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Simple Summary: The main objective of this study is to assess how eugenol (Eug) affects AgNP-
induced nephrotoxicity in rats. After 30 days of treatment with AgNPs, rats developed nephrotoxicity,
which was characterized by disruptions in the serum levels of blood urea nitrogen, creatinine,
uric acid, the total oxidant capacity, the total antioxidant capacity, and interfering levels of kidney
injury molecule-1, superoxide dismutase, catalase, reduced glutathione, glutathione peroxidase,
malondialdehyde, tumor necrosis factor-alpha (TNF-α), and interleukin-6 in kidney tissues. These
biochemical alterations were accompanied by the destruction of normal renal architecture, with most
renal components shedding their thickness, diameter, and quantity. Furthermore, P53, Caspase3,
and TNF-α immunoreactivity were considerably elevated; however, Bcl-2 immunoreactivity was
reduced. Most biochemical, histological, histomorphometrical, and immunohistochemical alterations
in AgNP-treated rats were reversed by Eug. We may infer that Eug has a protective effect against
AgNP-induced nephrotoxicity.

Abstract: The use of silver nanoparticles (AgNPs) is expanding. This study evaluates the modulator
effect of eugenol (Eug) on AgNP-induced nephrotoxicity in rats. Sixty male rats were separated
into six groups: control, Eug, AgNPs low-dose, AgNPs high-dose, Eug + AgNPs low-dose, and
Eug + AgNPs high-dose. After 30 days, kidney function, antioxidative and proinflammatory status,
histopathological, histomorphometrical, and immunohistochemical assessments were performed.
AgNPs markedly induced oxidative stress in renal tissues, characterized by increased levels of blood
urea nitrogen, creatinine, uric acid, kidney injury molecule-1, the total oxidant capacity, malondi-
aldehyde, tumor necrosis factor-alpha (TNF-α), and interleukin-6, as well as decreased levels of
the total antioxidant capacity, superoxide dismutase, catalase, reduced glutathione, and glutathione
peroxidase. Moreover, the normal renal architecture was destroyed, and the thickness of the renal
capsules, cortex, and medulla, alongside the diameter and quantity of the normal Malpighian cor-
puscles and the proximal and distal convoluted tubules were decreased. Immunoreactivity for P53,
caspase-3, and TNF-α reactive proteins were significantly increased; however, Bcl-2 immunoreactivity
was decreased. Eug reversed most biochemical, histological, histomorphometrical, and immuno-
histochemical changes in AgNP-treated animals. This study demonstrated that nephrotoxicity in
AgNP-treated rats was mitigated by an Eug supplementation. Eug’s antioxidant, antiapoptotic, and
anti-inflammatory capabilities were the key in modulating AgNPs nephrotoxicity.

Keywords: silver nanoparticles; eugenol; kidney; oxidative stress; histology; histopathology; im-
munohistochemistry

1. Introduction

Silver nanoparticles (AgNPs) are one of the most researched nanomaterials world-
wide [1]. Generally, AgNPs are 1–100 nm nanoparticles with special physical, chemical,
and biological characteristics that have various applications [2].

AgNPs have been widely used in biomedicine, food packing, water disinfection, and
personal care products due to their antimicrobial properties [2,3]. Furthermore, AgNPs
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have been employed in various products, including surgical tools, contact lenses, urinary
dilators, intrauterine devices, cannulas, pacemakers, hospital bedding disinfection, fabrics,
food products, and electrical home appliances [4–6]. According to the estimates, there are
already more than 1000 consumer items that use AgNPs, and the yearly production of
AgNPs reaches over 800 tons [7].

Environmental concerns have arisen as we use nanomaterials more frequently in our
daily lives. AgNPs can enter the body inadvertently or on purpose through inhalation,
drinking, ingestion, skin absorption, or an intravenous injection [8]. AgNPs can translocate
and accumulate in several body tissues, including the liver, kidneys, lungs, heart, and
nerves, where they can impair the cellular metabolism and induce toxicity [9].

The pathways driving AgNP-induced cytotoxicity and genotoxicity are not well de-
fined. Two probable mechanisms of the adverse effects of AgNPs are hypothesized to be
the release and production of reactive oxygen species (ROS) caused by silver ions [10].
Elevated amounts of intracellular ROS result in oxidative stress, lipid peroxidation, and
further cellular macromolecular degradation, which ultimately results in cell death [11].

Nanoparticles’ physiochemical properties determine how they interact with cells and,
as a result, their overall potential toxicity. According to earlier studies [12–14], AgNPs with
particle sizes ranging from 10 to 100 nm have toxic effects at concentrations ranging from
0.0082 to 1 mg kg−1.

Recently, various studies have highlighted the ability of phytochemicals to act as
antioxidants [15]. One of the several phenolic phytochemicals found in clove, cinnamon,
and basil is eugenol (Eug) (C10H12O2; phenylpropanoid), which is utilized as a flavoring
substance in food and cosmetics [16]. In terms of the pharmacological effects, Eug has
been shown to have antibacterial [17], antiviral [18], antifungal [19], anti-inflammatory [20],
antioxidant and free radical scavenging [21], and anticancer [22] properties.

According to the present literature, the impact of AgNP produced by the microwave
technique on the kidney of mammals and the ability of Eug to mitigate AgNP-induced
nephrotoxicity has only been studied in extremely infrequent and generalized ways. There-
fore, this study was designed to determine Eug’s possible modulation impact on AgNP-
induced nephrotoxicity in male rats using biochemical, histological, histomorphometrical,
and immunohistochemical procedures.

2. Materials and Methods
2.1. Chemicals Used

Eug (99%), silver nitrate (AgNO3, 99%), and gelatin were obtained from Sigma-Aldrich
(St. Louis, MO, USA). The reagents and chemicals used were of a high purity and analytical
grade.

2.2. Production of AgNPs

According to Zahran et al. [23], the microwave technique was used to create AgNPs
from gelatin and AgNO3. For 20 min, 16.987 g of AgNO3 was dissolved in 100 mL of
deionized distilled water. Then, the AgNPs were dissolved in 1 g gelatin soluble in
deionized distilled water. On a direct hot plate, the solution was agitated for 24 h at 60 ◦C,
and for the final 5 min, it was microwave-irradiated at 700 watts. The temperature of the
solution was naturally cooled to room temperature, securely sealed, and protected.

2.3. Physicochemical Features of AgNPs

In our previous study [24], the AgNPs used in this investigation were characterized
using different techniques. Scanning electron microscopy and transmission electron mi-
croscopy revealed that the particles were monodispersed, transparent, spherical, and highly
crystalline, with a normal small size (7.77–28.4 nm), smooth surface, well distribution, and
no agglomeration. Furthermore, ultraviolet-visible spectroscopy, X-ray diffraction patterns,
and X-ray photoelectron spectroscopy showed that the particles had a face-centered cube
structure and good crystallinity, as described in our previous study.
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2.4. Experimental Animals

Sixty adult males Rattus norvegicus of a similar age (3–4 months) and weight (180–200 g)
were purchased from the animal house of Theodor Bilharz Research Institute located in
El-Giza, Egypt. The rats were housed in hygienic plastic containers filled with wood
shavings and received a typical pellet diet for rodents in addition to unrestricted access
to water at room temperature (25 ± 2 ◦C), with a 12 h light–dark cycle and a relative
humidity of 55 ± 5%. All the rats were given a week to acclimate before the experiment.
This investigation complied with the international criteria for animal laboratory treatment
which oversees the use and treatment of animals locally set by the Institutional Animal
Ethics Committee of Ain Shams University.

2.5. Experimental Design

All animals were divided into six groups (n = 10 rats for each group). For 30 days, the
rats received the following treatment every day at 9 a.m.:

Control group: the healthy rats were given deionized distilled water (1 mL, intraperi-
toneally (i.p.)) as the vehicle for AgNPs and corn oil (1 mL, orally) as the vehicle for
Eug.

Eug-treated group: the rats were orally administered with 100 mg kg−1 body weight
of Eug suspended in 1 mL of corn oil. This dosage was determined using data from earlier
rat investigations [25].

Low-dose AgNP-treated group: the animals were i.p. injected with 1 mg kg−1 body
weight of AgNPs dissolved in 1 mL of deionized distilled water.

High-dose AgNP-treated group: the animals were i.p. injected with 2 mg kg−1 body
weight of AgNPs dissolved in 1 mL of deionized distilled water.

The low and high doses of AgNPs used in this study were selected according to the
doses used in earlier investigations [8].

Eug + low-dose AgNP-treated group: the animals were given 100 mg kg−1 body
weight of Eug by oral gavage simultaneously with an i.p. injection of 1 mg kg−1 body
weight of AgNPs (low dose).

Eug + high-dose AgNP-treated group: the animals were given 100 mg kg−1 body
weight of Eug by oral gavage simultaneously with an i.p. injection of 2 mg kg−1 body
weight of AgNPs (high dose).

2.6. Retrieving Samples of Sera and Tissues

After the completion of the treatment period, the animals from all groups were nightly
starved and necropsied the next morning under mild anesthesia. Through a heart puncture,
blood samples were collected and centrifuged for 10 min at 1500× g and 4 ◦C to obtain the
sera, which were then immediately frozen at 80 ◦C until use. In order to conduct additional
biochemical studies, the kidneys of the dissected rats were taken out, quickly rinsed with
ice-cold physiological saline (0.9% NaCl), and then maintained frozen at 80 ◦C. To conduct
the histological, histomorphometrical, and immunohistochemical evaluations, additional
kidney specimens were removed and processed.

2.7. Preparation of Kidney Homogenates

Kidney samples were homogenized in ice-cold phosphate-buffered saline (PBS) which
has a pH value of 7.4 to get a 10% solution (w/v) by an Ultra Turrax tissue homogenizer.
To remove any erythrocytes and clots, the PBS was mixed with 0.16 mg/mL heparin. The
formed homogenate was centrifuged at 9000× g and 4 ◦C for 15 min., and subsequently
the lucid supernatant was collected and stored frozen at −80 ◦C for further biochemical
experiments. The previously described method [26] that employed bovine serum albu-
min as a standard were used to determine the quantity of the kidney protein content in
each sample.
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2.8. Biochemical Assessment
2.8.1. Kidney Function Biomarkers

Colorimetric assay kits tailored for kidney function biomarkers [blood urea nitrogen
(BUN), creatinine, and uric acid] were purchased from EGY-CHEM for lab technology
(BioMed, Hannover, Germany) and utilized simultaneously with a UV-VIS spectropho-
tometer (Shimadzu, Kyoto, Japan) to determine BUN, creatinine, and uric acid levels in the
sera according to previously reported protocols by Tietz [27].

2.8.2. Kidney Injury Molecule-1 (KIM-1)

Using an ELISA kit (Catalog Number. CSB-E08808r, Cusabio Biotech Co., Ltd., Hous-
ton, TX, USA), the levels of Kidney Injury Molecule-1 (KIM-1) in renal tissue homogenates
were assessed following the experimental procedure provided in the instruction manual.

2.8.3. Oxidative Stress Biomarkers in Sera

The total antioxidant capacity (TAC) and total oxidant capacity (TOC) of the sera
were evaluated using colorimetric test kits made by Biomedica Medizinprodukte GmbH,
Germany following the procedures previously described by Koracevic et al. [28] and Tatzber
et al. [29], respectively.

2.8.4. Oxidative Stress Biomarkers in Kidney Tissues

The lipid peroxidation (LPO) levels were determined using a colorimetric test kit
(Biodiagnostic, Giza, Egypt) based on the generation of thiobarbituric acid reactive sub-
stances (TBARS), and represented as the quantity of malondialdehyde (MDA) creation in
accordance with Buege and Aust [30].

Using commercially available colorimetric kits (Biodiagnostic, Giza, Egypt) and a UV-
vis spectrophotometer (Shimadzu, Kyoto, Japan), the antioxidant activities of superoxide
dismutase (SOD), catalase (CAT), reduced glutathione (GSH), and glutathione peroxidase
(GPx) in kidney tissues were determined (Shimadzu, Kyoto, Japan). To measure the
efficiency of SOD, the procedure previously described by Nishikimi [31] was used. H2O2
consumption was used as a proxy for the CAT activity, as indicated by Aebi [32], whilst the
GSH and GPx activities were measured using the methodologies previously illustrated by
Beutler et al. [33] and Paglia and Valentine [34], respectively.

2.8.5. Proinflammatory Markers in Kidney Tissues

In kidney tissues, two pro-inflammatory cytokines, tumor necrosis factor-alpha (TNF-
α), and interleukin 6 (IL-6) were measured. Following the manufacturer’s instructions, the
TNF-α levels were determined utilizing commercially available enzyme-linked immunosor-
bent assay (ELISA) kits (catalogue number: CSB-E11987r, Cusabio Biotech Co., Ltd.) and
the concentration of IL-6 was determined using the Rat IL-6 Quantikine ELISA Kit (R & D
Systems, Inc., Minneapolis, MN, USA).

2.9. Histological Preparation

Both the control and treated animal kidney samples were split into small pieces and
immediately fixed for 24 h in Bouin’s fixative. They then underwent the standard paraffin
sectioning technique as described earlier [35]. Ehrlich’s hematoxylin and eosin (H&E)
were used to stain the obtained 4–6 µm thick paraffin sections that were then dehydrated
using graded concentrations of ethyl alcohol, cleared using xylene, mounted using DPX,
inspected using a compound light microscope (Olympus CX 31), and finally photographed
using a Panasonic CD-220 camera connected with the microscope.

2.10. Histomorphometrical Estimation

Six randomly selected fields from the H&E-stained kidney sections of all the exper-
imental groups were histomorphometrically examined in the Department of Oral and
Dental Pathology, Dental Medicine Faculty, Al-Azhar University using a computerized
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image analysis system (Leica QWin, 500 image analysis software, Leica Microsystems,
Wetzlar Germany). For each selected kidney section, the thickness of the fibrous renal
capsule, renal cortex, and renal medulla were measured. Additionally, the diameter of
the Malpighian corpuscles and proximal and distal convoluted tubules were estimated.
Additionally, the number of normal and damaged Malpighian corpuscles and proximal
and distal convoluted tubules were recorded.

2.11. Immunohistochemical Preparation

Using the standard avidin–biotin complex (ABC) protocol [36], the responsive proteins
Bcl-2, P53, caspase-3 (Cas3), and TNF-α were immunohistochemically estimated in the
kidney tissues from all the experimental animal groups. The sectors of renal tissue that were
4–6 µm thick, buffered formalin-fixed, and paraffin-embedded were dewaxed, rehydrated,
and washed in PBS for 10 min. Hydrogen peroxide at a concentration of 3% was used to
prevent endogenous peroxidase activity. The slides were then conveniently diluted with the
primary antibodies shown in Table 1 for 1–2 h at room temperature, then were kept at 4 ◦C in
a refrigerator nightly. After that, they were rinsed in PBS, exposed to biotinylated goat anti-
polyvalent for 10 min, and subsequently exposed to ABC for 1 h. The slices were washed in
PBS before being treated for 7–9 min in diaminobenzidine tetrahydrochloride (pH 7.2) with
10 mL of H2O2. Subsequently, the sections were dehydrated, cleared, counterstained with
Mayer’s hematoxylin, coated with cover slips, examined, and captured. For each parameter,
negative control slides with no primary antibodies were provided. All the reagents and
antibodies were used in accordance with the manufacturer’s instructions and suggestions.

Table 1. The immunohistochemical utilized antibodies.

Antibody Bcl-2 P53 Cas3 TNF-α
Code MA5-11757 MA5-12557 MA5-11516 MA5-23720

Clone 100/D5 DO-7 3CSP01 (7.1.44) 28,401

Antigen retrieval PBS, pH 7.4
with 0.2% BSA

PBS, pH 7.4 PBS, pH 7.4
with 0.2% BSA

PBS with 5%
trehalose

Dilution 1:50 1:100–1:200 1:50–1:100 8–25 µg/mL

Sources Mouse/IgG,
kappa

Mouse/IgG2,
kappa Mouse/IgG2a Mouse/IgG1

Supplier Thermo Fisher
Scientific USA

Thermo Fisher
Scientific

Thermo Fisher
Scientific

Thermo Fisher
Scientific

2.12. Image Analysis

To quantify the immunoreactivity of Bcl-2, P53, Cas3, and TNF-α reactive proteins,
image analysis was used to determine the proportion of immuno-positive cells to the
total number of cells evaluated for each parameter [37]. If the cytoplasm or membranous
coloration was brown, the cells were considered to be positive. Six high-power fields (X200)
were chosen for each parameter and recorded in each slide using a standard measuring
frame with an area of 11434.9 mm2. The image analyzer was initially programmed to
automatically convert the image analyzer program’s measurement units (pixels) to actual
micrometer units. The mean percentages of the immunoreactive area for all the samples in
each group were computed for statistical analysis using a Leica QWin 500 (Leica Microsys-
tems, Wetzlar, Germany) computational image analysis system in the Department of Oral
and Dental Pathology, Faculty of Girls’ Dental Medicine, Al-Azhar University. A graphic
description of the approach used, and the key conclusions, is shown in Figure 1.



Biology 2022, 11, 1719 6 of 23

Biology 2022, 11, x FOR PEER REVIEW 6 of 25 
 

 

number of cells evaluated for each parameter [37]. If the cytoplasm or membranous col-
oration was brown, the cells were considered to be positive. Six high-power fields (X200) 
were chosen for each parameter and recorded in each slide using a standard measuring 
frame with an area of 11434.9 mm2. The image analyzer was initially programmed to au-
tomatically convert the image analyzer program’s measurement units (pixels) to actual 
micrometer units. The mean percentages of the immunoreactive area for all the samples 
in each group were computed for statistical analysis using a Leica QWin 500 (Leica Mi-
crosystems, Wetzlar, Germany) computational image analysis system in the Department 
of Oral and Dental Pathology, Faculty of Girls’ Dental Medicine, Al-Azhar University. A 
graphic description of the approach used, and the key conclusions, is shown in Figure 1. 

 
Figure 1. Schematic representation of the study design and main results. 

2.13. Statistical Analysis 
The obtained biochemical, histomorphometrical, and immunohistochemical data 

were tabulated and statistically analyzed. All the experimental animal sets’ values for six 
samples per group were displayed as the mean standard error of mean (SEM). A one-way 
analysis of variance (ANOVA) was used to quantify the statistical differences between the 
groups of rats, and then the IBM SPSS Statistics for Windows, version 22 (IBM Corp., Ar-
monk, NY, USA) was utilized for the Tukey post hoc test. When a p-value was less than 
0.05, a statistical significance was considered. 

3. Results 
3.1. Biochemical Analysis 

To evaluate kidney injury, the kidney function indicators (BUN, creatinine, and uric 
acid), and the oxidant/antioxidant biomarkers (TOC & TAC) in the sera, in addition to 
KIM-1, the oxidative stress indices (SOD, GSH, CAT, GPx, and MDA) and inflammation 
markers (TNF-α and IL-6) in the kidney tissues were assessed. 

Figure 1. Schematic representation of the study design and main results.

2.13. Statistical Analysis

The obtained biochemical, histomorphometrical, and immunohistochemical data were
tabulated and statistically analyzed. All the experimental animal sets’ values for six samples
per group were displayed as the mean standard error of mean (SEM). A one-way analysis
of variance (ANOVA) was used to quantify the statistical differences between the groups
of rats, and then the IBM SPSS Statistics for Windows, version 22 (IBM Corp., Armonk,
NY, USA) was utilized for the Tukey post hoc test. When a p-value was less than 0.05,
a statistical significance was considered.

3. Results
3.1. Biochemical Analysis

To evaluate kidney injury, the kidney function indicators (BUN, creatinine, and uric
acid), and the oxidant/antioxidant biomarkers (TOC & TAC) in the sera, in addition to
KIM-1, the oxidative stress indices (SOD, GSH, CAT, GPx, and MDA) and inflammation
markers (TNF-α and IL-6) in the kidney tissues were assessed.

Table 2 shows the serum levels of BUN, creatinine, and uric acid in the rats of all the
groups. The results depicted no significant differences (p ≥ 0.05) in the estimated kidney
function biomarkers between the rats treated with Eug alone and the corresponding control
animals. Meanwhile, both the low- and high-dose AgNP-treated rats exhibited a marked
elevation (p ≤ 0.05) in BUN (130.45% and 246.94%), creatinine (189.68% and 857.14%), and
uric acid (29.21% and 67.15%), respectively, compared with those in the control group. In
the rats which were given either a low or high dosage of AgNPs, an Eug supplementation
modulated these estimated parameters compared with those in the animals who were
given AgNPs alone, although the results were still significantly different (p ≤ 0.05) from
the control values.
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Table 2. Kidney function biomarkers: blood urea nitrogen (BUN), creatinine, and uric acid in the
control and treated animal groups.

Animal Groups

Parameters Control Eug AgNPs
Low Dose

AgNPs
High Dose

Eug +
AgNPs

Low Dose

Eug +
AgNPs

High Dose
BUN

(mg/dL) 28.08 ± 1.77 e 29.22 ± 2.17 e 64.72 ± 2.78 b 97.43 ± 3.36 a 40.57 ± 2.03 d 53.87 ± 1.81 c

Creatinine
(mg/dL) 0.21 ± 0.01 e 0.25 ± 0.01 e 0.61 ± 0.05 c 2.01 ± 0.07 a 0.45 ± 0.01 d 0.98 ± 0.04 b

Uric Acid
(mg/dL) 3.02 ± 0.14 c 3.12 ± 0.12 c 3.9 ± 0.2 b 5.05 ± 0.4 a 3.27 ± 0.1 b,c 3.98 ± 0.39 b

The data are presented as mean ± SEM (n = 6). Values in the same row that are followed by different superscript
letters differ significantly at 5% (p ≤ 0.05) level of significance according to ANOVA test and the TUKEY test. Eug,
eugenol; AgNPs, silver nanoparticles.

As illustrated in Figure 2, an administration of Eug alone did not have any significant
effects on the KIM-1 levels (p ≥ 0.05) compared with the control data. Meanwhile, low- and
high-dose AgNP-treated rats showed a marked increase (p ≤ 0.05) in KIM-1 levels (102.18%
and 333.50%, respectively) compared with the control group. The administration of low-
dose AgNPs alongside Eug to the rats resulted in KIM-1 values that were substantially
similar to the KIM-1 values in the control group (2.48 ± 0.12 vs. 2.29 ± 0.13; p ≥ 0.05);
however, the concomitant administration of Eug to rats intoxicated with a high dose of
AgNPs decreased this parameter compared with those in the rats treated with AgNPs alone,
but this value remained significantly different (p ≤ 0.05) from the control values.
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Figure 2. Levels of kidney injury molecule-1 (KIM-1) in renal tissues of the control and treated animal
groups. The data are presented as mean ± SEM (n = 6). Values in the same row that are followed
by different superscript letters differ significantly at 5% (p ≤ 0.05) level of significance according to
ANOVA test and the TUKEY test. Eug, eugenol; AgNPs, silver nanoparticles.

The serum levels of TAC and TOC in the rats in each group are shown in Table 3.
A marked increase (p ≤ 0.05) in the TAC levels (16.07%) was observed in the Eug-treated
group compared with those in the control group. In contrast, a non-significant decline
(p ≥ 0.05) and a significant reduction (p ≤ 0.05) in the TAC levels in the low-dose (−9.19%)
and high-dose (−55.01%) AgNP-treated rats were recorded compared with those in the
control group. The levels of TAC in AgNP-treated rats, in both low and high doses, were
increased by an Eug supplementation compared with those in the rats treated with AgNPs
alone; however, TAC levels in high-dose AgNP-treated rats were significantly different
(p ≤ 0.05) from the control values. The administration of Eug alone had no significant
impact (p ≥ 0.05) on the levels of TOC compared with the control group. However,
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a remarkable increase (p ≤ 0.05) in the TOC levels were observed in the low-dose (49.90%)
and high-dose (130.98%) AgNP-treated rats compared with those in the control group.
When the rats were given a low dose of AgNPs along with Eug, the levels of TOC were
very similar to those in the control animals (355.5 ± 12.76 vs. 351.5 ± 10.44; p ≥ 0.05),
although when the rats were given a high dose of AgNPs along with Eug, this parameter
declined compared with that in the animals treated with AgNPs alone; however, this value
remained significantly different (p ≤ 0.05) from the control values.

Table 3. Total antioxidant capacity (TAC) and total oxidant capacity (TOC) in sera of the control and
treated animal groups.

Animal Groups

Parameters Control Eug AgNPs
Low Dose

AgNPs
High Dose

Eug +
AgNPs

Low Dose

Eug +
AgNPs

High Dose
TAC

(mM/L) 30.12 ± 1.44 b,c 34.96 ± 1.37 a 27.35 ± 1.09 c 13.55 ± 0.62 d 35.76 ± 0.9 a 30.92 ± 1.58 b

TOC (µmol/L) 351.5 ± 10.44 d 372.87 ± 9.9 d 526.9 ± 15.73 c 811.89 ± 27.12 a 355.5 ± 12.76 d 594.78 ± 13.85 b

The data are presented as mean ± SEM (n = 6). Values in the same row that are followed by different superscript
letters differ significantly at 5% (p ≤ 0.05) level of significance according to ANOVA test and the TUKEY test. Eug,
eugenol; AgNPs, silver nanoparticles.

To track the oxidative stress status, the levels of MDA, SOD, CAT, GSH, and GPx in the
kidney tissues of the control and treated animal groups were evaluated. Table 4 shows that
the administration of Eug alone had no noticeable (p ≥ 0.05) impact on these oxidative stress
indicators. Both the low- and high-dose AgNP-treated rats experienced oxidative stress,
which was demonstrated as a significant increase (p ≤ 0.05) in the MDA levels (36.31%
and 308.92%, respectively) and a sharp decrease (p ≤ 0.05) in the levels of SOD (−27.20%
and −58.22%, respectively), CAT (−36.24% and −63.11%, respectively), GSH (−45.12%
and −61.91%, respectively), and GPx (−32.75% and −60.51%, respectively) compared
with those in the control group. The evaluated oxidative stress biomarkers were signif-
icantly modulated (p ≤ 0.05) in the Eug + low-dose AgNP-treated and Eug + high-dose
AgNP-treated groups compared with those in the animals exposed to low- and high-dose
AgNPs alone; however, most parameters remained statistically different (p ≤ 0.05) from
the control values.

Table 4. Oxidative stress biomarkers: malondialdehyde (MDA), superoxide dismutase (SOD), catalase
(CAT), reduced glutathione (GSH), and glutathione peroxidase (GPx) in renal tissues of the control
and treated animal groups.

Animal Groups

Parameters Control Eug AgNPs
Low Dose

AgNPs
High Dose

Eug +
AgNPs

Low Dose

Eug +
AgNPs

High Dose
MDA

(nmol/g·tissue) 16.52 ± 0.70 d 17.11 ± 0.48 d 36.31 ± 2.33 b 67.53 ± 1.91 a 18.64 ± 1.22 d 28.30 ± 1.30 c

SOD
(U/g·tissue) 11.90 ± 1.40 a 11.69 ± 0.92 a 8.66 ± 0.47 b 4.97 ± 0.33 c 12.80 ± 0.61 a 10.79 ± 0.76 a,b

CAT
(U/g·tissue) 93.63 ± 2.41 a 77.61 ± 15.60 a,b 59.70 ± 6.69 b,c 34.54 ± 2.06 d 70.58 ± 2.41 b,c 55.48 ± 3.11 c

GSH
(mmol/g·tissue) 29.90 ± 2.37 a 28.80 ± 1.69 a,b 16.41 ± 0.69 c 11.39 ± 0.58 d 32.85 ± 1.42 a 25.30 ± 1.60 b

GPx
(U/g·tissue) 112.75 ± 3.36 a 110.72 ± 3.68 a 75.82 ± 4.34 b 44.52 ± 3.56 c 104.00 ± 2.73 a 84.39 ± 2.33 b

The data are presented as mean ± SEM (n = 6). Values in the same row that are followed by different superscript
letters differ significantly at 5% (p ≤ 0.05) level of significance according to ANOVA test and the TUKEY test. Eug,
eugenol; AgNPs, silver nanoparticles.
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The TNF-α and IL-6 levels in renal tissues were examined in all groups, and the
within-group values of these parameters were compared (Table 5). The rats treated with
Eug alone showed non-significant (p ≥ 0.05) alterations in TNF-α and IL-6 levels compared
with the control group. In contrast, the rats treated with either a low or high dose of AgNPs
showed significantly elevated levels (p ≤ 0.05) of TNF-α (101.89% and 311.14%, respectively)
and IL-6 (56.01% and 148.93%, respectively) compared with the control animals. The
administration of Eug with AgNPs (low or high dose) significantly (p ≤ 0.05) attenuated
these alterations compared with those in animals exposed to low- and high-dose AgNPs
alone and restored the levels to the control values.

Table 5. Inflammation indicators: interleukin 6 (IL-6) and tumor necrosis factor alpha (TNF-α) in
renal tissues of control and treated animal groups.

Animal Groups

Parameters Control Eug AgNPs
Low Dose

AgNPs
High Dose

Eug +
AgNPs

Low Dose

Eug +
AgNPs

High Dose
TNF-α

(pg/mL) 27.38 ± 1.67 e 28.83 ± 1.56 d,e 55.28 ± 1.88 c 112.58 ± 4.73 a 35.23 ± 1.79 d 73.57 ± 2.29 b

IL-6 (pg/mL) 55.05 ± 2.92 d 56.93 ± 2.53 d 85.88 ± 1.98 b 137.03 ± 4.56 a 60.38 ± 1.94 d 72.40 ± 1.95 c

The data are presented as mean ± SEM (n = 6). Values in the same row that are followed by different superscript
letters differ significantly at 5% (p ≤ 0.05) level of significance according to ANOVA test and the TUKEY test. Eug,
eugenol; AgNPs, silver nanoparticles.

3.2. Histological Results

The kidney sections of the control (Figure 3A,B) and Eug-treated (Figure 3C,D) rats
exhibited a normal histological architecture, with a well-organized fibrous capsule, renal
cortex, and renal medulla. In the renal cortex, numerous Malpighian corpuscles were
observed, consisting of a double membrane Bowman’s capsule, and enclosing Bowman’s
spaces and a tuft of blood capillaries or the glomeruli. Additionally, the proximal convo-
luted tubules appeared with round or oval outlines and narrow lumens, and their lining
layer consisted of simple tall cuboidal epithelium having distinct brush borders in their
free narrow apices, markedly basophilic cytoplasm, and centrally located nuclei; the dis-
tal convoluted tubules also had larger and more clearly defined lumens with cuboidal
epithelial lining cells as more nuclei per cross-section were observed in the renal cortex
(Figure 3A,C). The renal medullary region enclosed the descending and ascending limbs
of the loops of Henle and collecting tubules. The descending limb had very thin walls
and comprised flattened squamous epithelium, bounding a rather wide lumen; they had
a homogenously eosinophilic cytoplasm, and their nuclei were bulging into the internal
lumens. Meanwhile, the ascending limb had abruptly thick walls and appeared lined by
low cuboidal epithelial cells, enclosing a narrow lumen, and their cytoplasm was also
generally eosinophilic; their cell boundaries were ill-defined but had centrally situated
conspicuous nuclei, and exhibited deep basophilia. The collecting tubules were lined by
a simple cuboidal epithelium, which became increasingly tall distally; they had a poorly
stained cytoplasm, embodying large oval nuclei located in the middle position of these
cells, as illustrated in Figure 3B,D.

Meanwhile, the renal tissues of low-dose AgNP-treated rats revealed marked harmful
responses, as seen in Figure 3E,F. The renal cortex appeared with deteriorated Malpighian
corpuscles, showing a decreased Bowman’s spaces with an expansion or mesangial hy-
percellularity of the glomeruli and focal tubular necrosis where the proximal and distal
convoluted tubules were filled with hyaline casts or cellular debris; moreover, their lining
epithelial cells showed nuclear pyknosis, karyorrhexis, or karyolysis. Severely deteriorated
inter-tubular blood vessels with hemorrhagic blood masses were also observed. The renal
medulla appeared with conspicuous damage of the lining epithelia of the descending and
ascending limbs of the loops of Henle and the collecting tubules. Furthermore, extravasated
hemolyzed blood was observed.
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Figure 3. Kidney sections of control and treated animal groups stained with H&E displaying (A,B)
orderly renal architecture with outstandingly organized renal corpuscles (RC) forming of Bowman’s
capsules (BC) enclosing normal Bowman’s spaces (blue asterisks) surrounding the glomeruli (G), in
addition to the proximal (PCT) and distal (DCT) convoluted tubules in the cortical zone, as well as
normal descending (DLH) and ascending (ALH) limps of the loops of Henle, and collecting tubules
(CT) in medullary area of control rats; (C,D) regular cortical and medullary renal structure in Eug-
treated rats; (E,F) hazardous effects on renal cortical portion represented by altered renal corpuscles
(RC) which have decreased Bowman’s spaces (arrowheads) with expansion of their glomeruli (G), and
focal tubular necrosis where the proximal (PCT) and distal (DCT) convoluted tubules are filled with
hyaline casts or cellular debris (yellow asterisks), as well as their epithelia showed nuclear pyknosis
(Pk), karyorrhexis (Kh), or karyolysis (Kl). Severely deteriorated inter-tubular blood vessels with
hemorrhagic blood masses (green arrows). Additionally, renal medulla appeared with conspicuous
damage of the lining cells of the descending (DLH) and ascending (ALH) limbs of the loops of
Henle and collecting tubules (CT), as well as extravasated hemolyzed blood (green asterisks) were
seen in AgNPs low-dose-treated rats; (G,H) severely deteriorated renal cortex with malformed renal
corpuscles showing hypertrophied glomeruli (HG) and increased Bowman’s spaces (blue asterisks),
as well as the proximal (PCT) and distal (DCT) convoluted tubules appeared with pyknotic (Pk) or
karyorrhexed (Kh) nuclei. The inter-tubular spaces were filled with infiltrated inflammatory cells
(IC) and stagnant hemolyzed blood (SHB). Additionally, deteriorated renal medulla with stagnant
hemolyzed blood (SHB) in the inter-tubular spaces and marked coagulative necrosis of the lining
cells of the descending (DLH) and ascending (ALH) limbs of the loops of Henle, and the collecting
tubules (CT) represented with nuclear pyknosis (Pk) were seen in AgNPs high-dose-treated rats;
(I,J) remarkable improvement in the renal tissues’ histological structure, with regular cortical and
medullary regions were recorded in Eug + AgNPs low-dose-treated rats; (K,L) restoration of the
kidney structure was noticed in the renal cortex and medulla in Eug + AgNPs high-dose-treated rats.

Moreover, as shown in Figure 3G,H, the renal tissues of high-dose AgNP-treated
rats exhibited significant pathological changes, where the renal corpuscles appeared with
hypertrophied glomeruli and increased the Bowman’s spaces; additionally, the proximal
and distal convoluted tubules appeared with pyknotic or karyorrhexed nuclei. The de-
teriorated renal medulla revealed marked coagulative necrosis of the lining cells of the
descending and ascending limbs of the loops of Henle and collecting tubules with nuclear
pyknosis were recorded. Additionally, the inter-tubular spaces were filled with infiltrated
inflammatory cells and stagnant hemolyzed blood.
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In contrast, the rats treated with Eug + low-dose AgNPs showed an obvious improve-
ment in their renal architecture, including intact renal corpuscles having normal Bowman’s
capsules and glomeruli. In addition, they had normal proximal and distal convoluted
tubules, where the supplementation of Eug partly returned their lining cells to their normal
arrangement. Moreover, the descending and ascending limbs of the loops of Henle and
the collecting tubules had clear signs of regeneration of their lining epithelial cells, with
their lumens appearing clear (Figure 3I,J). Similarly, Eug + high-dose AgNP-treated rats
displayed a relatively well-organized renal architecture, including all the components of
the renal capsule, cortex, and medulla (Figure 3K,L).

3.3. Histomorphometrical Results

The toxic impacts of AgNPs and the protective effects of Eug on renal tissues were
demonstrated in several renal histomorphometrical estimations, as seen in Figure 4A–F.
The AgNP treatment, either of a low or high dose, significantly decreased (p ≤ 0.01) the
thickness of the fibrous renal capsules (−17.65% and −32.35%), renal cortex (−8.31%
and 14.78%), renal medulla (−5.38% and −12.90%), and the diameter of the Malpighian
corpuscles (−31.96% and −47.78%), proximal convoluted tubules (−7.63% and −17.56%),
and distal convoluted tubules (−6.83% and −21.12%), respectively. Additionally, a high
significant decrease (p ≤ 0.01) in the numbers of normal Malpighian corpuscles (−25.20%
and −37.01%), normal proximal convoluted tubules (−23.84% and −42.41%), and normal
distal convoluted tubules (−13.97% and −37.87%) paralleled with a significant increase
(p < 0.05) in the number of damaged Malpighian corpuscles (+107.69% and +184.62%),
damaged proximal convoluted tubules (+39.13% and +104.35%), and damaged distal
convoluted tubules (+50% and +111.11%), respectively, which were recorded from the
kidney sections of the rats treated with low- and high-dose AgNPs compared with the
values in the control animals (Figure 5A–F).
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Figure 4. Histomorphometrical evaluation of renal tissue components in the control and treated ani-
mal groups showing (A) the thickness of fibrous renal capsules (µm2), (B) the thickness of renal cortex
(µm2), (C) the thickness of renal medulla (µm2), (D) the diameter of Malpighian corpuscles (µm2), (E)
the diameter of proximal convoluted tubules (µm2), and (F) the diameter of distal convoluted tubules
(µm2). Each column represents mean ± SEM, n = 6. Means with different superscript letters differ
significantly at 5% (p ≤ 0.05) level of significance according to ANOVA test and the TUKEY test. Eug,
eugenol; AgNPs, silver nanoparticles.
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Figure 5. Histomorphometrical evaluation of renal tissue components in the control and treated
animal groups showing the number of (A) normal Malpighian corpuscles, (B) normal proximal
convoluted tubules, (C) normal distal convoluted tubules, (D) damaged Malpighian corpuscles, (E)
damaged proximal convoluted tubules, and (F) damaged distal convoluted tubules. Each column
represents mean ± SEM, n = 6. Means with different superscript letters differ significantly at 5%
(p ≤ 0.05) level of significance according to ANOVA test and the TUKEY test. Eug, eugenol; AgNPs,
silver nanoparticles.

In contrast, a co-treatment with Eug in the rats treated with either low- or high-
dose AgNPs markedly modulated all the histomorphometrical parameters compared with
those in animals intoxicated with low- and high-dose AgNPs, whereas most parameters
were significantly different (p ≤ 0.05) from the recorded control values. Meanwhile, the
administration of Eug alone had a non-significant (p > 0.05) effect on the measured renal
histomorphometrical parameters compared with those in the control group, as observed in
Figures 4 and 5.

3.4. Immunohistochemical Results
3.4.1. Bcl-2 Immunoreactivity

In contrast to the renal tissues obtained from the control rats (Figure 6B) and Eug-
treated-rats (Figure 6C), which displayed robust Bcl-2 immunoreactivity, the kidney sections
obtained from the rats treated with low-dose AgNPs showed a moderate Bcl-2 immunore-
activity (Figure 6D), whereas the kidney sections of high-dose AgNP-treated rats revealed
a poor Bcl-2 immunoreactivity (Figure 6E). In the renal tissues of rats from the low-dose
(Figure 6F) and high-dose (Figure 6G) AgNP groups, the immunoexpression of Bcl-2 was
upregulated when Eug was concurrently administered with AgNPs. Negative immunore-
activity was observed in the negative control sample (Figure 6A). As seen in Figure 10A,
no significant difference (p > 0.05) in the area percentage of Bcl-2 immunoexpression was
observed between Eug-treated and control rats. However, both the low- and high-dose
AgNP-treated groups showed a substantial decrease (p ≤ 0.05) in the area percentage of
the Bcl-2 immunoexpression, which was considerably regulated in rats treated with Eug.
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Figure 6. Immunohistochemical evaluation of Bcl-2 expression in renal tissues of the control and
treated animal groups showing (A) no staining in the negative control, (B) an intense immunostain-
ability in the control group, (C) a strong immunoreaction in the Eug-treated group, (D) a moderate
immunoreaction in the low-dose AgNPs-treated group, (E) a weak immunostainability in the high-
dose AgNPs-treated group, (F) a moderate immunostaining in Eug + AgNPs low-dose-treated group;
(G) a modest immunostainability in the group treated with Eug + AgNPs at a high dosage.

3.4.2. P53 Immunoreactivity

The P53 immunoreactivity in the kidney tissues of normal (Figure 7B) and Eug-treated
(Figure 7C) rats appeared weak; however, a moderate P53 immunoreactivity was observed
in low-dose AgNP-treated rats (Figure 7D). Moreover, the rats treated with a high dose of
AgNPs showed an intensely positive immunoreactivity to P53 (Figure 7E). Meanwhile, the
renal sections of rats treated with Eug+ low-dose AgNPs displayed a weak P53 immunore-
activity (Figure 7F), and those of the rats treated with Eug + high-dose AgNPs showed
a moderate response to P53 (Figure 7G). In the negative control samples, no staining was
observed (Figure 7A). Statistically, no considerable difference (p > 0.05) in the area percent-
age of P53 immunoexpression between the Eug-treated and control groups was detected.
Meanwhile, P53 immunoexpression was significantly increased (p ≤ 0.05) in both the low-
and high-dose AgNP-treated groups. In contrast to the low- and high-dose AgNP-treated
groups, the concomitant administration of Eug modulated the area percentage of P53
immunoexpression, however, the area percentage of P53 immunoexpression still showed
a considerable increase (p ≤ 0.05) compared with that in the control rats (Figure 10B).
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Figure 7. Immunohistochemical evaluation of P53 expression in renal tissues of the control and
treated animals groups showing (A) a negative immunostaining in the negative control, (B) a weak
immunostainability in the control group, (C) a weak immunostainability in the Eug-treated group,
(D) a moderate immunoreaction in low-dose AgNPs-treated group, (E) a strong immunostainability
in the AgNPs high-dose-treated group, (F) a weak affinity for P53 in the Eug + ANPs low-dose-treated
group, and (G) a modest immunostainability in the group treated with Eug + AgNPs at a high dosage.
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3.4.3. Cas3 Immunoreactivity

The renal tissues from the control (Figure 8B) and Eug-treated rats (Figure 8C) showed
a weak Cas3 immunostainability. In contrast, the kidney sections from rats treated with
low-dose AgNPs displayed a high positive Cas3 immunostaining (Figure 8D), and rats
treated with high-dose AgNPs exhibited a strong Cas3 immunostainability in their renal
tissues (Figure 8E). A moderate Cas3 immunoreactivity was observed in the groups treated
with AgNPs at low and high doses when Eug was also supplied (Figure 8F,G). The negative
control sample (Figure 8A) showed a negative Cas3 immunostainability. Figure 10C shows
that while low- and high-dose AgNP-treated rats elicited a significant elevation (p ≤ 0.05)
in the area percentage of Cas3 immunoexpression compared with the control rats, Eug-
treated rats did not demonstrate a considerable increase (p > 0.05) in the area percentage of
a Cas3 immunoexpression. In contrast to the kidney sections of rats treated with low- or
high-dose AgNPs, the concurrent administration of Eug- to AgNP-treated rats modified the
area percentage of the Cas3 immunoexpression but, nevertheless, it showed a substantial
elevation (p ≤ 0.05) compared with that in the control group.
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Figure 8. Immunohistochemical analysis of Caspase-3 (Cas3) expression in renal tissues of the control
and treated animal groups showing (A) no stainability in the negative control, (B) a weak immunos-
taining in the control group, (C) a weak immunoreaction in the Eug-treated groups, (D) a high
positive immunostainability in the low-dose AgNPs-treated group, (E) a strong immunoreaction in
the AgNPs high-dose-treated group, and (F,G) a modest immunostainability in both groups treated
with Eug paralleled with either the low or high dose of AgNPs.

3.4.4. TNF-α Immunoreactivity

The kidney sections of the control rats (Figure 9B) and Eug-treated animals (Figure 9C)
displayed a mild TNF-α immunohistochemical reactivity; however, the renal tissues of the
rats treated with AgNPs at low and high doses (Figure 9D,E) displayed a strong positive
TNF-α immunostainability. In contrast to the renal tissues of rats treated with low- or
high-dose AgNPs alone, the renal tissues of rats co-administered with Eug and low-dose
AgNPs (Figure 9F) or Eug and high-dose AgNPs (Figure 9G) showed a modest TNF-α
immunoreactivity. Figure 9A shows a negative control sample with a negative TNF-α
immunoreaction. Figure 10D shows that the area percentage of the TNF-α immunoexpres-
sion in kidney tissues did not differ significantly (p > 0.05) between the Eug-treated and
control rats. Compared with the control group, the renal tissues of the rats treated with
low- and high-dose AgNPs showed a substantial increase (p ≤ 0.05) in the area percentage
of a TNF-α immunoexpression. However, when Eug was administered to rats receiving
AgNPs at low or high doses, an TNF-α immunoexpression was modulated compared with
that in rats receiving AgNPs only.
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Figure 9. Immunohistochemical analysis of TNF-α expression in renal tissues the control and
treated animal groups showing (A) a negative immunoreactivity in negative control, (B) a mild
immunoreaction in the control group, (C) a week immunoreaction in the Eug-treated group, (D)
an intense immunostainability in low-dose AgNPs-treated group, (E) a strong immunoreaction in
the AgNPs high-dose-treated group, (F) a modest immunostainability in the Eug + AgNPs low-
dose-treated group, and (G) a moderate immunostaining in the group treated with Eug + AgNPs at
a high dosage.
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of the reactive proteins (A) Bcl-2, (B) P53, (C) Cas3, and (D) TNF-α in the renal tissues of the control
and treated animal groups. Each column represents mean ± SEM, n = 6. Means with different
superscript letters differ significantly at 5% (p ≤ 0.05) level of significance according to ANOVA test
and the TUKEY test. Eug: eugenol; AgNPs: silver nanoparticles.

4. Discussion

The kidneys are highly vulnerable to the harmful influences of chemicals and medica-
tions because they are actively responsible for filtering and concentrating various substances
and chemicals that may accumulate to high dangerous concentrations, which frequently
result in the formation of reactive metabolites that are now regarded as key players in
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the pathogenesis of a renal injury [38,39]. The kidney is a unique organ for NP targeting
because of its inherent ability to quickly remove particles with a diameter < 10 nm [40].
Meanwhile, a few prior investigations have examined the hazardous effects of AgNPs on
the kidneys [41].

The findings of this investigation indicate AgNPs’ direct toxicity to the kidneys. The
most accurate indicators of a healthy kidney function are the serum levels of BUN, cre-
atinine, and uric acid [42]. The results of this study revealed that rats exposed to the
applied dosages of AgNPs had a compromised kidney function compared with the match-
ing control rats, as indicated by higher levels of the assessed renal function indices. The
animals treated with AgNPs suffered from nephrotoxicity and experienced a severe renal
failure [43]. These results may be explained by the possibility that AgNP-induced oxida-
tive stress promotes the generation of many vasoactive mediators, which can impair the
renal function by causing renal vasoconstriction or by lowering the glomerular capillary
ultra-filtration coefficient, which consequently decreases the glomerular filtration rate [44].
Note that an oral administration of Eug to AgNP-treated rats restored the serum levels of
BUN, creatinine, and uric acid, suggesting that Eug offers a defense against AgNP-induced
nephrotoxicity. These findings are consistent with the literature, demonstrating Eug’s
protective effect on gentamicin-induced nephrotoxicity [45].

The current results showed elevated levels of KIM-1 in the kidney tissues of rats treated
with AgNPs. KIM-1 is a great biomarker of kidney damage and a predictor of histological
alterations in the proximal tubules in response to various pathophysiological circumstances
or toxicants [46]. Our results agreed with the findings of Elkhateeb et al. [47] who also
found that rats exposed to copper oxide NPs had higher levels of KIM-1 in their urine and
kidneys. KIM-1 is a protein which is expressed in the proximal tubule apical membrane in
response to injury and is not typically present. The histological changes observed in the
proximal convoluted tubules in this investigation provided evidence that AgNPs caused
renal dysfunction and damage. In an earlier study, Gherkhbolagh et al. [48] examined the
impact of AgNPs on rats’ kidneys and found necrosis, inflammatory changes, and further
histological abnormalities. When Eug and AgNPs were administered concurrently, the
KIM-1 levels in the kidneys were preserved. The moderating effects of Eug on the renal
tubule epithelial structure are supported by our results, which agree with those reported in
the literature [45,49].

In this study, increased TOC levels and decreased TAC levels in the sera, along with
higher levels of lipid peroxidation end-product (MDA), lower levels of GSH, and the
decreased efficacy of CAT, SOD, and GPx, indicated enhanced oxidative stress in the
kidney tissues of rats treated with AgNPs. Li et al. [50] claimed that NPs harmed cells by
generating ROS, including superoxide anion, H2O2, hydroxyl radical species, and nitric
oxide. ROS may interact with macromolecules inside the cells, severely harming biological
components [51]. In line with our findings, other investigations have demonstrated that
AgNPs generate oxidative stress in kidney tissues [41,44].

Surprisingly, animals simultaneously administered Eug and AgNPs displayed an
improvement in all the kidney oxidative stress biomarkers which were examined. Eug
has been demonstrated to decrease lipid peroxidation by serving as a chain-breaking
antioxidant and increasing the effectiveness of antioxidant enzymes [25,52]. Because of
the presence of a phenolic hydroxyl group in its composition, which provides electrons to
restrain free radicals, Eug exhibits antioxidant capabilities. Additionally, it prevents H2O2
from oxidizing Fe2+ in the Fenton reaction, causing the release of hydroxyl radicals that
initiate the lipid peroxidation process [53].

In this study, increased levels of TNF-α and IL-6 in the renal tissues of AgNP-
intoxicated animals served as a confirmation of the inflammatory condition. Numerous
investigations have shown that proinflammatory cytokines are produced excessively in
response to renal damage [54,55]. The excessive release of ROS, which activates the NF-κB
signaling pathway and causes the synthesis of inflammatory cytokines, is blamed for the
increase in proinflammatory cytokines [56].
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The protein complex NF-κB attaches to an inhibitor and stays dormant in the cyto-
plasm. The release of inhibitory molecules is induced by several factors, such as ROS,
TNF-α, and IL-8, which consequently translocates NF-κB into the nucleus [57]. NF-κB
stimulates the transcription and expression of several genes, including those encoding in-
flammatory cytokines, inside the nucleus, thus fostering inflammation, oxidative stress, and
apoptosis [58]. Additionally, pattern-recognition receptors build multiprotein complexes
known as inflammasomes, which induce inflammation after pathogenic microorganisms
and danger signals are found in the cytosol of host cells [59]. AgNPs activate the NF-κB
transcriptional and inflammasome pathways, signaling their involvement in the molec-
ular mechanism underlying AgNPs’ proinflammatory actions [60]. The overproduction
of the examined inflammatory cytokines in the kidney was significantly reduced in rats
treated with Eug simultaneously with either low- or high-dose AgNPs. One of the im-
munomodulatory and anti-inflammatory actions of Eug is the repression of the NF-κB
pathway [61].

The present results revealed that AgNPs caused considerable histological and histo-
morphometrical alterations in the renal tissues of treated rats, which were observed in both
the renal cortex and medulla. The most blatant signs of a renal deterioration were the shrink-
age of the renal corpuscles, the congestion of the glomerular capillaries, tubular necrosis
and degeneration, inter-tubular bleeding, and the infiltration of inflammatory cells into the
peritubular and perivascular regions. Additionally, a significant reduction in the thickness
of the renal capsules, cortex, and medulla, besides a marked decrease in the diameter of
the Malpighian corpuscles, the proximal and distal convoluted tubules were observed.
Additionally, a considerable reduction in the numbers of healthy Malpighian corpuscles
and proximal and distal convoluted tubules and an elevation in the quantity of damaged
Malpighian corpuscles and proximal and distal convoluted tubules were recorded. These
histological findings observed after the AgNP intoxication could be explained based on the
previously proposed hypothesis by Gibson and Skett [62], who reported that the mixed
function oxidase system and prostaglandin endoperoxide synthase, two enzyme systems
that can metabolically activate safe drugs into toxic metabolites that connect to essential
cellular macromolecules and ultimately cause necrosis of the kidney tissues, are present
in significant amounts in the renal tissues. Furthermore, Fogo et al. [63] highlighted that
several therapeutic and diagnostic medications may contribute to tubular necrosis, which
is a dose-dependent lesion, with practically all nephrons being affected and tubular cell
death typically limited to the proximal tubules. According to Wang et al. [64], 20 nm NPs
were riskier than 50 nm NPs because of how the renal filtration system handles different
particle sizes.

The results of this study showed that after receiving AgNPs, the renal cortex was more
negatively impacted than the medulla. This may have been caused in part by the unequal
distribution of these particles within the kidney tissue, where approximately 90% of the
renal blood flow enters the renal cortex via the circulation. Therefore, the concentration of
NPs that have entered the bloodstream and gone to the cortex was relatively higher than
that going to the medulla. This observation is consistent with earlier reports [65].

The histopathological findings of the lining tubular epithelial cells of the rats treated
with AgNPs revealed damage including vacuolization, cloudy swelling, severe necrosis,
pyknotic nuclei, and degenerative alterations, along with the desquamation of degenerated
cells and shedding in the lumen of the tubules. Consistent with our findings, Abdelhalim
and Jarrar [65] found cellular necrosis in the proximal tubules of gold nanoparticle (GNPs)-
treated rats. Additionally, several distal tubules and collecting ducts showed signs of
oxidative stress. This portion of the nephron, as previously indicated by Epstein [66], is
likewise less oxygenated than the proximal area, making it more sensitive to oxidative
stress caused by AgNPs.

Pandey and Srivastava [67] reported that necrosis may be an indication of the ef-
fect of AgNPs, causing swelling, lysing, and dissolving of the renal cell nuclei. Hyaline
deposits were also observed in the renal tubules of the kidney tissues obtained from AgNP-
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administered rats, which could also be a symptom of renal injury caused by a disruption in
the protein metabolism [68].

Cytoplasmic vacuolation was observed in the lining epithelia of some malformed
renal tubules of AgNP-treated rats. The anomaly in renal cell membrane function that
results in a substantial input of water and Na+ ions could be the origin of such cytoplasmic
vacuolation. Furthermore, as previously discussed by Schrand et al. [69], the imbalance
in fluid equilibrium caused by these minuscule AgNPs, which increased intracellular
water, may be related to tubular degeneration. These changes may also be followed by the
leakage of lysosomal hydrolytic enzymes, which can cause cytoplasmic degradation and
macromolecular crowding [70].

The findings of this study further showed that some proximal and distal convoluted
tubules of rats exposed to AgNPs had exfoliated epithelial cells, which indicated that
AgNPs affected the adhesion of the renal cells and caused the breakdown of cell–cell
junctions, in addition to the fact that oxidative stress is a critical factor in producing cell–cell
separation [71]. Additionally, Pannu and Nadim [72] and Perazella [73] reported that
the proximal convoluted tubules are injured due to their function in concentrating and
reabsorbing glomerular filtrates. Additionally, renal tubular cells have a fast metabolic
rate that uses a lot of energy and are in a very hypoxic environment, which raises the
risk of hypoxic injury to the cells [74]. Furthermore, the kidneys of AgNP-treated rats
occasionally displayed dilatation of the inter-tubular blood capillaries which may result
from the lowering of the renal tissue vascular resistance caused by AgNPs, as previously
reported [65].

One of the most evident anomalies observed following the AgNPs’ administration was
a cellular infiltration. This phenomenon was first documented by Bianchi et al. [75], who re-
lated the proliferation of inflammatory cells to the harmful effects of the drugs. Additionally,
according to Silva [76] and Markowitz and Perazella [77], an interstitial infiltration of the
inflammatory cells signifies an allergic hypersensitivity response. Furthermore, inflamma-
tory cells found in the renal tissues of rats treated with AgNPs indicate that these particles
could interact with the proteins and enzymes of the renal interstitial tissues, interfering
with the antioxidant defense mechanism and generating ROS, simulating an inflammatory
response [78]. Additionally, Yen et al. [79] found that smaller NPs triggered higher im-
mune responses than bigger ones. These inflammatory symptoms matched up with the
immunohistochemistry findings, which showed a significant dose-dependent increase in
the immunoexpression of the proinflammatory cytokine TNF-α in AgNP-treated groups
compared with those in the control group.

Particle size significantly influences immunoreactivity because it impacts the differ-
ential complement protein deposition in NPs. Recent studies have shown how crucial
the complement system is for the uptake and clearance of NPs and the regulation of the
immune system’s proinflammatory response [80]. The immunohistochemical results in this
study demonstrated that apoptosis is associated with AgNP-mediated cell death, which
was supported by a considerable decrease in Bcl-2 immunoreactivity and an increase in P53
and Cas-3 immunoreactivities after the administration of low and high doses of AgNPs.
The process of intrinsic mitochondria-mediated cell death is inhibited by Bcl-2, an antiapop-
totic protein that is overexpressed in numerous malignancies. Bcl-2 does this by blocking
mitochondrial membrane permeabilization, which results in the release of proapoptotic
chemicals [81]. Furthermore, the family of the Bcl-2 gene regulates the intrinsic apoptotic
pathway’s caspase activation, which is caused by intracellular damages, such as DNA
damage [82].

P53 activation controls the production of other apoptosis-related proteins and is
associated with the triggering of apoptosis [83]. Banu et al. [84] postulated that the biogenic
metal NP-induced death of cancer cells was caused by promoting apoptosis and changing
the expression of apoptosis-associated genes, such as Bcl-2 and P53. DNA damage is caused
by the apoptotic marker Cas-3, which can be activated by intrinsic and extrinsic apoptotic
mechanisms [85]. According to Sulaiman et al. [86], these alterations can be related to the
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accumulation of AgNPs in the tissues or to the impact of AgNPs on the mitochondrial
function, which lowers the cell viability [87].

Additionally, TNF-α is involved in cell–cell communication, the proinflammatory
response, and numerous inflammatory and autoimmune disorders. TNF-α is largely
produced by macrophages in inflammatory tissues and contributes to tumor growth,
angiogenesis, and wound healing [88]. TNF-α was shown to be overexpressed in the renal
tissues of rats treated with AgNPs.

There are several pathways that can cause intracellular AgNPs nephrotoxicity, but
an excessive ROS generation is the major one. AgNPs have unique properties that can
pass through cell membranes and other biological barriers, causing cellular deterioration
or apoptosis [89]. ROS can induce two different mechanisms of cell death, necrosis, and
apoptosis. Additionally, since caspases are thought to be in charge of apoptosis, ROS
activates them. Given that a biochemical decrease in GPx, CAT, and SOD is the principal
cause of oxidative stress-induced cell death, such apoptotic effects may be the result of the
intracellular oxidative stress brought on by AgNPs in the current study. Inflammation is
one of the oxidative stress pathways that has been linked to the pathophysiology of chronic
kidney disease. It has been demonstrated that excessive ROS act as mediator signaling
molecules, triggering the production of inflammatory cytokines like IL-6 and TNF-α [90].
The increased expression of TNF-α and IL-6 following an exposure to AgNP in our work
supports the relationship between proinflammatory cytokines and ROS and raises the
possibility that excessive ROS generation contributes to AgNP-induced nephrotoxicity
which is also confirmed by the current histopathological and immunohistochemical results.

When Eug was administered with AgNPs, the amplitude of the histological and
histomorphometrical alterations in the renal tissues of rats treated with AgNPs at low
or high doses were reduced. Additionally, animals exposed to Eug parallel with AgNPs
showed the upregulation of their immunoexpression of Bcl-2, P53, Cas-3, and TNF-α
reactive proteins. These outcomes agree with the previously published studies [45,91,92].

According to a recent study by Yousef et al. [24], AgNPs significantly induced oxidative
stress in hepatic tissues, as evidenced by increased levels of lactate dehydrogenase, TOC,
MDA, TNF-α, and IL-6, which were correlated with a significant reduction in the total
TAC, SOD, CAT, GSH, and GPx levels. These abnormalities were observed in tandem with
histological changes represented by the destruction of the normal liver structure, a sharp
decline in Bcl-2 immunoreactivity, and a noticeable elevation in P53, Cas-3, and TNF-α
immunoreactivities. Additionally, the authors reported that an Eug supplementation in
AgNP-treated rats restored most of the aforementioned liver-related alterations.

5. Conclusions

The biochemical, histological, histomorphometrical, and immunohistochemical findings
proved that rats exposed to AgNPs experience oxidative stress and inflammation, which leads
to nephrotoxicity. Due to Eug’s antioxidant, antiapoptotic, and anti-inflammatory capabilities,
our results also provide new light on the modulation impact of an Eug supplementation
against AgNP-induced renal toxicity. Finally, we advocate the use of Eug as a protective agent
along with AgNPs to reduce nephrotoxicity.
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