollen and pollen allergy in Europe. Allergy 2007, 62, 976–990. [CrossRef]

6. Stas, M.; Aerts, R.; Hendrickx, M.; Dendoncker, N.; Dujardin, S.; Linard, C.; Nawrot, T.S.; Van Nieuwenhuyse, A.; Aerts, J.M.;
Van Orshoven, J.; et al. Residential green space types, allergy symptoms and mental health in a cohort of tree pollen allergy
patients. Landsc. Urban Plan. 2021, 210, 104070. [CrossRef]

7. Galán, C.; Smith, M.; Thibaudon, M.; Frenguelli, G.; Oteros, J.; Gehrig, R.; Berger, U.; Clot, B.; Brandao, R. Pollen monitoring:
Minimum requirements and reproducibility of analysis. Aerobiologia 2014, 30, 385–395. [CrossRef]

8. Khanzhina, N.; Putin, E.; Filchenkov, A.; Zamyatina, E. Pollen Grain Recognition Using Convolutional Neural Network. In
Proceedings of the European Symposium on Artificial Neural Networks, Bruges, Belgium, 25–27 April 2018.

9. Yang, J.J.; Klinkenberg, C.; Pan, J.Z.; Wyss, H.M.; den Toonder, J.M.; Fang, Q. An integrated system for automated measurement of
airborne pollen based on electrostatic enrichment and image analysis with machine vision. Talanta 2022, 237, 122908. [CrossRef]

10. Hirst, J. An automatic volumetric spore trap. Ann. Appl. Biol. 1952, 39, 257–265. [CrossRef]
11. Chikhladze, M.; Khachapuridze, D.; Sepiashvili, R. The use of the Burkhard Pollen Trap to study the aeroecological profile in

Georgia. Int. J. Immunorehabil. 2009, 11, 200b.
12. Puc, M.; Kotrych, D.; Lipiec, A.; Rapiejko, P.; Siergiejko, G. Birch pollen grains without cytoplasmic content in the air of Szczecin

and Bialystok. Alergoprofil 2016, 12, 101–105.
13. Woosley, A.I. Pollen extraction for Arid-land sediments. J. Field Archaeol. 1978, 5, 349–355.
14. Khanzhina, N.; Filchenkov, A.; Minaeva, N.; Novoselova, L.; Petukhov, M.; Kharisova, I.; Pinaeva, J.; Zamorin, G.; Putin, E.;

Zamyatina, E.; et al. Combating data incompetence in pollen images detection and classification for pollinosis prevention.
Comput. Biol. Med. 2022, 140, 105064. [CrossRef] [PubMed]

15. Stillman, E.; Flenley, J.R. The needs and prospects for automation in palynology. Quat. Sci. Rev. 1996, 15, 1–5. [CrossRef]
16. Daood, A.; Ribeiro, E.; Bush, M. Pollen grain recognition using deep learning. In Proceedings of the International Symposium on

Visual Computing, Springer, Las Vegas, NV, USA, 12–14 December 2016; pp. 321–330.
17. Daood, A.; Ribeiro, E.; Bush, M. Sequential recognition of pollen grain Z-stacks by combining CNN and RNN. In Proceedings of

the Thirty-First International Flairs Conference, Melbourne, FL, USA, 21–23 May 2018.
18. Sevillano, V.; Holt, K.; Aznarte, J.L. Precise automatic classification of 46 different pollen types with convolutional neural

networks. PLoS ONE 2020, 15, e0229751. [CrossRef] [PubMed]

http://doi.org/10.1016/j.jaci.2015.03.048
http://www.ncbi.nlm.nih.gov/pubmed/26145982
http://dx.doi.org/10.1126/sciadv.abd7658
http://www.ncbi.nlm.nih.gov/pubmed/33771862
http://dx.doi.org/10.1111/all.13617
http://www.ncbi.nlm.nih.gov/pubmed/30260494
http://dx.doi.org/10.1111/j.1398-9995.2007.01393.x
http://dx.doi.org/10.1016/j.landurbplan.2021.104070
http://dx.doi.org/10.1007/s10453-014-9335-5
http://dx.doi.org/10.1016/j.talanta.2021.122908
http://dx.doi.org/10.1111/j.1744-7348.1952.tb00904.x
http://dx.doi.org/10.1016/j.compbiomed.2021.105064
http://www.ncbi.nlm.nih.gov/pubmed/34861642
http://dx.doi.org/10.1016/0277-3791(95)00076-3
http://dx.doi.org/10.1371/journal.pone.0229751
http://www.ncbi.nlm.nih.gov/pubmed/32574174


Biology 2022, 11, 1841 18 of 19

19. Ullah, F.; Ahmad, M.; Zafar, M.; Parveen, B.; Ashfaq, S.; Bahadur, S.; Safdar, Q.T.A.; Safdar, L.B.; Alam, F.; Luqman, M. Pollen
morphology and its taxonomic potential in some selected taxa of Caesalpiniaceae observed under light microscopy and scanning
electron microscopy. Microsc. Res. Tech. 2022, 85, 1410–1420. [CrossRef] [PubMed]

20. Polling, M.; Li, C.; Cao, L.; Verbeek, F.; de Weger, L.A.; Belmonte, J.; De Linares, C.; Willemse, J.; de Boer, H.; Gravendeel, B.
Neural networks for increased accuracy of allergenic pollen monitoring. Sci. Rep. 2021, 11, 1–10. [CrossRef]

21. Bourel, B.; Marchant, R.; de Garidel-Thoron, T.; Tetard, M.; Barboni, D.; Gally, Y.; Beaufort, L. Automated recognition by multiple
convolutional neural networks of modern, fossil, intact and damaged pollen grains. Comput. Geosci. 2020, 140, 104498. [CrossRef]

22. Viertel, P.; König, M.; Rexilius, J. PollenGAN: Synthetic Pollen Grain Image Generation for Data Augmentation. In Proceedings
of the 2021 20th IEEE International Conference on Machine Learning and Applications (ICMLA), Pasadena, CA, USA, 13–16
December 2021; pp. 44–49.

23. Viertel, P.; König, M. Pattern recognition methodologies for pollen grain image classification: A survey. Mach. Vis. Appl. 2022,
33, 1–19. [CrossRef]

24. Chudyk, C.; Castaneda, H.; Leger, R.; Yahiaoui, I.; Boochs, F. Development of an automatic pollen classification system using
shape, texture and aperture features. In Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, Trier, Germany,
7–9 October 2015; Volume 1458, pp. 65–74.

25. Goncalves, A.B.; Souza, J.S.; Silva, G.G.D.; Cereda, M.P.; Pott, A.; Naka, M.H.; Pistori, H. Feature extraction and machine learning
for the classification of Brazilian Savannah pollen grains. PLoS ONE 2016, 11, e0157044. [CrossRef]

26. Rodriguez-Damian, M.; Cernadas, E.; Formella, A.; Sa-Otero, R. Pollen classification using brightness-based and shape-based
descriptors. In Proceedings of the 17th International Conference on Pattern Recognition, ICPR 2004, Cambridge, UK, 26 August
2004; Volume 2, pp. 212–215.

27. Krizhevsky, A.; Sutskever, I.; Hinton, G.E. Imagenet classification with deep convolutional neural networks. Commun. ACM 2017,
60, 84–90. [CrossRef]

28. Menad, H.; Ben-Naoum, F.; Amine, A. Deep Convolutional Neural Network for Pollen Grains Classification. In Proceedings of
the JERI, Saida, Algeria, 27 April 2019.

29. Rodriguez-Damian, M.; Cernadas, E.; Formella, A.; Fernández-Delgado, M.; De Sa-Otero, P. Automatic detection and classification
of grains of pollen based on shape and texture. IEEE Trans. Syst. Man Cybern. Part (Appl. Rev.) 2006, 36, 531–542. [CrossRef]

30. Sevillano, V.; Aznarte, J.L. Improving classification of pollen grain images of the POLEN23E dataset through three different
applications of deep learning convolutional neural networks. PLoS ONE 2018, 13, e0201807. [CrossRef] [PubMed]

31. Astolfi, G.; Goncalves, A.B.; Menezes, G.V.; Borges, F.S.B.; Astolfi, A.C.M.N.; Matsubara, E.T.; Alvarez, M.; Pistori, H. POLLEN73S:
An image dataset for pollen grains classification. Ecol. Inform. 2020, 60, 101165. [CrossRef]

32. Jiao, J.; Pan, H.; Chen, C.; Jin, T.; Dong, Y.; Chen, J. Two-stage lesion detection approach based on dimension-decomposition and
3D context. Tsinghua Sci. Technol. 2021, 27, 103–113. [CrossRef]

33. Hui, B.; Liu, Y.; Qiu, J.; Cao, L.; Ji, L.; He, Z. Study of texture segmentation and classification for grading small hepatocellular
carcinoma based on CT images. Tsinghua Sci. Technol. 2020, 26, 199–207. [CrossRef]

34. Yuvaraj, N.; Srihari, K.; Chandragandhi, S.; Raja, R.A.; Dhiman, G.; Kaur, A. Analysis of protein-ligand interactions of SARS-Cov-2
against selective drug using deep neural networks. Big Data Min. Anal. 2021, 4, 76–83. [CrossRef]

35. Yu, Y.; Li, M.; Liu, L.; Li, Y.; Wang, J. Clinical big data and deep learning: Applications, challenges, and future outlooks. Big Data
Min. Anal. 2019, 2, 288–305. [CrossRef]

36. Malek, Y.N.; Najib, M.; Bakhouya, M.; Essaaidi, M. Multivariate deep learning approach for electric vehicle speed forecasting. Big
Data Min. Anal. 2021, 4, 56–64. [CrossRef]

37. Duller, A.; Guller, G.; France, I.; Lamb, H. A pollen image database for evaluation of automated identification systems. Quat.
Newsl. 1999, 89, 4–9.

38. Battiato, S.; Ortis, A.; Trenta, F.; Ascari, L.; Politi, M.; Siniscalco, C. Pollen13k: A large scale microscope pollen grain image dataset.
In Proceedings of the 2020 IEEE International Conference on Image Processing (ICIP), IEEE, Abu Dhabi, United Arab Emirates,
25–28 October 2020; pp. 2456–2460.

39. Tsiknakis, N.; Savvidaki, E.; Kafetzopoulos, S.; Manikis, G.; Vidakis, N.; Marias, K.; Alissandrakis, E. Segmenting 20 types of
pollen grains for the cretan pollen dataset v1 (CPD-1). Appl. Sci. 2021, 11, 6657. [CrossRef]

40. Khened, M.; Kori, A.; Rajkumar, H.; Krishnamurthi, G.; Srinivasan, B. A generalized deep learning framework for whole-slide
image segmentation and analysis. Sci. Rep. 2021, 11, 1–14. [CrossRef] [PubMed]

41. Ciga, O.; Xu, T.; Nofech-Mozes, S.; Noy, S.; Lu, F.I.; Martel, A.L. Overcoming the limitations of patch-based learning to detect
cancer in whole slide images. Sci. Rep. 2021, 11, 1–10. [CrossRef] [PubMed]

42. Mulliqi, N.; Kartasalo, K.; Olsson, H.; Ji, X.; Egevad, L.; Eklund, M.; Ruusuvuori, P. A Python application programming interface
for accessing Philips iSyntax whole slide images for computational pathology. In Proceedings of the Medical Imaging with Deep
Learning, Zürich, Switzerland, 6–8 July 2022.

43. Deroulers, C.; Ameisen, D.; Badoual, M.; Gerin, C.; Granier, A.; Lartaud, M. Analyzing huge pathology images with open source
software. Diagn. Pathol. 2013, 8, 1–8. [CrossRef] [PubMed]

44. Lin, T.Y.; Goyal, P.; Girshick, R.; He, K.; Dollár, P. Focal loss for dense object detection. In Proceedings of the IEEE International
Conference on Computer Vision, Venice, Italy, 22–29 October 2017; pp. 2980–2988.

http://dx.doi.org/10.1002/jemt.24004
http://www.ncbi.nlm.nih.gov/pubmed/34850481
http://dx.doi.org/10.1038/s41598-021-90433-x
http://dx.doi.org/10.1016/j.cageo.2020.104498
http://dx.doi.org/10.1007/s00138-021-01271-w
http://dx.doi.org/10.1371/journal.pone.0157044
http://dx.doi.org/10.1145/3065386
http://dx.doi.org/10.1109/TSMCC.2005.855426
http://dx.doi.org/10.1371/journal.pone.0201807
http://www.ncbi.nlm.nih.gov/pubmed/30216353
http://dx.doi.org/10.1016/j.ecoinf.2020.101165
http://dx.doi.org/10.26599/TST.2021.9010028
http://dx.doi.org/10.26599/TST.2019.9010058
http://dx.doi.org/10.26599/BDMA.2020.9020007
http://dx.doi.org/10.26599/BDMA.2019.9020007
http://dx.doi.org/10.26599/BDMA.2020.9020027
http://dx.doi.org/10.3390/app11146657
http://dx.doi.org/10.1038/s41598-021-90444-8
http://www.ncbi.nlm.nih.gov/pubmed/34078928
http://dx.doi.org/10.1038/s41598-021-88494-z
http://www.ncbi.nlm.nih.gov/pubmed/33903725
http://dx.doi.org/10.1186/1746-1596-8-92
http://www.ncbi.nlm.nih.gov/pubmed/23829479


Biology 2022, 11, 1841 19 of 19

45. Tang, X.; Du, D.K.; He, Z.; Liu, J. Pyramidbox: A context-assisted single shot face detector. In Proceedings of the European
Conference on Computer Vision (ECCV), Munich, Germany, 8–14 September 2018; pp. 797–813.

46. He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778.

47. Lin, T.Y.; Dollár, P.; Girshick, R.; He, K.; Hariharan, B.; Belongie, S. Feature pyramid networks for object detection. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 2117–2125.

48. Mohandes, M.; Deriche, M.; Aliyu, S.O. Classifiers combination techniques: A comprehensive review. IEEE Access 2018,
6, 19626–19639. [CrossRef]

49. Džeroski, S.; Ženko, B. Is combining classifiers with stacking better than selecting the best one? Mach. Learn. 2004, 54, 255–273.
[CrossRef]

50. Simonyan, K.; Zisserman, A. Very deep convolutional networks for large-scale image recognition. arXiv 2014, arXiv:1409.1556.
51. Huang, G.; Liu, Z.; Van Der Maaten, L.; Weinberger, K.Q. Densely connected convolutional networks. In Proceedings of the IEEE

Conference on Computer Vision and Pattern Recognition, Honolulu, HI, USA, 21–26 July 2017; pp. 4700–4708.
52. He, K.; Zhang, X.; Ren, S.; Sun, J. Spatial pyramid pooling in deep convolutional networks for visual recognition. IEEE Trans.

Pattern Anal. Mach. Intell. 2015, 37, 1904–1916. [CrossRef]
53. Ren, S.; He, K.; Girshick, R.; Sun, J. Faster R-CNN: Towards real-time object detection with region proposal networks. Adv. Neural

Inf. Process. Syst. 2015, 28, 1–9. [CrossRef]
54. Diwan, T.; Anirudh, G.; Tembhurne, J.V. Object detection using YOLO: Challenges, architectural successors, datasets and

applications. Multimed. Tools Appl. 2022, 1–33. [CrossRef]
55. Liu, W.; Anguelov, D.; Erhan, D.; Szegedy, C.; Reed, S.; Fu, C.Y.; Berg, A.C. Ssd: Single shot multibox detector. In Proceedings of

the European Conference on Computer Vision, Amsterdam, The Netherlands, 11–14 October 2016; pp. 21–37.

http://dx.doi.org/10.1109/ACCESS.2018.2813079
http://dx.doi.org/10.1023/B:MACH.0000015881.36452.6e
http://dx.doi.org/10.1109/TPAMI.2015.2389824
http://dx.doi.org/10.1109/TPAMI.2016.2577031
http://dx.doi.org/10.1007/s11042-022-13644-y

	Introduction
	Materials and Methods
	Datasets
	Data Collection
	Professional Labelling
	Dataset Statistics

	Methods
	Data Preprocessing
	Coarse-Grained Pollen Localization
	Fine-Grained Pollen Classification

	Results
	Experiment Settings
	Evaluation on Coarse-Grained Pollen Localization
	Evaluation on Fine-Grained Pollen Classification
	Evaluation on Overall Identification Performance

	Discussion
	Model Performance
	Practical Implication
	Limitation and Future Work

	Conclusions
	References

