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Simple Summary: Actinobacteria remain a key source for antibiotic discovery, and the current an-
timicrobial resistance crisis is becoming a driving force for actinobacteria research. Insect-associated
actinomycetes are an underexplored ecological niche with prospects for the search for novel antimi-
crobial compounds. The described associations of leaf-cutter ants and Pseudonocardia bacteria or
solitary wasps and Streptomyces bacteria were the first examples of mutually beneficial coexistence of
insects with actinobacteria. On the molecular level, these systems are regulated by antibiotics. The
complex relationships between insects and actinobacteria mediated by antibiotics could be important
for the stability of ecosystems and agricultural production.

Abstract: Actinobacteria are involved into multilateral relationships between insects, their food
sources, infectious agents, etc. Antibiotics and related natural products play an essential role in
such systems. The literature from the January 2016–August 2022 period devoted to insect-associated
actinomycetes with antagonistic and/or enzyme-inhibiting activity was selected. Recent progress in
multidisciplinary studies of insect–actinobacterial interactions mediated by antibiotics is summarized
and discussed.

Keywords: antibiotics; chemical ecology; actinobacteria; insect microbiome; microbe–host interaction

1. Introduction

Insects are the most widespread animals on our planet, playing an essential role in
different ecosystems. Pollination, plant biomass destruction and the spread of tick-borne
encephalitis and malaria—all these processes are impossible without insects. According to
a rough evaluation by Bar-On et al. [1], about 50% of animal biomass on Earth is comprised
of arthropods. Approximately one sixth of this huge number is insects (0.2 Gt of 1.2 Gt) [2].

In spite of such ubiquity and diversity, a dangerous trend in insect populations has
been detected. In the 2010s, numerous studies reporting significant declines in insect
populations emerged. This “decline crisis” is associated mostly with a reduction in numbers,
although, in some cases, entire species have become extinct [3–6]. Globally, terrestrial insects
are declining by about 11% per decade, while freshwater insects are increasing by 12% per
decade, according to a meta-analysis published in Science [7]. However, this relatively fast
change may threaten the stability of ecosystems and agricultural production.

The factors influencing insect survival should be carefully analyzed, including their
interaction with microorganisms. Symbiotic bacterial species strongly associated with
insects, such as Wolbachia sp., have a long history of study and a great potential for the
regulation of insect populations [8]. Coexistence of the macro- and microorganisms is
possible through close interaction and intensive signal exchange.
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Chemical signaling is a very important factor for insects. Low-molecular compounds
mediate insect interactions at various levels, from the individual level, where hormones
control development and reproduction, to the interspecies level, where specific metabolites
act as defense agents against predators [9–12]. Unsurprisingly, actinomycetes—one of the
most fruitful producers of diverse secondary metabolites [13–15]—can interact with insects
by biosynthesis of small molecules.

For example, Noodwell and co-workers [16] showed that small concentrations of
volatile terpenes produced by streptomycetes attract Drosophila melanogaster. Fruit flies
preferentially deposit their eggs on bacteria-contaminated food sources. As a result, the
larvae are killed by antibiotics (cosmomycin or avermectin), which are produced by strep-
tomycetes. This “toxic snare” could seriously affect insect populations. Nevertheless, this
mechanism of ecological interaction has only recently been established. A similar attractive
effect of volatile terpenes was observed for red imported fire ants [17], but, in that case,
no toxic effects were detected. On the contrary, the authors suggest that the choice of
Streptomyces- and Nocardiopsis-rich environments reduces the mortality of young ants from
entomopathogenic fungi.

Actinobacteria remain a key source for antibiotic discovery [13], and the current
antimicrobial resistance crisis is becoming a driving force for actinobacteria research. How-
ever, insect-associated actinomycetes are not just an underexplored ecological niche with
prospects for the search for novel antimicrobial scaffolds [18]; they could also be important
for understanding the complex relationships between different types of organisms which
define the actual state and further development of ecosystems.

2. Methodology

In this account we make an attempt to summarize recent progress in the study of
molecular ecology of insect-actinobacterial interactions mediated by antibiotics.

The search and preliminary selection of sources was performed using a Web of Science,
Google Scholar, and PubMed search for keyword combinations (“insect-associated”, “acti-
nobacteria/actinomycete”, “antibiotic/antimicrobial/inhibition”). The inclusion criteria
were:

1. The actinobacteria (Phylum: Actinomycetota) have been isolated directly from insects
(Class: Insecta) (whole animals, cuticle, gut or other internal/external organs) or from
freshly sampled secreted substances. Ant nest fragments and other environmental
samples were excluded;

2. The antibiotic compounds (i.e., having some antagonistic or enzyme-inhibition activ-
ity) produced by actinomycetes have been described or, at least, antagonistic action
was confirmed by bioassay;

3. Only regular articles, reviews and book chapters were included. Patents, conference
materials and preprints were excluded.

It should be noted that the insect-associated microbiome as a source of novel natural
products was a subject of several other reviews. The discussion of insect–actinobacterial
symbiotic relationships and their relevance for drug discovery started from comments by
M. Kaltenpoth [19] and H. B. Bode [20]. During the next decade (2010s), this topic was
highlighted and/or reviewed in several works [3,21–27].

The latest systematic review on natural products from insect-associated microorgan-
isms was published by C. Beemelmanns et al. [28] in 2016. Despite it not being focused
on a specific genus and type of compounds, we could recognize it as a starting point for
our literature selection: the current review is covering January 2016–August 2022. From
the latest years we should highlight some works on specific types of insects or ecological
niches: fungus-growing ants [29], African edible insects [30], neotropical insects [31] and
fungus-farming termites [32]. A critical review on microbial symbionts of insects as a source
of new antimicrobials from our Belgian colleagues [18] is the most relevant and closest to
our work, but it does not have a systematic character and is not focused on actinomycetes
as a major source of antimicrobials.
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Using the above-mentioned criteria and methodology, we identified 71 research papers
from 2016 [26,33–102].

A total of 14 other works were excluded due to the source of actinobacteria isolation
(insect-associated environments such as dung beetle’s brood ball, wasp nest, termite fungus
comb, bee pollen, etc.—see List S2). The most important information from the selected
materials is summarized in Table S1. Here, we present our comments and conclusions
based on analysis of the data.

3. General Remarks: Data Pre-Processing

All the presented studies have the same experimental design, which can be illustrated
by Scheme 1:
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Scheme 1. The experimental design used in the selected publications.

First of all, in some works (11 out of 71), this workflow is not complete: no compounds
were isolated and characterized, only antagonistic activity of actinomycete strains was
detected. In others, we could find repeated data in strain descriptions (marked as “previ-
ously described”, 10 out of 60), which means that new compounds were isolated from the
same strains. This could be interpreted as evidence for the high biosynthetic potential of
actinobacteria. Other missing values (marked as “no data”) are caused by an absence of
experimental details in the original works.
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4. Data Analysis: Main Trends

The geographical distribution of sample collection locations is depicted on Figure 1.
We could see a clustering of sampling locations—samples were often collected in compact
regions: Central America, South Brazil, South Africa, East China, North-East China and
South Korea. On the contrary, it is easy to see that most of the world area is not involved in
insect–actinobacteria symbiosis studies.
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The collected insects could be classified into major taxonomic categories (order, family)
as shown in Figure 2. The most studied insect phylum, by a wide margin, was ants
(Hymenoptera: Formicidae). We also have to note termites (Blattodea: Termitidae and
Rhinotermitidae), bees (Hymenoptera: Apidae), Silphidae beetles (Coleoptera: Silphidae)
and grasshoppers (Orthoptera: Acrididae). Unfortunately, in three cases [36,61,96], the
taxonomic status of the insects was not determined.
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Only the classical isolation approach was used in the selected papers. The most used
isolation media were chitin agar (C/N-source—chitin) and Gause agar №1 (C-source—
soluble starch, N-source—ammonium salts) (see Table S2 and Figure S1). These are well-
known selective media for actinobacteria isolation.

Streptomyces was the most isolated genus (see Figure 3); it is typical for all culture-
dependent studies of actinobacteria. From non-streptomycete actinobacterial genera, the
Pseudonocardia—a well-studied symbiont of Attini ants—was the most mentioned. New
species (8, from which 2 are synonymic) were described: 6 Streptomyces, 1 Amycolatopsis
and 1 from genus Actinomadura.
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Figure 3. Isolation of axenic cultures: isolated genera and new described species. * the taxonomic
description does not match the International code of nomenclature of prokaryotes, for details see
ref. [81]. ** for taxonomic description see ref. [97].

Here, we grouped the isolated compounds by their biosynthetic origin: peptides,
polyketides, alkaloids and other. Class and structure assignment is summarized in SI,
Schemes S1–S4. For all schemes (here and in SI), new elucidated structures are colored
black, while known metabolites are colored gray. The main statistics on the isolated
metabolites are presented in Figure 4.
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Polyketides are the leading class among described antibiotics (about half of the to-
tal). However, more importantly, structural novelty is quite high for all main classes of
compounds.

Despite a significant number of publications and detected metabolites, the ecology
of the isolated compounds is discussed in just 15 out of 71 papers. In all cases, it is
protective symbiosis, but these symbiotic relationships could be divided into two main
types: protection of food sources (for fungus-growing insects) and direct protection against
entomopatogenic fungi and bacteria (Figure 5).Biology 2022, 11, x FOR PEER REVIEW 7 of 15 
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source protection; (B) Direct self-protection.

Food source protection is described extensively for fungus-growing termites and
ants (Attini tribe). The fungal cultivar is an important food source for these social insects
with specialized diets, and the presence of pathogenic fungal species (Escovopsis sp. [103]
for ants and Pseudoxylaria sp. for termites [32]) is a critical factor for colony survival.
Compounds selectively inhibiting fungal pathogens and other non-specialized pathogens
while being neutral to fungal cultivar are widely represented in the biosynthetic arsenal of
actinobacteria.

Examples of antibiotics used by insects for food source protection are summarized
on Scheme 2. The majority of the structures are associated with leaf-cutter ants (and
their actinobacterial symbionts). We should highlight some newly described antibiotics:
an unusual non-polyene macrolide [104] cyphomycin (77) [44,69] and peptide antibiotics
attinimicin (23) [38] and dentigerumycin F (8) [48].

Another fruitful source for isolation of the above type of antibiotics is termites. Polyke-
tides macrotermicin A (40) and C (47) from termite-associated Amycolatopsis sp. M39 [90]
active against parasitic Pseudoxylaria sp. Polyenes (74) and (75) were isolated from termite-
associated Streptomyces sp. HF10 [42]. Both compounds have higher activity against
pathogenic fungi (Xylaria sp. and Metarhizium anisopliae) than cultivar Termitomyces.

Only one example of food source protection is described for a different type of insects:
bacteria Streptomyces griseus XylebKG-1 isolated from bark beetle Xyleborus saxesenii produce
cycloheximide (81). This well-known antifungal inhibits the growth of parasitic fungus
Nectria sp., but not of mutualistic Raffaelea sulphurea.

However, the list of such substances could not be complete without well-known inor-
ganic compounds: sulphur and ammonia. Elemental sulfur (S8) produced by Streptomyces
chartreusis strain ICBG323 [64] had antifungal activity against Escovopsis sp. Streptomyces
sp. Av25_4, and other isolated actinobacterial species overproduce ammonia (up to 8 mM),
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which completely inhibits the growth of Escovopsis weberi due to strong basic pH [39].
These findings clearly indicate that not just complex antibiotics, but also simple inorganics
excreted by symbiotic bacteria, are important for insect ecology.
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Well-known cytotoxic dipeptide antimycin A (19) was isolated from ant-associated Strep-
tomyces albidoflavus A10. At low concentrations, it inhibits the growth of entomopathogenic
fungi (Conidiobolus coronatus, Beauveria bassiana and others) [51]. Ionophore antibiotics
(84–88) isolated from wasp-associated Streptomyces sp. M54 were effective against Hir-
sutella citriformis. This fungus is a natural enemy of the host—the wasp Polybia plebeja [45].
Peptides meliponamycins (15, 16) [56], glycosylated antibiotics lobophorins (152–153) and
polycyclic antibiotics (164–165) [65] were isolated from bee-associated actinobacteria. All
these compounds exhibited high activity against a bee-specialized pathogen—Paenibacillus
larvae, the causative agent of American Foulbrood.

Thiopeptide antibiotic GE37468 (17) (Scheme 4) from Pseudonocardia sp., associated
with ant Trachymyrmex septentrionalis, was described as a selective inhibitor of other ant-
associated Pseudonocardia strains [54]. Its niche-defense role is an interesting phenomenon
which opens up a new dimension in insect–actinobacteria symbiosis research.
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5. Conclusions and Outlook

In the current review, we identified the main trends and problems of relevance to
insect–actinomycete interaction research. Actinobacterial species are likely involved into
multilateral relationships between insects, their food sources, infectious agents, predators,
etc. Antibiotics and related natural products play an essential role in such systems.

Our brief analysis clearly indicates that we are only at the very beginning of the path
leading to an understanding of the actual diversity of the ecological relationships between
actinomycetes and insects. To fill the gaps in knowledge, we need more research data.
First, efforts should be made to expand the range of studied insect hosts, with particular
attention paid to species whose life cycle is associated with soil, plants, decaying organic
debris and other substrates rich in microorganisms. It is noteworthy that various stages of
the insect life cycle should be considered as distinct objects of study, since the ecology of
larvae and imagines in many species is fundamentally different (lifestyle, habitat, diet etc.).

Traditional culture-dependent methods continue to be the main way of mining for
active strains. The efficiency of actinobacteria isolation could be improved using innovative
isolation techniques such ichip [105]. At the same time, the study of the metagenome
of microbial communities associated with insects can provide a significant amount of
valuable information. However, active antibiotic producers are often minor constituents of
communities and their role may be underestimated.

Understanding insect–actinobacteria systems at the molecular level requires complex,
multidisciplinary approaches. Proper chemical characterization of active metabolites and
appropriate bioactivity assays should become the base of ecological research in this area.
Insect ecology remains unclear without works at the intersection of microbiology, chemistry
and animal studies.

We have found that the potential of this area is much greater than just an exotic source
of compounds. The creation of new methods and agents for the prevention of insect-borne
infectious diseases, pest control and other related areas may be stimulated by the study of
insect-associated actinomycetes and their secondary metabolites.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11111676/s1, Scheme S1: Peptide antibiotics; Scheme
S2: Polyketide antibiotics; Scheme S3: Alkaloid antibiotics; Scheme S4: Other antibiotics; Table S1:
Selected publications; Table S2: Media used for actinobacteria isolation; Figure S1: Media used for
actinobacteria isolation; List S1: References for Tables S1 and S2; List S2: Excluded publications.
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