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Simple Summary: Plant disease, defined as an abnormal condition that disrupts the normal growth
of the plant, is one of the main causes of economic losses in the agricultural industry. Early diagnosis
of plant disease is critical to increasing agricultural crop productivity. In this paper, a new robust
hybrid classification model based on swarm optimization-supported feature selection, including
machine learning and deep learning algorithms, that allows real-time classification of diseases in
apple, grape, and tomato plants has been developed. In this way, it will be possible to diagnose the
plant disease at an early phase and apply the appropriate treatment.

Abstract: The early detection and prevention of plant diseases that are an important cause of famine
and food insecurity worldwide are very important for increasing agricultural product productivity.
Not only the early detection of the plant disease but also the determination of its type play a critical
role in determining the appropriate treatment. The fact that visual inspection, which is frequently
used in determining plant disease and types, is tiring and prone to human error, necessitated the
development of algorithms that can automatically classify plant disease with high accuracy and
low computational cost. In this study, a new hybrid plant leaf disease classification model with
high accuracy and low computational complexity, consisting of the wrapper approach, including
the flower pollination algorithm (FPA) and support vector machine (SVM), and a convolutional
neural network (CNN) classifier, is developed with a wrapper-based feature selection approach
using metaheuristic optimization techniques. The features of the image dataset consisting of apple,
grape, and tomato plants have been extracted by a two-dimensional discrete wavelet transform
(2D-DWT) using wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and
symlets. Features that keep classifier performance high for each family are selected by the wrapper
approach, consisting of the population-based metaheuristics FPA and SVM. The performance of the
proposed optimization algorithm is compared with the particle swarm optimization (PSO) algorithm.
Afterwards, the classification performance is obtained by using the lowest number of features that
can keep the classification performance high for the CNN classifier. The CNN classifier with a single
layer of classification without a feature extraction layer is used to minimize the complexity of the
model and to deal with the model hyperparameter problem. The obtained model is embedded in the
NVIDIA Jetson Nano developer kit on the unmanned aerial vehicle (UAV), and real-time classification
tests are performed on apple, grape, and tomato plants. The experimental results obtained show
that the proposed model classifies the specified plant leaf diseases in real time with high accuracy.
Moreover, it is concluded that the robust hybrid classification model, which is created by selecting
the lowest number of features with the optimization algorithm with low computational complexity,
can classify plant leaf diseases in real time with precision.

Keywords: agricultural plant; plant leaf disease classification; 2D discrete wavelet transform; 2D
signal processing; flower pollination optimization; artificial intelligence; real-time detection
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1. Introduction

Due to the rapid increase in the world population and the current population size,
efficient production of agricultural products is needed, as well as the efficient use of
agricultural lands, which are limited. In the efficient production of agricultural products,
it is critical to detect plant diseases at an early stage, as well as spraying, fertilizing, and
weed detection processes. It is known that losses in agricultural product yield due to plant
diseases range between 20% and 40%. This heavy yield loss also means a reduced market
volume for buyers of that product [1]. A delay in the diagnosis of viral, pathogenic, or
plague-borne plant diseases requires the application of more doses of pesticides to the
diseased plant, thus resulting in a decrease in crop quality [2]. Detecting and correctly
classifying plant diseases at an early stage not only contributes to improving the quality
of agricultural products but also allows for the reduction of undesirable chemical spray
applications such as fungicides and herbicides [3]. In this study, we propose a robust hybrid
plant disease classification model based on metaheuristic optimization-assisted feature
selection that includes machine learning and deep learning algorithms for real-time early
detection of diseases in apple, grape, and tomato plants. The performance of the model
embedded in the NVIDIA Jetson Nano developer kit on an unmanned aerial vehicle (UAV)
has been experimentally tested on apple, grape, and tomato plants.

Plant disease, which is one of the main causes of economic losses in the agricultural
industry in the world, is defined as an abnormal state that disrupts the normal growth of
the plant [4]. Symptoms related to the abnormal state can usually be seen in the leaf, stem,
and root parts of the plant. Leaf images are a good source of information in the classification
of plant diseases. Therefore, researchers focus on the classification of plant diseases through
leaf images [5]. In this study, plant diseases are classified using leaf images of apple, grape,
and tomato plants.

Although traditional methods based on visual inspection are used in the detection of
plant diseases in small-scale agricultural lands, it is very difficult to apply these methods
in large-scale agricultural lands as they require tiring and continuous monitoring [6].
Especially in diagnosing both the species and the disease of plants with similar leaves, this
process becomes more difficult and leads to visual errors. To cope with these challenges,
various image processing and artificial intelligence techniques such as machine learning
and deep learning are used in the real-time classification of plant diseases based on plant
leaf images [7–9].

In the literature, there are image processing-based studies for real-time prediction of
plant diseases and disease levels on many plant species. In [3], the severity level of white-tip
disease (Aphelenchoides besseyi Christie), commonly seen in paddy crops, is estimated based
on image processing techniques. The diseased area in the paddy crop is determined with
the help of a color image segmentation algorithm based on chromatic aberration. The
severity of the disease is estimated by proportioning the area of the determined region to
the entire area of the leaf. Based on the estimation results obtained, a variable rate chemical
spray system has been developed for the precise application of agrochemicals in real time.
In [10], a ∆E (Delta E) segmentation-based feature extraction algorithm is proposed to
classify diseases in images of citrus plants. The diseased region is identified by the ∆E
method and hue saturation value (HSV), local binary patterns (LBP), and red green blue
(RGB) histogram models are extracted from this region. The features obtained with the
HSV, LBP, and RGB descriptors are combined, and a hybrid feature set is created. Principle
component analysis (PCA) is used to reduce dimensionality. Fine k-nearest neighbor (kNN),
cubic support vector machine (SVM), boosted tree, and bagged tree ensemble classifiers
are tested. It is stated that the best performance is achieved with the bagged tree ensemble
classifier. In [11], the temperature difference between the healthy and infected parts of the
cucumber leaf is measured and downy mildew disease is detected using Fourier transform
infrared (FTIR) spectroscopy. It is reported that the FTIR technique is effective in the
pre-symptomatic detection of downy mildew disease on cucumber leaves. In [12], feature
extraction and segmentation algorithms are used together for detection and classification
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of early scorch disease in banana leaves, fungal disease in bean leaves, sunburn disease in
lemon leaves, and bacterial disease in roses. Segmentation of diseased regions has been
carried out using a genetic algorithm (GA). It is also emphasized that the optimization
algorithm used reduces the computational complexity.

In the image processing approach, the classification accuracy of plant diseases directly
depends on the performance of feature extraction and segmentation. Especially, image
segmentation plays a key role in detecting the severity of leaf disease, and the segmentation
precision of leaf disease determines the accuracy of the classification of disease severity [13].
Although image processing techniques give good results in determining the severity of
a disease in plant leaves, they cannot show the same success in classifying disease types
in plant leaves where there is more than one disease type. Instead, artificial intelligence-
based approaches, which use features with higher recognition accuracy through iterative
learning without the need for specific features extracted by image processing techniques,
have recently been frequently used in the classification of plant leaf diseases [14]. In [15],
multiple types of tomato leaf diseases are classified using both deep learning and machine
learning algorithms. To apply the machine learning models, a total of 52 texture features are
extracted using a gray level co-occurrence matrix (GLCM) and local binary pattern (LBP)
techniques, and 105 color features are extracted using color histograms and color moment
approaches. The performances of kNN, SVM, and random forest (RF) from machine
learning algorithms and AlexNet, VGG16, ResNet34, EfficientNet-b0, and MobileNetV2
architectures from deep learning algorithms are tested for 10 different types of tomato
leaf disease. In [8], a set of images containing 12 plant species is separated into training
and testing parts, and a convolutional neural network (CNN) is trained with the help
of training data for the classification of plant diseases. It has been reported that the
accuracy performance of the obtained model varies between 60% and 100% depending
on the disease characteristics of each plant species. In [16], a deep learning model based
on the pruned version of MobileNet architecture is proposed for efficient classification of
multiple plant diseases based on leaf images of healthy and diseased plants. The proposed
model is compared with VGG and classical MobileNet architectures. It is stated that
the proposed architecture achieves 98.34% classification accuracy with six times fewer
parameters compared to MobileNet and 29 times fewer than VGG. The performance of
different optimizers is tested to reduce the computational overhead of the model. It is
indicated that Adam and Nadam optimizers’ convergence rates are faster than stochastic
gradient descent (SGD) and contribute to the reduction of computational cost. Besides
these studies, there are many studies on the recognition and classification of leaf diseases
of many plant species with artificial intelligence algorithms such as machine learning and
deep learning techniques [17–20].

Although the classification accuracy of the techniques mentioned in the classification
of plant leaf diseases belonging to more than one species is high, the high model complexity
and high computational costs make their use difficult in real-time applications. In the real-
time classification problem of plant leaf diseases, optimal values of the hyperparameters
of artificial intelligence-based models built with specific architectures are determined
using swarm-based optimization algorithms to overcome these challenges [21]. CNN
models, which have been frequently used in the automatic diagnosis and classification of
plant leaf diseases in recent years, try to solve the hyperparameter problem with various
metaheuristic optimization algorithms. Although this contributes to reducing the parameter
complexity of the model, it increases the computational load of the model.

This study is robust and can classify plant leaf diseases in real time with high accuracy,
a low parameter complexity, and a low computational cost, using the feature-based robust
hybrid classification technique, including the wrapper approach consisting of the flower
pollination algorithm (FPA), SVM, and a CNN classifier. The study considers feature extrac-
tion with signal processing techniques as a preprocessing step, so that the computational
load of the model is not increased. Until now, features have been extracted with many
signal processing techniques in the classification of plant leaf diseases, but feature extraction
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has not been performed with the two-dimensional discrete wavelet transform (2D-DWT)
signal processing techniques based on various wavelet families. The distinguishing features
defining the characteristic features of plant leaf diseases are extracted for the first time
in this study with the 2D-DWT technique using wavelet families, such as biorthogonal,
Coiflets, Daubechies, Fejer–Korovkin, and symlets. The main contributions of this research
can be summarized as follows:

• A robust hybrid model based on 2D-DWT is proposed for the real-time classification
of plant leaf diseases with high accuracy.

• Feature groups are extracted for each family by applying 2D-DWT with the biorthogo-
nal, Coiflet, Daubechies, Fejer–Korovkin, and symlet wavelet families to the image
dataset consisting of apple, grape, and tomato plants. The extracted feature groups for
each wavelet family consist of distinctive features representing each plant leaf disease.

• The features that keep classifier performance high for each wavelet family are selected
by the wrapper approach, consisting of the population-based metaheuristic FPA and
SVM algorithms. The fitness function is computed by considering both the number of
features used in the model and the model’s performance in order to keep the model’s
complexity and computation cost at a minimum level.

• The efficiency of the proposed optimization algorithm is determined by comparing it
with the particle swarm optimization (PSO) algorithm.

• To overcome the model hyperparameter problem, the CNN classifier is used, which
only has a classification layer without a feature extraction layer and uses the lowest
number of features that can keep classification performance high.

• For the real-time plant leaf disease classification problem, the model with the best
performance is proposed, which includes the 2D-DWT signal processing method based
on the “sym7” wavelet family, the wrapper approach consisting of FPA and SVM, and
a CNN classifier.

• The proposed model is embedded in the NVIDIA Jetson Nano developer kit on the
UAV. Real-time classification tests have been performed on apple, grape, and tomato
plants to demonstrate that the proposed model can classify plant leaf diseases in real
time with high accuracy.

• The experimental results obtained show that the model has low computational com-
plexity and a minimum computational load; therefore, it can be used in real-time
applications that require high classification accuracy.

The rest of this paper is structured as follows. The entire methodology that makes up
the plant leaf disease classification model, including 2D-DWT, wavelet families, the wrapper
approach consisting of the population-based metaheuristic FPA and SVM algorithms,
CNN classifier, and classification performance metrics, is introduced in Section 2. The
experimental results of the study, along with their detailed discussion, are presented in
Section 3. Finally, Section 4 summarizes the concluding remarks and points to future work
for research.

2. Framework of the Plant Diseases Detection Algorithm

This section describes our model structure that can classify leaf diseases of apple,
grape, and tomato plants in real time with high accuracy. In our proposed model, features
are extracted for each family by applying 2D-DWT signal processing techniques with the
biorthogonal, Coiflet, Daubechies, Fejer–Korovkin, and symlet wavelet families to the
image dataset consisting of apple, grape, and tomato plants. The features that provide
the highest model performance and the lowest model complexity are selected with the
wrapper approach, consisting of the FPA and SVM algorithms. The CNN classifier, which
is used to overcome the model hyperparameter problem, classifies plant leaf diseases with
the help of selected features. All the methodology used in our model is described in detail
in the following subsections.
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2.1. Discrete Wavelet Transform

The Fourier transform (FT), which has been successfully applied for stationary signals,
cannot be used for non-stationary signals. Since the spectrum changes with time, FT is
insufficient to reveal the correct spectrum for non-stationary signals. Non-stationary signals
are divided into sufficiently small pieces by short-term Fourier transform (STFT), and these
small pieces are considered stationary. A time-frequency representation is needed to know
what frequency components are present at different times and how they change as time
passes. The sinusoidal frequency and phase content of a time-varying signal are found by
STFT, and the relationship between frequency and time variation is defined with the help
of a moving window. However, this technique is quite complicated to study non-stationary
signals. Wavelet transform (WT) offers an alternative approach to overcome such challenges
of FT and STFT with its variable-size windowing techniques [22,23]. The frequency and
time information about a signal is obtained with this approach when short time intervals at
high frequencies and long-time intervals at low frequencies can be selected. The wavelet
transform is a transform technique that separates signals into different frequency compo-
nents and examines each component with its resolution at that scale. Wavelets provide a
good tool for time-frequency analysis [24].

Definition 1. If ψ(t) is a real-valued function whose Fourier spectrum, ψ(s) satisfies the admissi-
bility criterion.

Cψ =
∫ +∞

−∞

|ψ(s)|2

|s| ds < ∞ (1)

then, ψ(t) is called a basic wavelet. Notice that, due to thes in the denominator of the integrand, it
is necessary that:

ψ(0) = 0⇒
∫ +∞

−∞
ψ(t)dt = 0 (2)

Furthermore, since ψ(∞) = 0 as well, we can see that the amplitude spectrum of an admissible
wavelet is similar to the transfer function of a bandpass filter.

A set of wavelet basis functions,
{

ψa,b(t)
}

, can be generated by translating and scaling the
basic wavelet, ψ(t), as:

ψa,b(t) =
1√
a

ψ

(
t− b

a

)
(3)

where a > 0 and b are real numbers. The variable a reflects the scale of a particular basis function,
while b specifies its translated position along the t.

The continuous wavelet transform (CWT) of x(t) with respect to the wavelet ψ(t) is then:

W(a, b) = 〈x, ψa,b〉 =
∫ +∞

−∞
x(t)ψ∗a,b(t)dt (4)

The wavelet transform coefficients are given as inner products of the function being transformed
with each of the basis functions.

The inverse continuous wavelet transform is mathematically defined as [25]:

f (t) =
1

Cψ
=
∫ +∞

0

∫ +∞

−∞
W(a, b)ψa,b(t)db

da
a2 (5)

where Cψ is a constant of the wavelet used.
When we take the scaling and shifting wavelet parameters as dyadic variablesm and n in

discrete time, the discrete wavelet transform (DWT) of the signal is defined as:

W(m, n) = 〈x, ψm,n〉 = a−m/2
0 ∑

k
f [k]ψ∗

(
k− nam

0 b0

am
0

)
(6)
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where m and ndenote frequency and time localizations, respectively. Here, a0 > 1, b0 > 0 and
m, n ∈ Z, the scaling and shifting parameters are represented as am

0 , nam
0 b0, respectively.

2.2. Multiresolution Analysis

Not only the time domain features of the signals, but also the frequency domain
features can be extracted and classified. DWT-based multi-resolution analysis is very useful
in feature extraction applications from image signals. Undesirable components, such as
noise and trend in the signal, can be separated by multiresolution analysis (MRA) [26].

Definition 2. Analysis of signals in terms of both time and frequency is performed by computing
scaling and wavelet functions. The scaling {ϕm,n[k]} and wavelet {ψm,n[k]} functions are given by:

ϕm,n[k] = 2−m/2 ϕ
(
2−mk− n

)
(7)

ψm,n[k] = 2−m/2ψ
(
2−mk− n

)
(8)

where m, n ∈ Z. The high-scale, low-frequency components correspond to approximation
coefficient {ϕ[k]} that bridge the wavelets and filter banks and is denoted by:

ϕ[k] = ∑
k

f [k]h[k− 2n] (9)

where h[n] corresponds to the low pass filter that is associated with the scaling function. The
low-scale high-frequency components correspond to detail coefficient {ψ[k]} is expressed by:

ψ[k] = ∑
k

f [k]g[k− 2n] (10)

where g[n] is the complementary high pass filter in this orthogonal filter bank. The scaling function,
defined by the filter coefficients h[n], provides approximation coefficients {ϕ[k]}, which are also
referred to as low-pass output. The wavelet function, defined by the filter coefficients g[n], provides
the detailed coefficients {ψ[k]}, or alternatively the high-pass output.

2.3. Wavelet Families

The biorthogonal, Coiflet, Daubechies, Fejer–Korovkin, and symlet wavelet families
used in the calculation of high and low pass filter coefficients of the DWT are introduced in
the following subsections.

2.3.1. Biorthogonal Wavelet

Biorthogonal wavelets that are not based on vanishing moments have a compactly
supported symmetrical structure. In the biorthogonal case, rather than having one scaling
and wavelet function, there are two scaling functions {ϕ, ϕ̃} that may generate different
MRA, and accordingly two different wavelet functions

{
ψ, ψ̃

}
. For orthogonal wavelets,

recursively computations of the scaling function and mother wavelet are presented by [27]

ϕ(t) = 2 ∑
k

h0(k)ϕ(2t− k) (11)

ϕ̃(t) = 2 ∑
k

h̃0(k)ϕ̃(2t− k) (12)

ψ(t) = 2 ∑
k

g1(k)ϕ(2t− k) (13)

ψ̃(t) = 2 ∑
k

g̃1(k)ϕ̃(2t− k) (14)
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where h0(k), h̃0(k), g1(k), and g̃1(k) are dual filter coefficients.

2.3.2. Coiflet Wavelet

The Coiflet wavelet, designed by Ingrid Daubechies at the suggestion of Ronald
Coifman, are discrete wavelets with vanishing moments and scaling functions. The idea
behind Coiflet wavelets is to specify moment conditions approaching zero in the associated
scaling function. This situation also causes the creation of a wavelet filter with descriptive
properties [28]. The Coiflet wavelet function has 2N moments equal to zero, and the scaling
function has 2N− 1 moments equal to zero. The two functions have a support of the length
of 6N − 1. It is more symmetrical than compared to Daubechies wavelets. The general
characteristic of the Coiflet wavelet is that for any given support width, it has the highest
number of vanishing moments for both the scaling {ϕ} and the wavelet function {ψ}. The
lengths of the scaling and wavelet functions for Coiflet wavelets are calculated as (L = 6, 12,
18, 24, 30). The approximation features also depend on the number of vanishing wavelet
moments [29].

It is sufficient to define the Coiflets in terms of the H filter. Since for any integer n the
filter znH(z) generates the same MRA as H, we always assume the coefficients {hk} of H
to be zero for k < 0.

Definition 3. Let
{

hj
}L−1

j=0 be the coefficients of a real quadrature mirror filter H. We say that H is
a Coiflet of shift γ and moments M, N if the conditions in Equations (15)–(17) are satisfied:

L−1

∑
j=0

(−1)j jkhj = 0 f or 0 ≤ k < M (15)

L−1

∑
j=0

jkhj = γk f or 0 ≤ k < N (16)

3M > L− 1 and 3N ≥ L− 1 (17)

If a Coiflet H also satisfies Cohen’s condition that H is non-zero in certain locations on the
unit circle [30], its associated wavelet and scaling functions will have vanishing moments M and
N − 1, respectively [28]. The normalization H(1) = 1 corresponds to Equation (16) with k = 0.

2.3.3. Daubechies Wavelet

Daubechies wavelets represent a wavelet summation that improves the frequency
domain properties of Haar wavelets. These wavelets are a family of orthogonal wavelets
indexed with N to represent the number of N vanishing wavelet moments. The Daubechies
wavelets have two important properties. First, it has a finite number of non-zero pm scaling
coefficients. This means that the scaling and wavelet functions are compact. The N-order
Daubechies scaling function has 2N nonzero scaling coefficients, and the support size width
of the scaling and wavelet functions is in the range [0, 2N − 1 ]. The second property of the
N-order Daubechies wavelet is that the initial N − 1 moments of the wavelets are zero [31].

The moments of the scaling and wavelet functions are defined by:∫ +∞

−∞
ϕ(k)kjd(k) (18)

and: ∫ +∞

−∞
ψ(k)kjd(k) (19)



Biology 2022, 11, 1732 8 of 30

respectively, where ϕ(k) is the scaling function and ψ(k) is the wavelet function. The
moment of the Daubechies wavelets is expressed as:∫ +∞

−∞
ψN(k)kjd(k) = 0 f or j = 0, . . . , N − 1 (20)

The zeroing the first N moment of the ψN wavelet is often abbreviated as ψN , and has
N zeroing moments. The zeroed moments mean that every N-order Daubechies wavelet
basis function is orthogonal to all polynomials of degrees less than N. Daubechies wavelets
are classified according to the number of zero moments they have. The smoothness of
the scaling and wavelet functions increases in direct proportion to the number of zero
moments [32].

ϕ(k) =
√

2
N−1

∑
m=0

pm ϕ(2k−m) (21)

The wavelets ψ(k) are defined in terms of the scaling function. The expression relating
the wavelet to the scaling function is:

ψ(k) =
N−1

∑
m=0

(−1)mrN−1−m ϕ(2k−m) (22)

where N represents the order of the system, m denotes the localization parameter, pm and
rN−1−m are the vector of scaling and wavelet filter coefficients, respectively.

2.3.4. Fejer–Korovkin Wavelet

The kernel function of the Fejer–Korovkin wavelet, which is more symmetrical but
less smooth than the Daubechies filters, is calculated with the help of Equations (23)–(25).
A special class of filters is the family of filters associated with MRA filters. An MRA filter
m0 generates the scaling function, associated with the MRA by [33]:

ϕ̂(ξ) =
∞

∏
j=1

m0

(
2−jξ

)
(23)

A sufficient condition for a filter m0 satisfying Equation (24), and taking on the value 1
at 0, to be an MRA filter is that m0 does not vanish on [−π/2, π/2].

|m0(ξ)|2 + |m0(ξ + π)|2 = 1 (24)

The kernel function {K(ξ)} is expressed by:

K(ξ) = 1 + π
N−1

∑
l=0

(−1)l(2l + 1)a1cos((2l + 1)ξ) (25)

where a1 is sequence of coefficients and ξ is index of vector. The Fejer–Korovkin filters are
defined by:

|mn
0 (ξ)|

2 =
1

2π

∫ π/2

−π/2
K(ξ − u)du (26)

where mn
0 has length n if n is even and length n + 1 if n is odd.

2.3.5. Symlets Wavelet

Symlets wavelets, which are similar to the structure of Daubechies wavelets, are called
orthogonal, biorthogonal, and least asymmetrical wavelets, and were introduced to the
literature by Daubechies [29]. Daubechies wavelets have a maximum phase, while Symlets
wavelets have a minimum phase. Unlike Daubechies wavelets, Symlets wavelets have a
smoothed wavelet function with near-zero moments [34]. Symlets are more symmetrical
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than Daubechies, even though they have a 2N− 1 support size with N vanishing moments.
Symlet wavelet coefficients for different filter lengths are calculated in [29].

2.4. Two-Dimensional Discrete Wavelet Transform (2D-DWT)

To simplify the vortex dynamics within a given implementation of the vorticity field,
2D-DWT is used, assuming that the vorticity field has finite energy; i.e.,

∫
ζ2(x)dx < ∞.

Let ϕ be a scaling function and ψ the corresponding wavelet forming an orthonormal basis
on L2(R).

Three separable, “directionally sensitive” 2D-wavelet functions ψH(x, y), ψV(x, y),
and ψD(x, y) can be defined as

ψH(x, y) = ψ(x)ϕ(y) (27)

ψV(x, y) = ϕ(x)ψ(y) (28)

ψD(x, y) = ψ(x)ψ(y) (29)

corresponding to horizontal, vertical, and diagonal directions, respectively. The directional
sensitivity is a natural consequence of the separability in Equations (27)–(29); it does not
increase the computational complexity of the 2D-DWT with the biorthogonal, Coiflet,
Daubechies, Fejer–Korovkin, and symlet wavelet families used in this study.

The separable scaling function ϕ(x, y) = ϕ(x)ϕ(y) is associated with the approxi-
mation space. The separable 2D-scaling and frequency dependent wavelet functions are
defined as [35]:

ϕj,m,n(x, y) = 2j/2 ϕ
(

2jx−m, 2jy− n
)

(30)

ψi
j,m,n(x, y) = 2j/2ψ

(
2jx−m, 2jy− n

)
(31)

where i term denotes one of H, V, or D. The 2D-DWT calculation for the function f (x, y) in
M and N dimensions is expressed by:

Wϕ(j0, m, n) =
1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)ϕj0,m,n(x, y) (32)

Wi
ψ(j, m, n) =

1√
MN

M−1

∑
x=0

N−1

∑
y=0

f (x, y)ψi
j0,m,n(x, y) (33)

for j = 0, 1, . . . , J − 1 and m, n = 0, 1, 2, . . . , 2j−1. Note that j0 is an arbitrary starting
scale. The wavelet transform coefficients defined by Equations (32) and (33) are called
approximation and detail coefficients, respectively. Wϕ(j0, m, n) coefficients describe an ap-
proximation of f (x, y) at this scale, and Wi

ψ(j, m, n) coefficients compose diagonal, vertical,
and horizontal details for scales j ≥ j0.

In this study, 2D-DWT with the biorthogonal, Coiflet, Daubechies, Fejer–Korovkin,
and symlet wavelet families is applied to the image dataset consisting of apple, grape,
and tomato plants. The feature groups extracted at various filter lengths for each wavelet
family are used in the proposed plant leaf disease classification model structure. It should
be noted that all of the wavelets used in the work avoid the computational complexity of
complex numbers.

The scaling function, horizontal, vertical, and diagonal wavelet functions of wavelets
that provide the best classification performance for each wavelet family are presented in
Table 1. In the study, the wavelets that provide the best classification performance are
obtained as “bior2.4” for the biorthogonal spline wavelet family, “coif1” for the Coiflet
wavelet family, “db5” for the Daubechies wavelet family, “fk18” for the Fejer–Korovkin
wavelet family, and “sym7” for the symlet wavelet family. Moreover, the best classification
performance is obtained by the features extracted with “sym7” in the study, where there
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are twelve classes consisting of one healthy and three disease classes for each of the three
plant species consisting of apple, grape, and tomato.

Table 1. Scaling and mother wavelet functions of wavelets that provide the best classification
performance for each wavelet type used in the study.

Wavelet Types Scaling Function
ϕ(x,y)=ϕ(x)ϕ(y)

Horizontal Wavelet
ψH(x,y)=ψ(x)ϕ(y)

Vertical Wavelet
ψV(x,y)=ϕ(x)ψ(y)

Diagonal Wavelet
ψD(x,y)=ψ(x)ψ(y)

Biorthogonal spline,
bior2.4
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2.5. Flower Pollination Algorithm

The FPA introduced by Xin-She Yang in 2012 is a new metaheuristic inspired by the
reproductive process of flowering plants to achieve the best result in the shortest time in
solving global optimization problems [36]. Briefly, the algorithm mimics pollination in
plants, including all the mechanisms for pollinators such as pollen transfer insects, bats,
birds, wind, and water. The main purpose of flower pollination is to provide optimal vitality
and the optimum biological reproduction phase. Pollination and other factors interact best
to reproduce plants. Flowers need pollinators to carry out their pollination guidelines.
There are two types of pollinators. The first of these are biotic pollinators, such as bats, flies,
and bees. These pollinators can carry the pollen of flowers over great distances. In addition,
the flight paths of these pollinators can be modeled with the Lévy distribution. The second
type of pollinator is abiotic pollinators, such as water and wind. This form of pollination
is considered to occur over short distances [37]. The pollination process is modeled by
dividing it into two groups as cross-pollination and self-pollination. Cross-pollination is
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considered as the flowers of different plants pollinate each other. Self-pollination is defined
as the pollination of the same flowers or different flowers of a plant. Self-pollination is used
as the local search directive, while biotic cross pollination is defined as the global search
directive. In the self-pollination process, there are some factors, such as the proximity of
flowers to each other and the wind. Because of these factors, the local search process has
more weight in the general search process. The pollinators and pollination types used in
FPA are shown in Figure 1. The pollination process is mimicked using the following four
basic rules:

(i) Global pollination processes are carried out biotically, and pollinators carry pollen in
the form of cross-pollination according to their Lévy flight.

(ii) Abiotic pollination can occur in abiotic conditions, such as self-pollination and wind
diffusion as local pollination.

(iii) The coefficient called flower constancy is expressed as the probability of reproduction
and varies in proportion to the similarity of flower species.

(iv) Global pollination and local pollination are controlled by a switch probability p ∈ [0, 1].
It is noted that p indicates the percentage balance between local and global search in
the optimization search field.
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In global pollination, pollen can be carried long distances because insects can fly for a
long time. This guarantees the best reproduction. The mathematical expression of global
pollination and flower constancy is defined by:

Xt+1
i = Xt

i + L
(
Xt

i − g∗
)

(34)

where Xt
i is the solution vector at iteration t, g∗ is the current best solution among all

solutions in the current iteration, i is the pollen bundle or solution vector index, L is the
step size representing the strength of pollination.



Biology 2022, 11, 1732 12 of 30

As insects and birds fly for a long distance, their motion can be shown according to
the Lévy distribution. The long distances taken by pollinators are imitated by Lévy flight.
Lévy flight distribution is defined as:

L ∼
λΓ(λ) sin

(
πλ
2

)
π

1
s1+λ

(s� s0 > 0) (35)

where Γ(λ) is the standard gamma function with an index λ and Lévy distribution is valid
for large steps s > 0. The abiotic pollination and flower constancy in the algorithm can be
represented as:

Xt+1
i = Xt

i + ε
(

Xt
j − Xt

k

)
(36)

where Xt
j and Xt

k represent pollen bundles of different flowers of the same plant; that is,
different solutions of the solution set, ε denotes a random local pollination distance and
has a normal distribution between [0, 1].

The remarkable feature of this algorithm is that many solution points are searched
in the search space using the Lévy distribution. Determining the solution points in the
solution space with the global search and searching the neighborhood of the solution points
through the local search constitute the optimization logic of the algorithm.

The computational complexity of the wrapper approach, which consists of the FPA
and SVM algorithms proposed from the study, is O(N(n× p + f n× p)). Here, N denotes
the number of iterations, n indicates the number of features, and f n defines fitness function
value, p represents the number of selected features. Since FPA has fast convergence, low
complexity, and good optimization performance, SVM has low computational complexity
and is easily repeatable, the wrapper approach consisting of the FPA and SVM algorithms
is used for feature selection in this study.

2.6. Convolutional Neural Network Classifier

Traditional neural networks are heavily inspired by the way biological neural systems
work and consist of a high number of interconnected computational nodes working in a
distributed manner to collectively learn from the input to optimize the final output. CNNs
are similar to traditional neural networks in that they consist of neurons that self-optimize
through learning. CNNs, which are used in many computer-vision fields, especially
classification, include convolutional feature extraction and classification layers, unlike
traditional neural networks [39]. In this study, the CNN classifier, which has only one
classification layer without a feature extraction layer, is used to overcome the model
hyperparameter problem and minimize the model complexity.

CNNs consist of three types of layers, the convolution layer, the pool layer, and the
fully connected layer. The feature maps created in the final convolution and pooling layers
are converted to a one-dimensional array of numbers and mapped to the final output of
the network by connecting to one or more fully connected layers. In this study, the CNN
classifier with two hidden layers consisting of flattened and fully connected layers is used.
The features selected by the wrapper approach consisting of the FPA and SVM algorithms
are given as input to the flatten layer of the CNN. Thus, the computational load of the
model is prevented from increasing.

2.7. Performance Metrics for Classification

The whole dataset used in the study is randomly separated into two independent
datasets, 80% and 20%, for the training and validation phases, respectively. The training
performance of the models created in the study for plant leaf disease classification is mea-
sured by the 10-fold cross-validation method. The training performance of each classification
model is calculated by averaging the accuracy values for each fold. The performances of
all classification models used in the study are measured on the test data with the help of
the metrics in Equations (37)–(40). The metrics given in Equations (37)–(40) are calculated
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based on the confusion matrix. Here, TP, FP, TN, and FN denote true positives, false
positives, true negatives, and false negatives, respectively.

Accuracy =
TP + TN

TP + TN + FP + FN
, (37)

Precision =
TP

TP + FP
, (38)

Recall =
TP

TP + FN
, (39)

F1 score =
2× Recall × Precision

Recall + Precision
. (40)

Accuracy is generally a measure of how often the classifier estimates correctly. Precision
is the ratio of how many positively predicted samples are predicted correctly. Recall is an
indication of how many of the samples that should be predicted positively were predicted
correctly. F1 score is the harmonic mean of recall and precision. It is a measure of how well
the classifier is performing and is often used to compare classifiers [40].

2.8. Framework of the Proposed Methodology

In this study, a new robust hybrid model whose features are extracted with 2D-
DWT and selected with the FPA-SVM wrapper approach and include a CNN classifier is
proposed to classify plant leaf diseases in real time with high accuracy, low computational
cost, and low parameter complexity. The framework of the proposed approach for real-time
classification of plant leaf diseases is presented in Figure 2. The phases of the proposed
approach are briefly summarized below:

In the data preparation phase, the image dataset consisting of apple, grape, and
tomato plant diseases is randomly divided into two independent datasets, 80% and 20%,
respectively, for the training and validation phases.

At the phase of applying 2D-DWT with wavelets, the distinguishing features defining
the characteristic features of plant leaf diseases are extracted with the 2D-DWT using
wavelet families such as biorthogonal, Coiflets, Daubechies, Fejer–Korovkin, and symlets.

In the feature extraction phase, energy and statistical-based features are extracted
from the vertical, horizontal, diagonal, and approximate matrices of 2D-DWT. Six features,
namely the arithmetic mean, entropy, standard deviation, skewness, kurtosis, and energy,
are applied to these four matrices. Moreover, the column vector, which is the maximum
value of the columns of any matrices, is expressed with MCV, and the row vector, which
is the maximum value of the rows of them, is expressed with MRV. Additionally, six
properties, namely arithmetic mean, standard deviation, and entropy of both MCV and
MRV, were applied to the four matrices. The same process is also repeated for the second
level of decomposition in 2D-DWT. At the end of this phase, a total of 96 features are
extracted.

At the feature selection with the FPA-SVM phase, the most suitable ones among the
normalized features for each wavelet family are selected with the help of the wrapper
approach consisting of the FPA and SVM algorithms. In addition, the fitness function,
which takes into account both the number of features used in the model and the model
performance, is determined in order to keep the model complexity and computation cost to
a minimum level.

In the evaluation of model performance phase, CNN, SVM, and KNN classifier per-
formances are measured with the help of performance metrics and the model with the
highest performance is determined.
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3. Experimental Results and Discussion

In this section, studies showing the classification efficiency of the proposed hybrid
model for real-time classification of plant leaf diseases on a dataset consisting of leaf images
of healthy and diseased apple, grape, and tomato plants are presented. The proposed
model includes the 2D-DWT signal processing method based on the “sym7” wavelet
family, the wrapper approach consisting of FPA and SVM, and the CNN classifier. The
efficiency of the proposed optimization algorithm is also compared with the PSO algorithm.
The performance of the proposed CNN classifier for the hybrid model is compared with
the performances of the SVM and KNN classification algorithms, and its effect on the
performance of the plant leaf disease classification model is examined.

3.1. Dataset

In this study, a data set consisting of leaf images of apple, grape, and tomato plants
with a size of 256× 256 pixels was used. The image dataset consisting of apple, grape,
and tomato plant diseases used in the study was randomly divided into two independent
datasets, 80% and 20%, respectively, for the training and validation phases.

The dataset consisting of apple plant leaf images consists of healthy, black rot, cedar
rust, and scab disease classes seen in Figure 3. In the training phase of the models in the
study, a total of 1100 apple plant leaf images, 275 images for each class, were used, and
in the validation phase, a total of 220 apple plant leaf images, 55 images for each class,
were used. The dataset consisting of grape plant leaf images consists of healthy, black rot,
black measles, and leaf blight disease classes shown in Figure 4. In the training phase of
the models in the study, a total of 1680 grape plant leaf images, 420 images for each class,
were used, and in the validation phase, a total of 336 grape plant leaf images, 84 images
for each class, were used. The dataset consisting of tomato plant leaf images consists of
healthy, bacterial spot, late blight, and yellow leaf curl disease classes presented in Figure 5.
In the training phase of the models in the study, a total of 1700 tomato plant leaf images,
425 images for each class, were used, and in the validation phase, a total of 340 tomato
plant leaf images, 85 images from each class, were used.
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There are 12 classes in total in the study, and the number of plant leaf images belonging
to these 12 classes is 5376, of which 4480 are training data and 896 are validation data.
Apple, grape, and tomato plant leaf disease images used in the training and validation
phases of the model have been taken from the open-source Plant Village dataset [5].
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The testing phase of the models used in the study was carried out on the images
obtained with the help of the camera on the UAV. In the study, the GoPro Hero4 camera,
which can shoot 30 frames per second, was used. The images obtained with the UAV
have a resolution of 1920× 1080. These images were resized on the embedded system
and presented to the model with 256× 256 resolution. The stabilization of the camera
was provided with the help of the gimbal system. In order to cope with environmental
conditions, such as blurring, threshold values were used for images taken with the UAV.
These threshold values decide whether the image received by the UAV will be processed
or not.

The testing phase of the models was done with data as much as with the number of
images used in the validation phase of the models. Real-time tests of the aforementioned
models were carried out in various provinces of Turkey in August 2022. Apple leaf disease
tests were carried out in apple orchards in Eskişehir, grape leaf disease tests were carried
out in vineyards in Manisa, and tomato leaf disease tests were carried out in tomato fields
in Antalya province. During the time intervals when the tests were carried out, the average
temperature in Eskişehir was 27 °C, the average temperature in Manisa was 30 °C, and
the average temperature in Antalya was 32 °C. Average humidity values were measured
at 62%, 73%, and 78% for Eskişehir, Manisa, and Antalya, respectively. Considering the
seasonality of some diseases, the tests in the study were carried out in natural agricultural
areas instead of greenhouses in various provinces of Turkey.

3.2. Applying 2D-DWT with Wavelet Families

The features of plant leaf diseases were extracted by 2D-DWT using the biorthogonal,
Coiflet, Daubechies, Fejer–Korovkin, and symlet wavelet families for filter lengths shown in
Table 2. A two-level decomposition was applied to the original image matrix of 256× 256
pixels. As a result of this decomposition, vertical, horizontal, diagonal, and approximation
image matrices were obtained for each wavelet family. In the first level of decomposition,
four image matrices with 130× 130 pixel size and four image matrices with 67× 67 pixel
size in the second level of decomposition, a total of eight image matrices were obtained.

Table 2. Wavelet families and filter lengths used in the study.

Wavelet Family Filter Length

Biorthogonal (1.) 1, 3, 5, (2.) 2, 4, 6, 8, (3.) 1, 3, 5
Coiflet 1, 2, 3, 4, 5

Daubechies 1, 2, 3, 4, 5, 6, 7, 8, 9, 10
Fejer–Korovkin 4, 6, 8, 14, 18, 22

Symlet 2, 3, 4, 5, 6, 7, 8

3.3. Extraction of Statistical and Entropy-Based Features

Plant leaf disease is diagnosed by tests such as enzyme-linked immunosorbent assay
(ELISA) and polymerase chain reaction (PCR) performed in the laboratory environment, as
well as visual inspections made by experienced individuals, be they a botanist or farmer.
While this is the right approach, it is a costly and highly labor-intensive process as it
requires the installation of laboratory equipment. However, these traditional methods
based on experience and laboratory testing are not suitable for real-time detection of plant
leaf disease as they are time-consuming and allow expert error under heavy workload.
Since microscopic evaluation and diagnostic experiments such as ELISA and PCR do not
allow real-time detection of plant leaf disease, the distinguishing features of diseases have
been extracted. Extracted features define the characteristic structure of plant leaf diseases,
unlike the features obtained by visual image analysis techniques.

Statistical and entropy-based features were used in the study to classify plant leaf
diseases with high accuracy. A total of 96 features were extracted, and each feature was
labeled as seen in Table 3.
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Table 3. Index labels of features extracted from image matrices.

I1
V I1

H I1
D I1

A I2
V I2

H I2
D I2

A

F1 1 13 25 37 49 61 73 85

F2 2 14 26 38 50 62 74 86

F3 3 15 27 39 51 63 75 87

F4 4 16 28 40 52 64 76 88

F5 5 17 29 41 53 65 77 89

F6 6 18 30 42 54 66 78 90

F7 7 19 31 43 55 67 79 91

F8 8 20 32 44 56 68 80 92

F9 9 21 33 45 57 69 81 93

F10 10 22 34 46 58 70 82 94

F11 11 23 35 47 59 71 83 95

F12 12 24 36 48 60 72 84 96

Statistical and entropy-based features given in Table 4 were applied to the image
matrices, I =

{
I1
V , I1

H , I1
D, I1

A, I2
V , I2

H , I2
D, I2

A
}

, obtained from first and second-level de-
composition for each wavelet family. Half of the extracted features consist of the mean,
standard deviation, and entropy values of MRV, which is the maximum row vector of the
Ii
j(x, y) image, and MCV, which is the maximum column vector of the Ii

j(x, y) image. Thus,
the sensitivity of the proposed plant leaf disease classification model to the changes in the
rows and columns of the Ii

j(x, y) image matrix was increased [41].

Table 4. Statistical and entropy-based features and their equations.

Label Feature Name Feature Expression

F1 Arithmetic mean mean = 1
m×n

m
∑
x

n
∑
y

∣∣∣Ii
j(x, y)

∣∣∣
F2 Entropy entropy =

m
∑
x

n
∑
y

Ii
j(x, y)log

∣∣∣Ii
j(x, y)

∣∣∣
F3 Standard deviation std =

√
1

m×n

m
∑
x

n
∑
y

(∣∣∣Ii
j(x, y)

∣∣∣−mean
)2

F4 Skewness skw = 1
m×n

m
∑
x

n
∑
y

( ∣∣∣Ii
j (x,y)

∣∣∣−mean
std

)3

F5 Kurtosis krts = 1
m×n

m
∑
x

n
∑
y

( ∣∣∣Ii
j (x,y)

∣∣∣−mean
std

)4

F6 Energy energy =

√
m
∑
x

n
∑
y

(
Ii
j(x, y)

)2

F7 MRV mean MRVmean = 1
m

m
∑
x

MRV(x)

F8 MCV mean MCVmean = 1
n

n
∑
y

MCV(y)

F9
Standard deviation
of MRV MRVstd =

√
1
m

m
∑
x
(MRV(x)−MRVmean)

2

F10
Standard deviation
of MCV MCVstd =

√
1
n

n
∑
y
(MCV(y)−MCVmean)

2

F11 MRV entropy MRVentropy =
m
∑
x
|MRV(x)|log|MRV(x)|

F12 MCV entropy MCVentropy =
n
∑
y
|MCV(y)|log|MCV(y)|
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3.4. Feature Selection with FPA-SVM Method

In order to keep both the classification performance high and the computational
complexity to a minimum level, it is necessary to determine the subset consisting of the
most suitable features out of the 96 features extracted from eight image matrices obtained by
applying the 2D-DWT technique. FPA, which mimics the reproduction process of flowering
plants, selects the most suitable features that keep the SVM classifier performance high
among the normalized features for each wavelet family with the help of the fitness function,
which is defined as:

f itness = µ× γR(εC) + σ×
(

cardinality o f the selected subset
total number o f f eatures

)
(41)

where γR(εC) indicates the classification error rate of classifier. µ and σ represent the
significance of classification quality and subset length, respectively. Here, µ ∈ [0, 1]
and σ = (1− µ). The fitness function considers both the number of features used in
the model and model performance to keep model complexity and computational cost to
minimum levels.

Due to its high performance for the selected feature subset and fast response time,
the wrapper approach in the study is composed of the SVM algorithm based on statistical
learning theory. The effectiveness of the proposed optimization algorithm for the wrapper
approach to feature selection is emphasized by comparing it with the PSO algorithm. The
parameter values of the FPA-SVM and PSO-SVM wrapper approaches used in the study
are presented in Table 5. It should be noted that in the models created for each wavelet
family, feature selection is performed according to the parameter values in Table 5.

Table 5. Parameter values of wrapper feature selection approaches used in the study.

Parameters FPA-SVM PSO-SVM

Number of solutions 30 30
Maximum number of iterations 50 50

Number of features 96 96
Threshold 0.7 0.7

Other parameters switch probability = 0.4
levy component = 1.5

cognitive factor = 2
social factor = 2

inertia weight = 1

Fitness function maximization of classifier performance & minimization of the number
of selected features

The total selection rates for the best feature groups belonging to the biorthogonal,
Coiflet, Daubechies, Fejer–Korovkin, and symlet wavelet families after 50 iterations in FPA
were given as percentages in the heat map in Figure 6. It is seen that the highest number of
features were extracted from I1

H, I1
D, and I1

A for biorthogonal; I1
V, I2

V, and I2
H for Coiflets; I1

V,
I1

D, and I1
A for Daubechies; I1

V, I1
D, and I2

H for Fejer–Korovkin; and I1
V, I1

D, and I2
H for symlets

in eight image matrices obtained from 2D-DWT analysis.
The F4 feature, one of the statistical and entropy-based features, was used at least 10%

in all wavelet families. In addition to this feature, F5 for biorthogonal,F2 for Coiflets, F8 for
Daubechies, F5 for Fejer–Korovkin, and F11 for symlets were selected at least 10%. It can be
seen from Figure 6 that these two features specified for each wavelet family constitute at
least 25% of the features selected for the plant leaf disease classification model. On the other
hand, in the proposed plant leaf disease classification model, it is noted that the features F6
and F7 for biorthogonal; F1, F3, and F12 for Coiflets; F6 and F9 for Daubechies; F6 and F12 for
Fejer–Korovkin; and F1 and F6 for symlets were used the least.
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3.5. Evaluation of Plant Leaf Disease Classification Models and Discussion

All models mentioned in the study of plant leaf disease images were performed on
a personal computer with an Intel Core i7–10875H processor, an 8 GB NVIDIA RTX 3070
graphics card, and 16 GB of RAM. All codes for the models were compiled by MATLAB
2021b. The models created in the study were tested on 896 pieces of data, including 12
plant leaf disease classes, taken with the camera on the UAV. All models created were run
50 times, and the performance of the models was computed as the mean and standard
deviation. In the study, the effects of both optimization and classifier algorithms on model
performance were examined. The performances of the CNN, KNN, and SVM classification
models created with the features selected by both the FPA-SVM and PSO-SVM wrapper
approaches were measured in terms of accuracy metrics, and the results are presented in
Tables 6 and 7, respectively.

Table 6. The performance of the classifiers for selected features by the FPA-SVM wrapper approach.

Wavelets Num. Selected Features
Accuracy (%)

CNN SVM KNN

Bi
or

th
og

on
al

(b
io

r)

1.1 24 3, 4, 5, 14, 15, 16, 23, 24, 26, 33, 36, 45, 47, 48, 55,
56, 65, 75, 80, 85, 87, 88, 89, 92 96.90 ± 0.09 89.26 ± 0.36 83.66 ± 0.04

1.3 23 8, 17, 20, 22, 23, 25, 26, 28, 32, 37, 41, 44, 45, 52, 58,
60, 62, 63, 65, 74, 77, 84, 85 96.76 ± 0.11 91.05 ± 0.02 83.88 ± 0.07

1.5 26 3, 4, 6, 15, 16, 21, 22, 27, 28, 29, 34, 37, 40, 43, 45,
48, 63, 64, 65, 69, 71, 76, 83, 90, 91, 94 97.68 ± 0.69 91.56 ± 0.63 84.22 ± 0.16

2.2 17 4, 6, 28, 29, 34, 35, 41, 47, 50, 52, 55, 61, 62, 64, 65,
76, 83 96.45 ± 0.20 92.14 ± 0.27 91.00 ± 0.96

2.4 21 1, 4, 5, 8, 23, 27, 28, 30, 34, 36, 41, 42, 47, 56, 57, 58,
65, 66, 87, 92, 93 98.08 ± 0.02 93.53 ± 0.33 88.50 ± 0.78

2.6 19 4, 5, 9, 11, 16, 21, 23, 28, 31, 32, 33, 37, 40, 41, 52,
53, 57, 58, 75 97.34 ± 0.47 93.53 ± 0.11 91.12 ± 0.07

2.8 21 10, 17, 19, 25, 28, 29, 33, 35, 37, 41, 47, 66, 67, 69,
70, 81, 82, 83, 84, 88, 95 97.50 ± 0.29 92.37 ± 0.07 83.21 ± 0.04

3.1 20 1, 2, 3, 4, 5, 9, 15, 16, 19, 24, 26, 28, 40, 52, 61, 67,
70, 76, 82, 89 97.34 ± 0.13 92.90 ± 0.07 89.13 ± 0.04

3.3 19 4, 5, 8, 16, 23, 26, 28, 29, 38, 52, 56, 62, 71, 74, 77,
78, 86, 87, 93 97.34 ± 0.13 93.95 ± 0.80 92.21 ± 0.20

3.5 20 2, 4, 14, 16, 20, 21, 22, 28, 36, 37, 40, 41, 43, 46, 47,
51, 52, 58, 62, 72 96.90 ± 0.13 93.39 ± 0.13 90.00 ± 0.60

C
oi

fle
ts

(c
oi

f)

1 24 4, 5, 8, 11, 14, 15, 16, 19, 28, 34, 35, 49, 50, 52, 58,
61, 62, 64, 68, 70, 84, 85, 89, 91 97.77 ± 0.22 95.29 ± 0.36 89.69 ± 0.07

2 14 2, 4, 12, 28, 34, 41, 50, 52, 59, 62, 64, 76, 83, 93 93.86 ± 0.11 91.38 ± 0.47 89.87 ± 0.42

3 18 2, 4, 5, 6, 7, 8, 26, 29, 43, 45, 52, 56, 62, 64, 70, 76,
79, 96 96.32 ± 0.22 92.17 ± 0.54 89.89 ± 0.27

4 23 7, 8, 17, 18, 21, 26, 28, 34, 35, 37, 42, 45, 49, 56, 57,
62, 65, 67, 80, 86, 88, 90, 95 97.57 ± 0.09 92.63 ± 0.11 85.87 ± 1.27

5 19 4, 5, 18, 26, 27, 30, 36, 50, 51, 52, 59, 69, 70, 71, 72,
77, 83, 87, 89 97.54 ± 0.11 92.37 ± 0.27 87.30 ± 0.47
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Table 6. Cont.

Wavelets Num. Selected Features
Accuracy (%)

CNN SVM KNN

C
oi

fle
ts

(c
oi

f)

1 24 4, 5, 8, 11, 14, 15, 16, 19, 28, 34, 35, 49, 50, 52, 58,
61, 62, 64, 68, 70, 84, 85, 89, 91 97.77 ± 0.22 95.29 ± 0.36 89.69 ± 0.07

2 14 2, 4, 12, 28, 34, 41, 50, 52, 59, 62, 64, 76, 83, 93 93.86 ± 0.11 91.38 ± 0.47 89.87 ± 0.42

3 18 2, 4, 5, 6, 7, 8, 26, 29, 43, 45, 52, 56, 62, 64, 70, 76,
79, 96 96.32 ± 0.22 92.17 ± 0.54 89.89 ± 0.27

4 23 7, 8, 17, 18, 21, 26, 28, 34, 35, 37, 42, 45, 49, 56, 57,
62, 65, 67, 80, 86, 88, 90, 95 97.57 ± 0.09 92.63 ± 0.11 85.87 ± 1.27

5 19 4, 5, 18, 26, 27, 30, 36, 50, 51, 52, 59, 69, 70, 71, 72,
77, 83, 87, 89 97.54 ± 0.11 92.37 ± 0.27 87.30 ± 0.47

D
au

be
ch

ie
s

(d
b)

1 21 5, 8, 17, 18, 19, 25, 26, 28, 35, 36, 37, 44, 45, 53, 56,
65, 72, 77, 82, 83, 95 94.60 ± 0.51 87.48 ± 0.13 80.71 ± 0.31

2 22 2, 4, 11, 12, 16, 17, 20, 24, 27, 32, 37, 45, 52, 58, 59,
60, 64, 67, 78, 80, 88, 96 96.70 ± 0.49 91.27 ± 0.02 84.02 ± 0.65

3 23 3, 4, 7, 15, 19, 21, 25, 28, 35, 39, 42, 50, 51, 52, 53,
67, 68, 75, 78, 80, 81, 93, 96 97.43 ± 0.22 93.04 ± 0.60 85.94 ± 0.11

4 19 4, 12, 23, 26, 28, 29, 33, 34, 36, 37, 50, 53, 58, 60, 65,
67, 70, 87, 95 97.34 ± 0.09 92.59 ± 0.27 88.44 ± 0.27

5 21 3, 4, 8, 14, 23, 26, 28, 32, 40, 41, 46, 48, 50, 58, 65,
70, 72, 75, 82, 83, 87 98.19 ± 0.42 94.11 ± 0.58 90.67 ± 0.04

6 19 2, 4, 10, 21, 26, 28, 32, 38, 39, 41, 46, 47, 64, 72, 76,
82, 83, 91, 93 95.92 ± 0.16 91.38 ± 0.25 89.24 ± 0.60

7 18 4, 6, 7, 8, 17, 19, 21, 23, 28, 32, 33, 36, 41, 58, 61, 64,
72, 85 95.63 ± 0.20 90.29 ± 0.56 86.05 ± 0.22

8 27 1, 2, 4, 8, 12, 16, 22, 24, 25, 27, 28, 29, 32, 42, 50, 54,
56, 67, 73, 76, 82, 87, 88, 92, 94, 95, 96 97.88 ± 0.33 93.62 ± 0.02 85.60 ± 0.67

9 24 3, 4, 7, 8, 10, 22, 28, 29, 32, 40, 41, 43, 45, 48, 50, 54,
56, 59, 74, 79, 87, 90, 91, 94 97.88 ± 0.22 93.93 ± 0.16 86.07 ± 0.20

10 22 1, 4, 8, 17, 18, 19, 24, 26, 28, 36, 38, 42, 44, 46, 50,
68, 77, 82, 86, 87, 88, 90 97.88 ± 0.11 92.30 ± 0.11 86.41 ± 0.13

Fe
je

r-
K

ro
vk

in
(fk

)

4 24 7, 8, 9, 16, 17, 20, 21, 23, 26, 28, 35, 37, 42, 45, 57,
61, 65, 69, 75, 79, 80, 86, 88, 96 96.99 ± 0.22 90.31 ± 0.47 82.19 ± 0.71

6 20 4, 5, 10, 11, 23, 27, 28, 30, 31, 32, 33, 37, 44, 52, 53,
55, 57, 58, 71, 75 97.52 ± 0.09 93.62 ± 0.13 85.69 ± 0.20

8 23 3, 4, 8, 11, 21, 28, 32, 35, 38, 39, 40, 42, 45, 56, 67,
72, 73, 77, 81, 83, 91, 92, 94 97.97 ± 0.20 93.21 ± 0.47 86.58 ± 0.02

14 21 3, 10, 11, 15, 17, 24, 26, 28, 29, 31, 32, 49, 53, 67, 68,
75, 76, 77, 80, 82, 91 97.70 ± 0.04 93.15 ± 0.18 87.17 ± 0.33

18 23 4, 5, 9, 10, 12, 14, 17, 21, 25, 26, 27, 28, 35, 52, 62,
63, 65, 69, 70, 71, 73, 74, 79 97.99 ± 0.11 94.75 ± 0.11 90.33 ± 0.18

22 21 2, 28, 29, 35, 36, 40, 41, 45, 46, 51, 53, 58, 64, 65, 69,
70, 79, 85, 86, 91, 94 96.81 ± 0.16 90.96 ± 0.56 86.03 ± 0.31
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Table 6. Cont.

Wavelets Num. Selected Features
Accuracy (%)

CNN SVM KNN

2 25 2, 4, 11, 13, 17, 22, 24, 28, 29, 35, 38, 64, 65, 69, 71,
72, 75, 76, 79, 80, 81, 87, 90, 92, 93 98.28 ± 0.18 94.13 ± 0.40 87.14 ± 0.13

3 21 2, 4, 6, 7, 8, 9, 19, 25, 28, 32, 35, 46, 52, 59, 65, 71,
75, 81, 84, 85, 89 97.21 ± 0.11 92.95 ± 0.47 85.83 ± 0.45

4 20 3, 5, 11, 15, 19, 26, 27, 28, 35, 50, 60, 68, 69, 70, 74,
75, 76, 85, 87, 96 97.21 ± 0.56 92.28 ± 0.31 84.22 ± 0.29

5 24 3, 4, 6, 11, 12, 14, 19, 26, 28, 31, 32, 39, 46, 48, 52,
47, 65, 66, 67, 83, 86, 88, 90, 91 97.68 ± 0.13 93.24 ± 0.60 85.65 ± 0.18

6 20 4, 11, 27, 28, 35, 37, 38, 39, 53, 54, 56, 58, 69, 70, 71,
72, 77, 83, 86, 91 97.23 ± 0.13 93.15 ± 0.29 85.71 ± 0.11

7 23 1, 4, 5, 8, 16, 21, 22, 26, 28, 34, 36, 40, 44, 45, 46,
47, 50, 52, 57, 80, 82, 87, 94 99.55 ± 0.13 97.54 ± 0.25 93.97 ± 0.04

Sy
m

le
ts

(s
ym

)

8 23 4, 13, 16, 28, 30, 35, 48, 50, 52, 63, 65, 67, 68, 69, 73,
76, 79, 82, 88, 90, 92, 93, 95 98.06 ± 0.29 95.47 ± 0.16 90.42 ± 0.58

Table 7. The performance of the classifiers for selected features by the PSO-SVM wrapper approach.

Wavelets Num. Selected Features
Accuracy (%)

CNN SVM KNN

Bi
or

th
og

on
al

(b
io

r)

1.1 19 5, 11, 19, 26, 28, 29, 32, 40, 41, 45, 56, 62, 63, 64, 70,
75, 85, 87, 96 91.71 ± 0.04 84.93 ± 1.09 80.40 ± 0.36

1.3 21 3, 4, 5, 9, 11, 14, 15, 19, 21, 25, 27, 39, 46, 62, 63, 74,
76, 77, 84, 91, 93 92.03 ± 0.29 81.96 ± 0.02 74.28 ± 0.18

1.5 23 3, 5, 8, 9, 10, 26, 28, 29, 31, 34, 37, 40, 41, 49, 56, 59,
62, 66, 79, 81, 87, 91, 92 92.90 ± 0.25 84.64 ± 0.54 78.17 ± 0.02

2.2 17 1, 2, 4, 16, 26, 27, 28, 52, 53, 65, 69, 70, 78, 85, 86,
87, 96 91.11 ± 0.09 86.85 ± 0.78 85.31 ± 0.20

2.4 18 3, 4, 5, 6, 17, 24, 26, 27, 28, 36, 40, 47, 53, 69, 76, 79,
80, 87 92.41 ± 0.02 86.42 ± 0.13 85.55 ± 0.04

2.6 15 4, 16, 44, 47, 50, 52, 57, 60, 69, 70, 73, 76, 80, 81, 89 88.14 ± 0.18 82.34 ± 0.16 79.19 ± 0.63

2.8 19 12, 16, 23, 28, 35, 41, 42, 43, 45, 51, 59, 66, 67, 72,
73, 76, 79, 90, 96 93.10 ± 0.45 87.32 ± 0.02 81.49 ± 0.22

3.1 20 1, 9, 12, 14, 15, 16, 20, 24, 28, 29, 31, 32, 34, 57, 63,
77, 87, 88, 92, 94 92.96 ± 0.09 86.42 ± 0.13 82.47 ± 0.20

3.3 21 1, 2, 6, 12, 13, 29, 35, 37, 40, 44, 52, 53, 57, 62, 64,
67, 70, 77, 83, 86, 89 92.79 ± 0.09 85.29 ± 0.33 78.23 ± 0.47

3.5 19 2, 5, 7, 12, 14, 16, 28, 31, 38, 42, 51, 60, 66, 67, 72,
79, 83, 89, 92 92.74 ± 0.20 87.16 ± 0.65 83.21 ± 0.27

C
oi

fle
ts

(c
oi

f)

1 19 3, 4, 10, 11, 17, 35, 36, 37, 50, 56, 59, 61, 68, 73, 84,
88, 89, 92, 95 92.23 ± 0.09 85.29 ± 0.22 79.71 ± 0.22

2 22 4, 13, 14, 15, 24, 28, 33, 35, 36, 39, 50, 52, 53, 58, 66,
68, 69, 76, 87, 89, 93, 96 92.94 ± 0.27 87.92 ± 0.18 85.58 ± 0.16

3 20 1, 4, 6, 7, 13, 19, 21, 26, 28, 29, 45, 46, 52, 63, 68, 71,
76, 79, 82, 90 93.17 ± 0.04 89.44 ± 0.20 85.64 ± 0.02

4 17 4, 12, 17, 20, 23, 26, 36, 46, 50, 52, 53, 56, 57, 58, 72,
79, 95 93.43 ± 0.01 89.33 ± 0.09 85.71 ± 0.02

5 17 8, 16, 18, 20, 23, 24, 28, 31, 32, 33, 39, 42, 43, 49, 72,
76, 79 91.58 ± 0.27 84.44 ± 0.16 78.83 ± 0.02
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Table 7. Cont.

Wavelets Num. Selected Features
Accuracy (%)

CNN SVM KNN

1 16 4, 5, 11, 17, 28, 35, 37, 39, 44, 51, 52, 56, 65, 88,
91, 95 93.70 ± 0.42 84.84 ± 0.33 80.82 ± 0.13

2 19 8, 16, 17, 20, 27, 28, 35, 36, 37, 48, 52, 57, 60, 63, 64,
65, 80, 87, 88 91.71 ± 1.07 85.71 ± 0.20 81.83 ± 0.11

3 19 4, 7, 8, 24, 26, 28, 32, 34, 35, 36, 46, 53, 54, 58, 61,
76, 83, 87, 91 91.40 ± 0.02 85.60 ± 0.47 78.81 ± 0.56

4 23 4, 12, 17, 22, 23, 26, 35, 40, 41, 42, 44, 50, 51, 54, 55,
60, 62, 63, 65, 67, 72, 76, 94 94.21 ± 0.11 89.55 ± 0.36 83.54 ± 0.71

5 21 4, 8, 17, 22, 23, 24, 26, 28, 31, 40, 43, 58, 64, 65, 67,
72, 73, 80, 81, 88, 89 93.79 ± 0.20 89.75 ± 0.56 85.69 ± 0.18

6 24 4, 6, 16, 17, 19, 21, 22, 26, 28, 29, 32, 35, 38, 41, 43,
53, 75, 76, 79, 80, 82, 86, 90, 91 94.87 ± 0.04 90.15 ± 0.29 87.00 ± 0.18

7 19 5, 7, 10, 12, 14, 15, 21, 26, 28, 37, 40, 50, 57, 59, 65,
83, 89, 92, 94 93.28 ± 0.38 86.87 ± 0.09 81.77 ± 0.25

8 17 4, 14, 17, 18, 19, 24, 26, 28, 29, 32, 34, 50, 62, 65, 66,
73, 80 91.56 ± 0.25 84.10 ± 0.29 78.21 ± 0.16

9 18 5, 22, 26, 28, 35, 36, 37, 39, 44, 46, 47, 56, 62, 77, 86,
88, 92, 93 92.65 ± 0.01 84.30 ± 0.02 79.04 ± 0.33

D
au

be
ch

ie
s

(d
b)

10 22 5, 9, 11, 12, 14, 15, 16, 26, 36, 37, 40, 46, 47, 53, 55,
60, 68, 70, 80, 91, 92, 93 93.72 ± 0.07 85.87 ± 0.13 78.17 ± 0.31

Fe
je

r-
K

ro
vk

in
(fk

)

4 19 10, 12, 17, 28, 29, 32, 41, 43, 58, 72, 76, 78, 83, 85,
87, 88, 93, 94, 96 91.89 ± 0.47 82.63 ± 0.36 79.01 ± 0.13

6 20 4, 7, 17, 22, 25, 32, 34, 35, 37, 39, 44, 47, 48, 53, 54,
61, 64, 80, 86, 90 90.60 ± 0.38 82.50 ± 0.11 77.09 ± 0.27

8 21 2, 6, 8, 16, 28, 36, 39, 40, 42, 48, 51, 59, 60, 64, 68,
69, 70, 71, 72, 91, 93 92.23 ± 0.25 85.93 ± 0.42 79.24 ± 0.02

14 16 3, 15, 19, 26, 28, 31, 32, 48, 52, 55, 57, 58, 62, 72,
77, 85 90.93 ± 0.07 84.24 ± 0.38 79.44 ± 0.16

18 20 5, 8, 15, 16, 24, 26, 31, 34, 37, 49, 52, 61, 62, 76, 79,
80, 85, 88, 92, 94 92.88 ± 0.11 86.47 ± 0.29 80.49 ± 1.34

22 21 4, 7, 8, 9, 20, 21, 22, 25, 26, 34, 45, 51, 52, 62, 64, 69,
75, 76, 81, 84, 95 92.74 ± 0.36 87.29 ± 0.45 81.98 ± 0.27

Sy
m

le
ts

(s
ym

)

2 20 4, 5, 9, 11, 21, 23, 26, 28, 29, 32, 35, 41, 46, 52, 67,
69, 73, 79, 80, 88 91.89 ± 0.02 83.86 ± 0.02 78.41 ± 0.63

3 19 2, 4, 5, 12, 15, 21, 28, 37, 43, 44, 45, 51, 57, 62, 65,
73, 76, 94, 95 92.61 ± 0.38 87.18 ± 0.33 82.74 ± 0.13

4 18 3, 17, 19, 21, 26, 28, 40, 52, 54, 60, 65, 72, 74, 79, 85,
90, 92, 95 91.56 ± 0.13 85.89 ± 0.16 80.75 ± 0.49

5 23 10, 16, 17, 18, 21, 22, 26, 28, 29, 31, 39, 56, 64, 72,
75, 81, 82, 85, 91, 92, 93, 95, 96 93.41 ± 0.09 87.96 ± 0.33 80.96 ± 0.25

6 16 4, 16, 17, 21, 27, 28, 37, 45, 60, 61, 66, 67, 68, 77,
80, 92 91.36 ± 0.16 86.96 ± 0.11 83.28 ± 0.22

7 18 5, 9, 16, 19, 20, 28, 41, 47, 50, 52, 64, 67, 70, 78, 80,
78, 90, 95 90.33 ± 0.02 83.59 ± 0.02 79.50 ± 0.25

8 15 4, 23, 28, 29, 32, 39, 46, 51, 52, 60, 67, 70, 76, 78, 88 90.13 ± 0.18 86.65 ± 0.25 84.04 ± 1.09

Twenty-three feature subsets were selected from the features generated by the 2D-
DWT method based on the “sym7” wavelet family by the FPA-SVM wrapper approach.
The performances of CNN, SVM, and KNN classifiers created with 23 selected features
have been measured at 99.55%, 97.54%, and 93.97%, respectively. The plant leaf disease
classification model, which includes the 2D-DWT method based on the “sym7” wavelet
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family, the wrapper approach consisting of FPA and SVM, and the CNN classifier, has
been proposed as the model with the best classification performance in the study. For the
wrapper approach consisting of FPA and SVM, the best performance among the models
created with the SVM and KNN classifier algorithms has been obtained with the features
generated by the “sym7” wavelet family. The performance of the CNN classifier has been
measured over 95% for wavelet families excluding “coif2” and “db2”. The performance of
the SVM classifier has been measured at over 90% for wavelet families excluding “bior1.1”
and “db1”. The performance of the KNN classifier has been measured at over 85% for
wavelet families excluding “bior1.1”, “bior1.3”, “bior1.5”, “bior2.8”, “db1”, “db2”, “fk4”, and
“sym4”. It is seen that the performance of the CNN classifier is superior when compared to
the SVM and KNN classifiers.

Twenty-two feature subsets were selected from the features generated by the 2D-DWT
method based on the “db6” wavelet family by the PSO-SVM wrapper approach. The
performances of CNN, SVM, and KNN classifiers created with 22 selected features have
been measured at 94.87%, 90.15%, and 87.00%, respectively. For the wrapper approach
consisting of PSO and SVM, the best performance among the models created with the
SVM and KNN classifier algorithms has been obtained with the features generated by the
“db6” wavelet family. The performance of the CNN classifier has been measured over 90%
for wavelet families excluding “bior2.6”. The performance of the SVM classifier has been
measured over 85% for wavelet families, excluding “bior1.1”, “bior1.3”, “bior1.5”, “bior2.6”,
“coif5”, “db1”, “db8”, “db9”, “fk4”, “fk6”, “fk14”, “sym2”, and “sym7”. The performance of
the KNN classifier has been measured over 80% for wavelet families, excluding “bior1.3”,
“bior1.5”, “bior2.6”, “bior3.3”, “coif1”, “coif5”, “db3”, “db8”, “db9”, “db10”, “fk4”, “fk6”, “fk8”,
“fk14”, “sym2”, and “sym7”. It is seen that the performance of the CNN classifier is superior
when compared to the SVM and KNN classifiers.

Considering the model structure and input size of CNN, it can be said that the model
complexity of the proposed classification model is low since it has high performance with
fewer features selected by the FPA-SVM wrapper approach. When Tables 6 and 7 are
evaluated together, considering both the classification model performance and the number
of selected features, it is seen that the proposed FPA technique is successful compared to
the PSO algorithm for CNN, SVM, and KNN classifiers.

The CNN, SVM, and KNN classifier model performances, which were obtained as a
result of the 50 times training-validation process for the selected features with the FPA-SVM
wrapper approach proposed in the study, are compared with each other for the “bior”,
“coif ”, “db”, “fk”, and “sym” wavelet families in Figure 7.

It is seen that the performances of the models obtained with the CNN classifier are
obviously higher than the performances of the models obtained with both SVM and KNN
classifiers. It should also be noted that the SVM classifier performance is higher than the
KNN classifier performance for the specified wavelet families. The performance of all
classifiers created with the selected features with the FPA-SVM wrapper approach proposed
for the “sym7” wavelet family has the best performance. It is noteworthy that the proposed
FPA optimization technique improves CNN classifier performance by approximately 5%
and SVM and KNN classifier performances by approximately 8% compared to the PSO. It
is also seen that the performance of all classifiers created with the features selected with
the PSO-SVM wrapper approach for the “db6” wavelet family has the best performance.
The performances of various classifiers created with the features selected by the FPA-SVM
and PSO-SVM wrapper approaches for wavelet families that provide the best classification
performance are measured with the precision, recall, and F1 score performance metrics as
well as the accuracy metric and are presented in Table 8.
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Table 8. Comparison of the performance of various classifiers created with the selected features by
the proposed FPA-SVM and PSO-SVM wrapper approaches for wavelet families providing the best
classification performance.

Feature
Selection
Method

Wavelet Classifier Accuracy (%) Precision (%) Recall (%) F1 score (%)

PSO-SVM db6
CNN 94.87 95.06 94.61 94.77
SVM 90.15 90.21 89.62 89.73
KNN 87.00 87.64 85.86 86.26

sym7
CNN 99.55 99.52 99.60 99.56
SVM 97.54 97.58 96.44 96.92

FPA-SVM
(proposed)

KNN 93.97 94.25 93.82 93.84

In the study, the best-performing model, which includes the 2D-DWT signal processing
method based on the “sym7” wavelet family and the wrapper approach consisting of
FPA-SVM and the CNN classifier, was embedded in the NVIDIA Jetson Nano artificial
intelligence (AI) application development kit on the UAV, and real-time classification tests
have been performed on apple, grape, and tomato plants. The results obtained as a result
of the experiments performed on the test images are presented in Figure 8 in the form of a
confusion matrix. It is seen that the model run in real time has a very low-level classification
error for only two disease classes out of 12. The model predicts 2 out of 84 grape (black
measles) test data as grape (black rot) disease classes. Similarly, the model classifies 2 out
of 85 tomato (bacterial spot) test data as apple (healthy). The proposed model can classify
both plant species and plant diseases in real time with high accuracy.
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Moreover, a total of 227 models created, except for the model proposed in the study,
were embedded on the NVIDIA Jetson Nano AI application development kit on the UAV,
and the performances of all models were measured. When the performances of the models
were evaluated in terms of computational time, it was seen that the computational time of
the proposed model was 8.1% better than the second-best model in the study. As a result of
the experimental studies, it is concluded that our robust hybrid classification model, which
is created by selecting the lowest number of features with an optimization algorithm with
low computational complexity, can classify plant leaf diseases with precision in real time.

4. Conclusions and Future Work

Detection of plant diseases at an early phase is of great importance for appropriate
treatment. Automatic detection and classification of plant leaf diseases instead of visual
inspection contributes to increasing agricultural product productivity. In this study, a
new robust hybrid classification model based on swarm optimization-supported feature
selection, including machine learning and deep learning algorithms, is proposed to classify
diseases in apple, grape, and tomato plants with high accuracy in real time. The proposed
model includes the 2D-DWT signal processing method based on the “sym7” wavelet family,
the wrapper approach consisting of FPA-SVM, and the CNN classifier. In order for the
model to be robust, features extracted from various wavelet families, such as biorthogonal,
Coiflets, Daubechies, Fejer–Korovkin, and symlets, are used with the 2D-DWT method.
The features that keep the classifier performance high for each wavelet family are selected
with a wrapper approach consisting of FPA and SVM, so that the computational complexity
of the model has been kept to a minimum level. The CNN classification model is created
using the lowest number of features that can keep the classification performance high. The
CNN classifier with a single layer of classification without a feature extraction layer is
used to minimize the complexity of the model and to overcome the model hyperparameter
problem. Our proposed model for plant leaf disease classification is embedded in the
NVIDIA Jetson Nano AI development kit on the UAV, and its real-time performance is
tested. The experimental results obtained prove that the proposed model can detect and
classify the specified plant leaf diseases in real time with high accuracy. The proposed
classification model with fast and low computational cost will contribute to an increase in
agricultural efficiency by classifying plant leaves with high accuracy at an early phase. In
future studies, algorithms that can cope with the chaoticity on 2D images will be tested on
classifier model structures in order to detect and classify non-specific diseases in similar
leaf images.
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