
Citation: Zhang, S.; Croppi, G.; Hu,

H.; Li, Y.; Zhu, C.; Wu, F.; Zhang, F.;

Li, Z. Bacillamide F, Extracted from

Marine Bacillus atrophaeus C89,

Preliminary Effects on Leukemia Cell

Lines. Biology 2022, 11, 1712.

https://doi.org/10.3390/

biology11121712

Academic Editor: Maria

Rosaria Ricciardi

Received: 15 October 2022

Accepted: 23 November 2022

Published: 25 November 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

biology

Article

Bacillamide F, Extracted from Marine Bacillus atrophaeus C89,
Preliminary Effects on Leukemia Cell Lines
Shengnan Zhang 1,†, Giorgia Croppi 2,†, Heng Hu 1, Yingxin Li 1, Chunmiao Zhu 1, Fang Wu 2,* , Fengli Zhang 1,*
and Zhiyong Li 1

1 Marine Biotechnology Laboratory, State Key Laboratory of Microbial Metabolism, School of Life Sciences &
Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China

2 Key Laboratory of Systems Biomedicine (Ministry of Education), Shanghai Center for Systems Biomedicine,
Shanghai Jiao Tong University, Shanghai 200240, China

* Correspondence: fang.wu@sjtu.edu.cn (F.W.); zhangfengli@sjtu.edu.cn (F.Z.)
† These authors contributed equally to this work.

Simple Summary: Bacillamides are important bioactive natural compounds. This paper depicts for
the first time a study of a novel thiazole alkaloid compound bacillamide F that was isolated from the
marine Bacillus atrophaeus C89. Bacillamide F inhibits the leukemia cell lines HL60 and Jurkat. The
work provides a new indication of the pharmacological activity of bacillamides.

Abstract: Developing new treatments for leukemia is essential since current therapies often suffer
from drug resistance and toxicity. Bacillamides are very promising, naturally occurring compounds
with various bioactivities. In the present study, we investigated the use of bacillamide analogues, a
new thiazole alkaloid bacillamide F that was isolated from marine Bacillus atrophaeus C89 associated
with sponge Dysidea avara. The structure of the new compound bacillamide F with indolyl–thiazolyl–
pyrrolidine ring was determined by high resolution mass spectrometry, secondary mass spectrometry,
and nuclear magnetic resonance analyses. Intriguingly, bacillamide F is able to inhibit the prolif-
eration of an acute myeloid leukemia cell line HL60 (IC50 (24 h) 21.82 µM), and an acute T-cell
leukemia Jurkat (IC50 (24 h) 46.90 µM), rather than inhibit the proliferation of the acute histiocytic
lymphoma U-937 cell line, human fetal lung fibroblast MRC-5 cell line, and some solid tumor cell
lines (IC50 (24 h) > 100 µM). The study provides a new indication of the pharmacological activity of
natural product bacillamides.

Keywords: bacillamide; Bacillus atrophaeus; leukemia; antiproliferation effect

1. Introduction

Leukemia is a disease that develops from bone marrow, and can be classified into acute
leukemia and chronic leukemia [1]. In regard to the type of cells involved in the disease,
leukemia is further divided into acute myelogenous leukemia (AML) [2], chronic myeloid
leukemia (CML) [3], acute lymphoblastic leukemia (ALL) [4], and chronic lymphoblastic
leukemia (CLL) [5]. Moreover, each class of leukemia contains several subtypes [6]. For
instance, AML can be subdivided into more than ten different subtypes according to the
defining genetic abnormalities in the new WHO (World Health Organization) classification
scheme. Due to the many different types of leukemia and fast progress of resistance of
certain subtypes for current therapy, new treatments are becoming necessary [7,8].

Bacillamides, which are non-ribosomal peptides thiazole alkaloids, can be categorized
as bacillamide A, B, C, D and E (Figure 1a) [9–14]. Bacillamide A was isolated from
the marine bacterium Bacillus sp. SY-1 [9]. Bacillamide B was isolated from Bacillus
endophyticus [10] and Microbispora aerate IMBAS-11A [11]. Bacillamide C was isolated
from Bacillus endophyticus [10] and Bacillus atrophaeus C89 associated with marine sponge
Dysidea avara [12]. Bacillamide D was isolated from Thermoactinomyces sp. strain TM-64 [13].
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Bacillamide E was synthetized in vitro by Bloudoff et al. [14]. Bacillamides and their
derivatives show significant algicidal activities against a wide range of dinoflagellates,
raphidophytes, and particular species of cyanobacteria [9,15], and bacillamide analogues
show cytotoxic and anti-inflammatory activities [16]. Moreover, thiazole derivatives exhibit
good anticancer activity with influence on cell cycle, DNA fragmentation and mitochondrial
depolarization [17].
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Precursor-directed biosynthesis (PDB) was an effective method used to generate novel
NRPS products analogues [18]. In our previous study, substrate selection of adenylation
domains for non-ribosomal peptide synthetase (NRPS) in bacillamide C biosynthesis by
B. atrophaeus C89 was investigated, and the results proved the A1 and A2 domains can
catalyze a variety of substrate amino acids, including proline [19]. Here, we isolated a
novel thiazole alkaloid bacillamide F and found that the production of bacillamide F was
increased through the addition of precursor L-proline into a culture medium of marine
B. atrophaeus C89. We elucidated the structure and inhibition activity of bacillamide F in
this research. To our knowledge, this is the first report of bacillamide analogue bearing a
2-(thiazole-2-yl-) pyrrolidine, and a biosynthetic pathway of bacillamide F was predicted.
In this study, the antiproliferation effect on leukemia of bacillamide F was investigated,
and the results showed that bacillamide F inhibited the proliferation of leukemia cell lines
Jurkat and HL60.
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2. Materials and Methods
2.1. Biosynthesis and Extraction of Bacillamide F

B. atrophaeus C89 (CCTCC AB 2016282, Genome Genebank No, AJRJ00000000.1) was
isolated from the sponge D. avara in the South China Sea [12]. B. atrophaeus C89 was
incubated at 28 ◦C in a solid medium containing 5 g of beef extract, 10 g of peptone, and
20 g of agar in every 1000 mL of artificial seawater (ASW) with pH 7.0–7.2. After 24 h
cultivation, the strain was cultured in a modified medium (consisting of 3.64 g/L corn
starch, 6.29 g/L CaCO3, 4.00 g/L soy peptone, and 6.00 g/L peptone with ASW) at 28 ◦C
for 96 h; and 0.10 g/L cysteine, 0.02 g/L tryptophan, and 0.02 g/L proline were added to
the culture medium when the strain was cultured at 40 h.

After 96 h cultivation, the medium (18 L) was extracted three times with ethyl ac-
etate (EtOAc). Evaporation of EtOAc extracts gave the yellow oil (3.40 g) which was
subjected to Sephadex LH-20 columns with methanol (MeOH). Consequently, 2 fractions
(Fr. 1–2) were obtained according to Thin Layer Chromatography (TLC) monitoring.
Fr. 2 (2.40 g) was further purified on Medium Pressure Preparative Liquid Chromatog-
raphy (MPLC). As a result, 8 fractions (Fr. 3–10), according to reversed-phase high-
performance liquid chromatography (HPLC) monitoring (1 mL/min, detector UV λmax
220 nm, acetonitrile/H2O 20: 80–45: 55, 15 min), were eluted with increasing proportions,
respectively, of MeOH (H2O/MeOH (v/v, 90:10, 70:30, 50:50, 30:70, 10:90, 0:100)). Finally,
Fr. 8 (136 mg) was further purified on semi-preparative HPLC (1 mL/min, detector UV
λmax 220 nm, acetonitrile/H2O 30: 70) to deliver bacillamide F (34.80 mg).

2.2. General Experimental Procedures

Column chromatography (CC): Sephadex LH-20 (Amersham Biosciences, Amersham,
UK). MPLC: Cheetah Fs-9200t (Bonna-Agela, Tianjin, China). TLC: precoated silica gel
plates (Qingdao Marine Chemical Company, Qingdao, China). Semi-preparative HPLC:
Agilent 1200 series liquid chromatograph Durashell C18-AM column (4.60 × 250 mm; i.d.
5 µm). Reversed-phase HPLC: Agilent 1200 series liquid chromatograph ZORBAX Eclipse
XDB-C18 column (4.60 × 150 mm; i.d. 5 µm). Mass spectra: ACQUITYTM UPLC & Q-TOF
MS Premier instrument equipped with an electrospray ionization (ESI) probe operating
in positive-ion mode with direct infusion. 1H and 13C- Nuclear Magnetic Resonance
(NMR) spectra: Avance III 600 MHz spectrometer; chemical shifts δ in ppm, with residual
methanol-d4 (δH 3.31, δC 49.15) as internal standard, coupling constant J in Hz. 1H- and
13C-NMR assignments were supported by 1H, 1HCOSY, Heteronuclear multiple quantum
coherence (HMQC), heteronuclear multiple bond correlation (HMBC) experiments. All
chemicals used in the study were analytical grade and HPLC grade.

2.3. Cell Culture

The acute T-cell leukemia cell line (Jurkat cells) was a generous gift from Prof. H.
Gehring (Department of Biochemistry, University of Zürich, Switzerland). The histiocytic
lymphoma cell line (U-937 cells) and acute promyelocytic leukemia cell line (HL60 cells)
were generous gifts from Dr. H. Le (Shanghai Center for Systems Biomedicine, Shanghai
Jiao Tong University). The cells were cultured in RPMI-1640 medium (Invitrogen, Waltham,
MA, USA) supplemented with 10% of fetal bovine serum (Lonza, Basel, Switzerland) and
1% of penicillin-streptomycin antibiotics. The cells were grown at 37 ◦C in a humidifier
incubator under an atmosphere of 5% CO2 and used for assay when they reached 80% of
confluence in the dish.

2.4. MTS Assay

The viability of the cells was measured by MTS, a colorimetric assay which involves
the biological reduction of the MTS reagent tetrazolium (3-(4,5-dimethylthiazol-2-yl)-5-
(3-carboxymethoxy-phenyl)-2-(4-sulfophenyl)-2H-tetrazo-lium). Cells were seeded in a
96-well plate at 5000 cells/well density. Bacillamide F was added at different concentrations
(6.25–100 µM) and the cells were treated for 24, 48 and 72 h. Absorbance was recorded at
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490 nm in a plate reader (BioTek & Synergy2, Singapore). The number of cells in experiment
is the means from three wells cells (biological replicates). All the experiments were repeated
at least twice.

3. Results
3.1. Structural Identification of New Compound

The EtOAc extract of the bacterium was subjected to repeated Sephadex LH-20; the
pure compound 1 (Figure 1b) was obtained by MPLC and semipreparative HPLC.

Compound 1 was obtained as yellow oil. It showed a molecular ion peak at m/z
383.1549 [M + H]+ (calcd. for C20H22N4O2S, 383.1549) in the positive HR-ESI-MS spectrum,
indicating twelve degrees of unsaturation. In the 1H-NMR spectrum (Table S1), five signals
for H-atoms between δH 6.97 and 7.58 indicated the presence of one indole ring. Further-
more, one aromatic H-atom at δH 8.03 (s, 1 H), one CH group at δH 5.32 (dd, J = 2.80, 7.60,
1 H), five CH2 groups at δH 3.05 (t, J = 7.20, 2 H), 3.68 (t, J = 7.20, 2 H), 2.23 (m, 2H), 2.03 (m,
2H) and 3.71~3.58 (m, 2H), and one Me group at 2.09 (s, 3 H) were observed. The 13C-NMR
and Distortionless Enhancement by Polarization Transfer (DEPT) spectra exhibited 20 C-
atom signals (1 × CH3, 5 × CH2, 7 × CH, 5 × C, and 2 × C=O), whose chemical-shift values
and multiplicities confirmed the presence of an indole ring (δC 123.57, 113.04, 119.37, 119.65,
122.38, 112.24, 138.20, 128.77). The 1H-1H COSY spectrum of H-9 (δH 3.05)/H-10 (δH 3.68),
H-15 (δH 5.32)/H-16 (δH 2.23)/H-17 (δH 2.03)/H-18 (δH 3.71~3.58) revealed that two spin
systems were present in compound 1 (Figures 2 and S1–S8 and Table S1).
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Figure 2. The key 2D NMR correlations of bacillamide F.

HMBC correlations from H-9 and H-10 to C-2 suggested that C-9 was connected to the
indole ring. The other significant HMBC cross-peaks from H-13 to C-11, C-12, and C-14,
from H-18 to C-14 and C-15, and from Me-20 to C-19 confirmed the connectivity of the
pyrrolidine and thiazole rings as shown in Figure 2. Considering the molecular formula,
the presence of a disubstituted thiazole ring was suspected and C-18 was connected to C-15
through a N-atom, while an acetyl group was anchored at the N-atom, further verified by
HMBC correlation from H-15 to C-19. The compound 1 was identified as bacillamide F
by analysis of its NMR spectral data as well as by comparison with the reported data [11].
Thus, the planar structure of compound 1 was established.

3.2. Plausible Biosynthesis Pathway of Bacillamide F

According to genome information, bacillamide F structure, and predicted biosynthetic
pathway of bacillamide C and intermediate AlaCysthiazole [19,20], biosynthesis of bacil-
lamide F has been predicted (Figure 3). NRPS domains, Oxidase domain, and AADC
(aromatic L-amino acid decarboxylase) domain have been involved in the synthesis of
bacillamide F. The enzyme-bound amino acids are combined through a nucleophilic attack
of either the cysteine amino group or the heteroatom of the side chain onto the carbonyl
C of proline, and a proton is abstracted through base catalysis, thereby enabling the at-
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tack of either the cysteine side chain or the amino group onto the amide bond carbonyl.
Intermediate hydroxylated thiazolidine has been synthesized, and then hydrated and dehy-
drogenated to produce thiazole-containing product ProCysthiazole. Bacillamide F precursor
has been synthesized by the C domain catalyzation of peptide bond formation between
the ProCysthiazole and L-tryptamine decarboxylated by the AADC enzyme; subsequently,
bacillamide F is synthesized after acetyl modifications.
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(EIM09914.1, bacitracin synthetase) domains, Ox (oxidase domain, EIM09913.1), and AADC (aromatic
L-amino acid decarboxylase) domain were involved in the synthesis of bacillamide F. Each circle
represents an NRPS enzymatic domain, from left to right: A, adenylation domain, Cy, cyclization
domain. C, condensation domain, and PCP, peptidyl carrier protein domain.

In our previous study, a possible biosynthesis pathway for bacillamide C suggested
that bacillamide C could be derived from alanine, cysteine, and tryptophan [19,21]. Con-
sistent with this hypothesis, and followed by the optimization of the culture medium,
experimental results showed that the independent addition of alanine, cysteine, and tryp-
tophan had a positive effect on production of bacillamide C [22]. Based on the predicted
biosynthetic pathway, it is possible that the pyrrolidine in compound 1 derived from
L-proline (Figure 3). Therefore, the prediction of biosynthesis pathway for bacillamide F
benefits the production of bacillamide F through optimized medium. In our other experi-
ment, the increase of biosynthesis of bacillamide F was detected and quantified when the
B. atrophaeus fed on L-proline.

3.3. Toxicity of Bacillamide F on Leukemia Cells

To determine the potential effect of the new compound on cancer cells, we performed
a toxicity assay (MTS) on three different cell lines of leukemia. Bacillamide F inhibited the
growth of Jurkat in a dose-dependent manner (Figure 4), showing cell survival less than
20% at 50 µM after 72 h of treatment. HL-60, acute promyelocytic leukemia, the subtype of
AML, exhibited growth suppression in a dose- and time-dependent manner with a survival
rate less than 30% at 12.50 µM after 72 h, while bacillamide F did not show any suppression
on U937 as well as fibroblast MRC-5 or other solid tumor cells, such as pancreatic cancer
cell lines PATU8988 and SW1990. Cytotoxicity of the inhibitor on Jurkat and HL60 was
found to be decreased time-dependently with an IC50 of 33.09 µM and 9.44 µM after the
treatment of 72 h, an IC50 of 37.16 µM and 14.13 µM after 48 h, and an IC50 of 46.90 µM
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and 21.82 µM after 24 h, respectively (Table S2). Intriguingly, bacillamide F showed a much
less inhibitory effect on the proliferation of Jurkat than on HL60, e.g., at the concentration
of 25 µM (Figure 4), an effect that we cannot currently explain.
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Figure 4. MTS assay on three different leukemia cell lines: Jurkat (A–C), HL60 (D–F), and U937 (G–I).
Cell availability has been tested for 24, 48 and 72 h by incubating the cells in a 96-well plate with
different concentrations of BF (Bacillamide F) (6.25–100 µM). The percentage of control samples
(DMSO, 100%) is shown as means ± SDs (n = 3, biological replicates). The experiments were repeated
at least twice independently with similar results, and the representative data from one experiment
are shown (n = 3, biological replicates).

Previous results have revealed that synthetic analogues of bacillamide type com-
pounds with structural modifications on the amino or aminophenyl group of position 2
of the thiazole ring could suppress the proliferations of both solid tumor and leukemia
cell lines [16]. In the present study, we show that a newly identified natural product bacil-
lamide F, which has a substitution of a methyl-amino group on the same position of the
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thiazole ring, can inhibit the proliferation of ALL and acute promyelocytic leukemia (APL)
cell lines Jurkat and HL60 without affecting the proliferation of the solid tumor cell line
(Table S2). The attractive indication of bacillamide F provides a pharmacological activity
for this type of natural compound and offers a new drug lead for the treatment of ALL and
APL leukemias.

4. Discussion

Bacillamides and analogues are natural products with various bioactivities, includ-
ing algicidal activity [9,15,23], cytotoxic activity against three cancer cell lines (HCT-116,
MDA-MD-231, and Jurkat cell lines), and anti-inflammatory activity [16]. Indole alkaloid
derivatives, as the building blocks of bacillamides, have exhibited antibacterial and an-
tifungal activity [24]. Thiazole amides, the component of bacillamides, have exhibited
potential algicidal activity against harmful cyanobacterial algae [23]. Bacillamides, as a
building block, have been found in cyclic peptides antibiotic zelkovamycin and argyrin A
and B [25,26]. In this study, bacillamide F controlled the growth of Jurkat ALL and AML
HL60 cell lines in a dose-dependent manner, rather than the acute histiocytic lymphoma
U937 cell line (Figure 4 and Table S2), which is also considered to be a different subtype of
AML [27]. Bacillamide F has a pyrrole structure (Figure 1b). Pyrrole is a simple heterocyclic
and important building block for biologically active compounds [28]. The anticancer activ-
ity of bacillamide F has broadened the active range of the bacillamides family. Although
bacillamide F shows a promising growth-inhibitory effect in two types of leukemia cell
lines, further work needs to be performed in vitro and in vivo models to investigate its
function and molecular mechanism in these cells.

The biosynthetic pathway of bacillamide has been predicted in our previous study [19–21].
The biosynthesis of bacillamide C has been hypothesized that decarboxylation from
L-tryptophan to tryptamine could be performed before amidation by the downstream
aromatic AADC to nrps gene cluster [21]. We have predicted that Oxidase encoded
by oxidase gene located upstream of nrps gene cluster could catalyze AlaCysthiazoline
to AlaCysthiazole [19]. The dehydrogenation activity of Oxidase has been further confirmed
in the peptide intermediate while it is covalently attached to the NRPS [29]. In this study,
addition of L-proline into a culture medium of B. atrophaeus C89 increased the production
of bacillamide F (Figure 2). These results implied that broad substrate selectivity of NRPS A
domain probably contributes to the biosynthesis of bacillamide analogues. In biosynthesis
of bacillamide F as predicted, alanine, cysteine, tryptophan, and proline are precursors of
bacillamide F (Figure 3). In future work, we will investigate how the concentration and
proportion of various amino acid precursors affect the production of bacillamides and
analogues.

5. Conclusions

In this study, a new member of the bacillamide family, bacillamide F, was obtained
by a series of separation and purification methods. NMR data showed that the compound
contained a novel thiazole alkaloid structure. The study also revealed that bacillamide F
inhibited the growth of leukemia cell lines HL60 and Jurkat.

Supplementary Materials: The following supporting information can be downloaded at https:
//www.mdpi.com/article/10.3390/biology11121712/s1. Figure S1: HR-ESI-MS spectrum of bacil-
lamide F; Figure S2: HR-ESI-MS-MS spectrum of bacillamide F; Figure S3: 1H-NMR spectrum of
bacillamide F; Figure S4: 13C-NMR spectrum of bacillamide F; Figure S5: DEPT spectrum of bacil-
lamide F; Figure S6: COSY spectrum of bacillamide F; Figure S7: HMBC spectrum of bacillamide
F; Figure S8: HSQC spectrum of bacillamide F; Table S1: 1H and 13C NMR (600 and 150 MHz
in methanol-d4) data for compound 1; Table S2: IC50 values of bacillamide F on different cancer
cell lines.
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