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Simple Summary: For the last two years, COVID-19 has been rigorously studied aiming to identify
novel prognostic and therapeutic avenues. Recently, T cell receptor profiling has emerged as a method
to associate adaptive immunity with COVID-19 progression and severity. Such data are typically
analyzed to explore T cell receptor properties and characteristics in the context of SARS-CoV-2 infec-
tion. However, the equally informative alternative analytic strategy of identifying any preferential
recognition of viral antigens by the T-cell-mediated immune response is mostly overlooked. In
this study, we propose a novel Machine-Learning-oriented approach for analyzing T cell receptor
repertoires that is based on the concept of utilising the level at which each SARS-CoV-2 antigen is
recognised by the available T cell receptors in each sample from COVID-19-convalescent and healthy
cohorts. This approach also allowed us to observe a group of T cell receptors capable of recognising
SARS-CoV-2 antigens that were already established in samples from the healthy cohort, leading us to
the cross-reactivity phenomenon hypothesis. To explore this, all T cell receptors were examined for
being able to recognise antigens from other pathogens and diseases, unveiling evidence of putative
cross-reactivity with M. tuberculosis and Influenza virus, among others.

Abstract: During the last two years, the emergence of SARS-CoV-2 has led to millions of deaths
worldwide, with a devastating socio-economic impact on a global scale. The scientific community’s
focus has recently shifted towards the association of the T cell immunological repertoire with COVID-
19 progression and severity, by utilising T cell receptor sequencing (TCR-Seq) assays. The Multiplexed
Identification of T cell Receptor Antigen (MIRA) dataset, which is a subset of the immunoACCESS
study, provides thousands of TCRs that can specifically recognise SARS-CoV-2 epitopes. Our study
proposes a novel Machine Learning (ML)-assisted approach for analysing TCR-Seq data from the
antigens’ point of view, with the ability to unveil key antigens that can accurately distinguish
between MIRA COVID-19-convalescent and healthy individuals based on differences in the triggered
immune response. Some SARS-CoV-2 antigens were found to exhibit equal levels of recognition
by MIRA TCRs in both convalescent and healthy cohorts, leading to the assumption of putative
cross-reactivity between SARS-CoV-2 and other infectious agents. This hypothesis was tested by
combining MIRA with other public TCR profiling repositories that host assays and sequencing data
concerning a plethora of pathogens. Our study provides evidence regarding putative cross-reactivity
between SARS-CoV-2 and a wide spectrum of pathogens and diseases, with M. tuberculosis and
Influenza virus exhibiting the highest levels of cross-reactivity. These results can potentially shift the
emphasis of immunological studies towards an increased application of TCR profiling assays that
have the potential to uncover key mechanisms of cell-mediated immune response against pathogens
and diseases.
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1. Introduction

Since SARS-CoV-2 was initially reported in Wuhan, China, there have been 515 million
confirmed cases and 6.2 million deaths worldwide as of May 2022, according to the Johns
Hopkins Coronavirus Resource Centre [1]. Individuals infected with SARS-CoV-2 exhibit a
wide spectrum of responses, from asymptomatic to requiring admission to an intensive care
unit [2]. Both the research community and pharmaceutical industry have been rigorously
studying COVID-19 [3] and implications of SARS-CoV-2 infection [4], aiming to identify
novel prognostic and therapeutic avenues [5–7], while also exerting a massive effort to
bring a plethora of vaccination schemes to the public within a very limited timeframe [8].

During the past year, there has been a shift in published research highlighting the
need to better understand the T cell immunological profile association with COVID-19
progression and severity [9–15]. T cell immunity appears to be a much more sensitive
indicator of past infections in comparison with antibody response. High-throughput
methods approaching T cell response can be informative by correlating concepts of clonal
depth, breadth and dynamics with symptoms and disease severity [16]. Furthermore,
previous studies associated with other viruses such as Middle East Respiratory Syndrome
(MERS) and SARS-CoV-1 indicate that coronavirus-specific T cells appear to have long
term persistence [17,18]. The same phenomenon also seems to take place in SARS-CoV-2
biology [19,20]. These observations could shape the hypothesis of cross-reactivity between
different pathogens, where past infection or vaccination could be protective through long-
lived T cell clones. The cross-reactivity phenomenon between SARS-CoV-2 and other
coronaviruses has been reported in the literature. Neutralising antibodies isolated from
memory-B cells of a SARS-CoV-1 infected individual have been described to react with
SARS-CoV-2 surface glycoprotein [21]. In addition, cross-reactive T cells recognising SARS-
CoV-2 seem to be acquired during previous infections by other human coronaviruses in
20% to 50% of unexposed individuals around the world [22–27]. Those preexisting cells
may affect the clinical manifestations of COVID-19 infection.

The adaptive immune response to pathogenic infections is largely dependent on the
CD4+ and CD8+ T cell subfamilies [28]. Upon activation, CD8+ T cells can exterminate
infected cells and form the long-term memory T cell subpopulation. Conversely, CD4+ T
cells control the function of myeloid cells, support CD8+ response and play a key role in
the selection of antigen-specific B cells which contribute to the host organism’s neutralising
antibody arsenal. T cell receptors (TCRs) are proteins localised on the surface of T cells that
are products of recombined genomic sequences during the T cell developmental process.
The uniqueness of each TCR sequence essentially controls the T cells’ specificity. TCRs
recognise peptides presented by the major histocompatibility complex (MHC) on the surface
of most cell types (MHC class-I recognised by CD8-expressing T cytotoxic cells), or on the
surface of antigen-presenting cells (APC) (MHC class-II recognised by CD4-expressing
T helper cells). The ability of TCRs to recognise more than one peptide-MHC structure
defines cross-reactivity [29]. The cross-reactivity of T cells is considered as one arm of the
well-described heterologous immunity, namely the immunity that can develop towards
one pathogen after exposure to non-identical pathogens [30]. The other arm concerns the
bystander activation of T cells, that can be caused by independent activation via released
cytokines, or by low-affinity recognition of pMHC [29,31]. Heterologous immunity has
been well established in viral infections in several animal models, but also in human viral
infections where cross-reactivity of T cells could potentially influence the protection or
severity of virus-associated immunopathology [32–34].
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T cell cross-reactivity, however, comes at a cost. Pathogen-induced autoimmune
disorders may also result from cross-reactive T cells, following the immune system’s ini-
tial reaction to the pathogen. This phenomenon has been termed molecular mimicry,
where peptides derived from pathogens can activate autoreactive T cells due to struc-
tural similarity between pathogenic and self-peptides, causing autoimmune diseases or
accelerating a previously initiated autoimmune process [35–37]. The mechanics of T cells
cross-reactivity involves changes in complementarity-determining region (CDR) loop con-
formation, altered TCR docking on the pMHC, flexible changes in pMHC and structural
degeneracy [29,38–40]. The binding of TCR with peptides differs concerning their affinity,
since the bound peptides could be considerably different in their chemistry [38,39]. In this
context, several previous studies have reported the presence of cross-reactivity among
different viruses, or epitopes derived from the same pathogen [41–43].

Recent evidence in the literature highlights [11–13,15] an effort of the research commu-
nity to explore the TCR repertoire in the context of several levels of COVID-19 infection
severity, by utilising data from high-throughput TCR-Sequencing (TCR-Seq) assays. The
majority of the work focuses on developing computational methods to unveil differences
and similarities between healthy and infected subjects related to the TCR repertoire di-
versity, CDR3 length distribution and the V and J gene segment preference [11–14]. Other
studies have attempted to combine the aforementioned TCR-related statistics with Ma-
chine Learning (ML), aiming to provide predictive tools to distinguish healthy and in-
fected subjects [44,45]. To the best of our knowledge, however, no studies exist in the
literature which attempt to approach this field from the viewpoint of the extent each
SARS-CoV-2 antigen is recognised by the TCR repertoire of COVID-19 infected and
non-infected individuals.

In this study, we propose a novel ML-based approach for analysing TCR repertoires
derived from the Multiplexed Identification of T cell Receptor Antigen (MIRA) specificity
assay [46] (Figure 1A,B). Such data have been recently generated through academic part-
nerships with the industrial sector, and were released in the form of freely accessible
databases such as immunoACCESS© [15]. This resource includes the immunoSEQ dataset
of sequenced TCR beta chain (TCRb) repertoires from COVID-19-exposed, -infected or
-recovered individuals who have participated in the Immune Response Action to COVID-19
Events study, as well as thousands of patients’ blood samples collected by international
institutions globally. The immunoACCESS© repository also includes the MIRA dataset
which is complementary to immunoSEQ; the repository catalogues TCRb sequences and
TCR specific information about the peptide’s interaction in amino acid level, as well as
the targeting epitope molecule it comes from. Our approach (Figure 1B) focused on the
MIRA dataset and utilised, for the first time, the level at which each SARS-CoV-2 antigen is
recognised by the available TCRs in each sample, to train several ML algorithms that can
distinguish samples from COVID-19-convalescent and healthy (no known exposure) co-
horts with over 85% accuracy. The module for highlighting the importance of each antigen
revealed that the TCR clones recognising ORF7b, nucleocapsid phosphoprotein, as well as
ORF1ab, ORF10, ORF3a and membrane glycoprotein to a lesser degree, play a key role for
the classification task. Additionally, all MIRA TCRs, regardless of their assigned cohort,
were further analysed to determine their potential for recognising epitopes originating from
pathogens other than SARS-CoV-2 (Figure 1C). To this end, data from public TCR databases
were processed to unveil evidence of putative cross-reactivity between SARS-CoV-2 and
multiple pathogens and other diseases, with M. tuberculosis and Influenza virus being the
most cross-reactive.
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Figure 1. Overview of this study. (A) Outline of the Multiplexed Identification of T cell Receptor
Antigen (MIRA) assay and the corresponding dataset available from the immunoACCESS© project
web resource. (B) Analytic steps in this study, regarding the novel utilisation of the MIRA dataset
for training Machine Learning algorithms that can highlight important SARS-CoV-2 antigens for
distinguishing samples between healthy and COVID-19-convalescent cohorts. (C) Strategy for
exploring T cell cross-reactivity between SARS-CoV-2 and other pathogens and diseases.

2. Materials and Methods
2.1. Data Collection and Pre-Processing

TCRs that are able to bind to SARS-CoV-2 epitopes were retrieved from the immuneAC-
CESS© database [15] (Figure 1A). These SARS-CoV-2 specific TCRs are part of the MIRA
dataset which is based on 144 samples (experiments) obtained from cohorts with exposed
subjects and healthy controls (Figures 1B and 2A). It should be noted that for certain sub-
jects, more than one sample is available in MIRA. Specifically, 90 samples originate from
COVID-19-convalescent, 39 from healthy (no known exposure), 4 from COVID-19-acute,
8 from COVID-19-non-acute and 3 from COVID-19-exposed subjects. Samples from the
COVID-19-acute, COVID-19-non-acute and COVID-19-exposed cohorts were excluded



Biology 2022, 11, 1531 5 of 20

from the analyses presented herein, due to their limited number. TCR sequences were
initially filtered to keep CDR3 regions delimited by a conserved cysteine at the start and a
conserved phenylalanine or tryptophan at the end (anchors of CDR3 region). Unproductive
CDR3 segments and sequences containing special characters not corresponding to amino
acids (X, #, *, etc.) were also excluded. MIRA was further filtered to keep information
associated only with functional V genes, removing information related to pseudogenes and
ORFs according to the immunogenetics information system (IMGT) [47]. Clonotypes with
ambiguous V gene family members (denoted with X) were also removed. The analysis was
focused on the remaining 130,072 (120,128 unique) TCRs detected in the studied cohorts
(28 healthy and 85 convalescent subjects). A total of 1006 unique TCRs originate from the
minigene-detail file, 114,411 from peptide-detail-ci (CD8+) and 4651 from peptide-detail-cii
(CD4+). In addition, 34 unique TCRs were found in both minigene-detail and peptide-
detail-ci files, and 26 TCRs were found in both peptide-detail-ci and peptide-detail-cii files.
The unique number of TCRs per 1000 TCRs in each sample is depicted in Figure 2B.
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Figure 2. Exploratory analysis of the Multiplexed Identification of T cell Receptor Antigen (MIRA)
dataset. (A) Number of samples in each MIRA cohort. (B) Per sample normalised number of unique
T cell receptors (TCRs) in the healthy and convalescent cohorts. (C) Per sample normalised number of
TCRs that recognise each SARS-CoV-2 antigen in the healthy and convalescent cohorts. (D) Projection
of healthy and convalescent samples on the principal component analysis (PCA) space. Healthy and
convalescent distributions in (B,C) were compared with the Mann-Whitney test.

All remaining TCRs were further analysed from the SARS-CoV-2 antigens’ point of
view. For every sample, each TCR was assigned to an antigen category (N = 11) based
on its epitope recognition ability (Figures 1B and 2C). Some TCRs were able to recognise
epitopes from different antigens. For these cases, the assignment to the corresponding
antigens was weighted based on the number of antigens. The number of TCRs per antigen
was normalised based on the total number of TCRs per sample. This approach enabled the
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representation of each sample by an 11-dimensional vector and facilitated the aggregation
of a dataset used to build several ML models that can classify samples into the convalescent
and healthy categories and explore the underlying biology (Figure 1B).

Data catalogues derived from three public TCR databases with immunogenetic infor-
mation were downloaded to investigate the MIRA dataset’s TCR involvement in immune
response during other infections. Pathology-associated TCR database McPAS [48] is a
manually curated dataset of TCR sequences associated with various pathological manifes-
tations, containing information about the T cell type, organ or tissue antigen target and
related MHC molecules (version 4 January 2022). TCR3d [49] is a structural repertoire
database including experimentally determined TCR structures and complexes. It also
contains TCR sequences and related antigenic peptides and MHC molecules. We used a
data frame derived from TCR3d focused on TCRb CDR3 sequence level and the association
with viruses (version 13 January 2022). VDJdb [50] is a database containing TCR sequences,
their cognate antigens and related MHC molecules (version 22 March 2022). All three
aforementioned databases were filtered to keep information about immune response in
human species and CDR3 sequences associated with TCRb; the MIRA filtering strategy
described earlier in this section was also applied here. Additionally, in the case of VDJdb,
CDR3 sequences with zero confidence score were removed from downstream analyses.
As stated in VDJdb’s documentation, the higher the score the more confidence there is in
the antigen specificity annotation of a given TCR clonotype. Some VDJdb sequences were
processed during fixing steps according to IMGT nomenclature and were included in our
analysis. Furthermore, the McPAS sequences associated with antigen identification method
id “3” were removed in accordance with the database’s recommendation for confidence in
the accuracy of the data.

2.2. Machine Learning Model Training and Feature Importance Estimation

All 90 COVID-19-convalescent samples were labelled as positives, and the 39 healthy
(no known exposure) samples as negatives (Figures 1B and 2A). Each sample consists of an
11-dimensional vector of normalised values, for every SARS-CoV-2 antigen, that represents
the percentage of TCRs recognising the antigen’s epitopes from the total amount of SARS-
CoV-2-specific TCRs in the sample (Figures 1B and 2C). Visualisation of the data in the
principal component analysis (PCA) space is depicted in Figure 2C. Principal component
loadings can be found in Table S1. Both positive and negative samples were randomly
divided into training and test sets based on a 7:3 ratio. This process was repeated 20 times
to generate an equal amount of training/test set combinations and control for any bias that
could result from the splitting process (Figure 1B).

These sets were used to train and evaluate a total of 100 models based on popular
ML algorithmic families (Figure 1B): Gaussian Naive Bayes (GaussianNB), Decision Trees
(DT), K-Nearest Neighbours (KNN), Random Forests (RF) and Support Vector Machines
(SVM). The hyperparameters of each model were tuned based on a grid search approach,
and balanced accuracy was the target metric for choosing the best performing model. For
GaussianNB and the variance smoothing parameter, the grid search was run on the values
1 × 10−9, 1 × 10−8 and 1 × 10−7. For DT, the benchmarked values for maximum depth
were 10, 30 and 90 with the maximum features parameter set to None. In the case of KNN,
the k-neighbours parameter values were 2, 5 and 10. The algorithmic options for selecting
nearest neighbours were ball_tree, kde_tree and brute, and the distance metric parameter
values were 1 (manhattan) and 2 (euclidean). For RF, the maximum depth values were 10,
30 and 90; the number of estimators were 10, 50 and 100. The maximum features parameter
was set to None. The SVM kernel was set to radial basis function and the different ‘C’
parameter values were 0.1, 1, 10 and 100. The gamma values were 1, 0.1, 0.01 and 0.001.
All models were trained based on a 10-fold cross validation scheme repeated 10 times.
Subsequently, the best performing model was evaluated on its designated test set.
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This approach resulted in the calculation of performance metrics such as balanced
accuracy, precision, sensitivity, specificity and NPV (Figure 3A,B). Since 20 models were
trained and benchmarked for each ML algorithm, all performance plots depict the metrics’
score distributions from all test sets, providing hints of putative training/test split bias
and data heterogeneity. Additionally, the importance of each feature was estimated by
repeated (N = 50) random shuffles of single feature values to assess the decrease or increase
of the models’ performance (Figure 3C). For each ML algorithm, features with a median
score above 0.01 were selected for a second round of training and evaluation, following the
previously aforementioned strategy (Figure 3D).
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Figure 3. Evaluation of Machine Learning (ML) algorithms trained on the healthy and convalescent
cohorts in the Multiplexed Identification of T cell Receptor Antigen (MIRA) dataset. (A) Balanced
accuracy, precision, sensitivity, specificity and negative predictive value (NPV) of each algorithm
after selecting a prediction score cut-off of 0.5. (B) Support Vector Machines (SVM) performance
on multiple prediction score cut-offs. (C) Feature importance score after 50 permutations on all 20
randomly generated test sets. (D) ML algorithms’ performance after selecting only the important
features for each algorithm and retraining.

2.3. Identification of TCRs That Recognise Epitopes from Antigens of SARS-CoV-2 and Other
Pathogens and Diseases

Several definitions of the clonotype concept exist as various studies approach it with
different immunogenetic characteristics. The MIRA dataset contains TCRb sequences
targeting specific SARS-CoV-2 epitopes and the TCR bioidentity is described by CDR3
amino acid sequence, V and J genes. In this analysis, every clonotype consists of sequences
characterised by the same V gene family member, the same J gene family member and the
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same CDR3 sequence in amino acid level. Clonal expansion of every clonotype in each
sample (experiment) was calculated by counting the times it appears divided by the total
MIRA clonotypes detected. Hence, clonal expansion was defined as a measure of the T
cell proportion expressing a specific TCRb sequence. The mean clonal expansion of each
clonotype was assessed by calculating the mean of expansion values from all experiments
where this clonotype was detected (Figure 4A).
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(MIRA) T cell receptors (TCRs) in terms of clonal expansion and cross-reactivity. (A) Occurrence
frequency and clonal expansion of all MIRA TCRs. The arrows point to the six most common TCRs
(present in at least 11.5% of total number of subjects) that were further analysed in terms of clonal
expansion in the two cohorts based on Mann-Whitney test (B). The statistical test could not be
performed for some TCRs (denoted as p-val N/A). (C) Cohort distribution of the first and fourth
most common MIRA TCRs that were found to be enriched in either cohort after applying Fisher’s
exact test. (D) Secondary structure of surface glycoprotein (SARS-CoV-2) and Matrix protein 1 (M1)
with cross-reactive sections, based on the most common MIRA TCR, highlighted with red colour.
Locations highlighted with red colour consist of epitopes recognised by the cross-reactive TCRs and
putatively reflect protein domains with similar structural or physicochemical properties. (E) Circular
plot, as an alternative view of (D), depicting the cross-reactive property of the most common MIRA
TCR that recognises epitopes from surface glycoprotein and M1. The inner and outer light-colored
tracks represent the annotated domains.

The six most frequent clonotypes were further analysed from the viewpoint of antigen
recognition, clonal expansion range and clinical impact. The level of clonal expansion was
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also calculated separately for the convalescent and healthy cohorts (Figure 4B). Addition-
ally, each clonotype was characterised for the clinical cohort distribution and statistical
significance was also determined with Fisher’s exact test (Figure 4C).

The cross-reactivity phenomenon between SARS-CoV-2 and other pathogens was
also examined. We used the public TCR databases McPAS [48], TCR3d [49] and VD-
Jdb [50] to confirm the existence of different pathogens and other diseases associated with
clonotypes targeting SARS-CoV-2 epitopes in the MIRA dataset. Quantitative analysis
was conducted calculating the number of unique CDR3-mediated connections associated
with each pathology to capture the number of putative cross-reactive TCRs (Figure 5A).
In certain cases, a single CDR3 sequence can recognise epitopes from multiple antigens.
Thus, the number of SARS-CoV-2 antigen connections with other pathogens’ and diseases’
antigens is not equal to the number of unique MIRA CDR3 sequences (Figures 5 and S1,
Tables S2–S5). This approach was applied twice, once by screening all CDR3 sequences
(Figure 5, Tables S2 and S5) from the aforementioned databases (derived from CD8+ and
CD4+ T cells) and once by targeting only CD8+ or CD4+ T cells, to examine any potential
functionality bias (Figure S1, Tables S3 and S4). To identify locations crucial for the interac-
tion with cross-reactive CDR3 regions, the epitopes were aligned to the pathogenic proteins
they derive from (Figure 4D,E and Figure 5B). This was the first step to characterise the
specific domains and functionality of antigens recognised by the same CDR3 sequences.

It should be noted that these public databases include information for both CD4+ and
CD8+ T cells and a data bias exists due to the numerous study results associated with
specific pathogenic cases. To briefly mention the most notable cases, there are 16,162 unique
CDR3 sequences associated with M. tuberculosis (derived from 14,992 CD4+ and 1183 CD8+
T cells), 3639 with Influenza virus (derived from 155 CD4+ and 3479 CD8+ T cells), 2663
with CMV (derived from 2658 CD8+ T cells), 1583 with HIV (derived from 350 CD4+ and
1514 CD8+ T cells) and 1437 with EBV (derived from 1334 CD8+ T cells). The total number
of unique CDR3 sequences does not coincide with the CD4+ and CD8+ subsets, as some
CDR3 sequences seem to be associated with both subpopulations. In addition, for some
CDR3 sequences there is no information about T cell type in the public TCR repositories.
However, separating T cell populations reflects important information about the immune
response against the studied pathogens.
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Figure 5. Cross-reactivity analysis of all Multiplexed Identification of T cell Receptor Antigen (MIRA)
T cell receptors (TCRs). (A) Heatmap of unique MIRA complementarity-determining region 3 (CDR3)
counts that exhibit cross-reactivity between SARS-CoV-2 (x-axis) and other pathogens and diseases
(y-axis). The heatmap values correspond to the number of unique cross-reactive CDR3 sequences.
(B) Circular plot that depicts the cross-reactivity of MIRA CDR3 regions between antigens that
originate from SARS-CoV-2 and a selected subset of pathogens from (A). The inner and outer light-
coloured tracks represent the annotated protein domains. Each connection represents the ability of a
single CDR3 region to recognise a part of a SARS-CoV-2 antigen and a part of another pathogen’s
protein. The connections are coloured based on their corresponding non-SARS-CoV-2 pathogens.

3. Results
3.1. MIRA Dataset Exploration Unveils Differentially Recognised SARS-CoV-2 Antigens between
Convalescent and Healthy Samples

The MIRA dataset includes 144 samples (experiments) from the immunoACCESS
study [15] that are divided into five cohorts: (1) COVID-19-convalescent, (2) healthy
(no known exposure), (3) COVID-19-acute, (4) COVID-19-non-acute and (5) COVID-19-
exposed (Figure 2A). Most cohorts have a balanced male-to-female ratio; however, there
are 26 samples from unknown gender, of which the majority (N = 21) are reported as
COVID-19-convalescent cohort. The COVID-19-acute, -non-acute and -exposed cohorts
were removed from all subsequent analyses due to low sample numbers. Initial analysis
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regarding the normalised number of unique TCRs in each sample revealed there is no
statistically significant difference between the healthy and convalescent cohorts (Figure 2B).

Most existing studies focus on TCR properties such as the underlying VJ rearranged
sequences, CDR3 sequences, CDR3 size and clonal depth/diversity [11–14]. This infor-
mation has been frequently used to characterise the TCR repertoire of immune response
against COVID-19 and to train ML algorithms that are able to distinguish between samples
of distinct cohorts [44,45]. In this study, a different approach was adopted. Rather than
using the aforementioned TCR-related data, we exploited the MIRA dataset [15], and the
connection between TCRs and the SARS-CoV-2 epitopes to generate an 11-dimensional
vector representing the level at which each SARS-CoV-2 antigen is recognised by the TCRs
in each sample (Figures 1B and 2C).

The results of this approach revealed that even in samples from the healthy cohort, all
SARS-CoV-2 antigens are recognised by TCRs to some extent, suggesting either previous
unreported COVID-19 infection of subjects in the healthy cohort, or putative cross-reactivity
between SARS-CoV-2 and other pathogens. Interestingly, the ORF1ab and surface glyco-
protein are the two antigens recognised by TCRs with the highest overall clonal depth,
although the difference in clonal expansion between the two cohorts is not statistically
significant. More importantly, the nucleocapsid phosphoprotein, ORF7b, ORF10, ORF8
and envelope exhibit statistically significant differences in the number of TCRs recognising
their epitopes between the two cohorts. However, the ORF10, ORF8 and envelope proteins
are recognised by TCRs with low clonal depth. The projection of these samples on PCA
space (Figure 2D, Table S1) has led to the assumption that this approach could be used to
develop a ML-based framework for specifically distinguishing between samples from the
two MIRA cohorts (Figure 1B), aiming to extract additional information from MIRA that
possibly cannot be derived from the statistical analysis described above.

3.2. Explainable ML Highlights Key SARS-CoV-2 Antigens for Classifying Samples into the
Convalescent and Healthy MIRA Cohorts

The strategy of modelling the MIRA dataset involved a repeated process (N = 20) of
separately splitting samples from healthy and convalescent cohorts into training and test
sets. At each split, five models based on GaussianNB, DT, KNN, RF and SVM were trained
and evaluated (Figure 1B).

Using a prediction score cut-off of 0.5 enabled the extraction of performance metrics on
each test set (Figure 3A). SVM was the overall best performing algorithm with a median per-
formance of at least 0.75 in all metrics. Notably, the SVM algorithm exhibits 0.856 median
balanced accuracy, 0.896 precision, 0.962 sensitivity, 0.75 specificity and 0.9 negative predic-
tive value (NPV). To observe SVM’s performance across the whole spectrum of prediction
score thresholds, an incremental cut-off was applied and all metrics were calculated at each
step (Figure 3B).

To assess the importance of each feature, a repeated (N = 50) feature value perturbation
process was applied for all ML algorithms (Figure 3C). Overall, the most important features
are ORF7b, nucleocapsid phosphoprotein as well as ORF1ab, ORF10, ORF3a as well as
membrane glycoprotein to a lesser extent. After selecting only the most important features
for each algorithm, the training and evaluation process was repeated. This resulted in
slightly improved performance for GaussianNB, KNN and SVM algorithms, but not for
DT and RF, as expected considering their innate ability to readily rely only on important
features (Figure 3D).

3.3. Exploratory Analysis of MIRA TCRs Unveils Evidence of Putative Cross-Reactivity between
SARS-CoV-2 and Other Pathogens and Diseases

MIRA TCRs exhibit diverse frequency of occurrence and clonal expansion levels
(Figure 4A). In general, the most frequent clonotypes in the dataset present low mean
expansion after being triggered with the MIRA assay, while the least frequent clonotypes
are associated with the highest expansion levels.
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The analysis focused on the six most common clonotypes with frequencies of greater
than 11% of the total number of subjects; CASSIRSSYEQYF+V19-01+J02-07 (CD8+ T cell TCR
in MIRA), CASSLAGAYEQYF+TCRBV05-01+TCRBJ02-07 (CD8+), CASSLSAPQETQYF+
TCRBV27-01+TCRBJ02-05 (CD8+), CASSLSSPQETQYF+TCRBV27-01+ TCRBJ02-05 (CD8+),
CASSDRGPNQPQHF+TCRBV27-01+TCRBJ01-05 (CD8+) and CASSDRGPTDTQYF+ TCRBV27-
01+TCRBJ02-03 (CD8+), that were found in 23%, 15.04%, 13.27%, 12.38%, 11.5% and 11.5%
of total MIRA subjects, respectively (Figure 4A, marked with arrows). The distribution of
the clonal expansion level in samples belonging to the two cohorts was also calculated,
not unveiling any statistically significant differential expansion between the two cohorts
(Figure 4B, based on Mann-Whitney; the statistical test could not be performed for some of
the TCRs, denoted with p-val N/A). For every related sample, the number of times each
clonotype appears in the corresponding sample(s) was divided by the total number of the
sample’s clonotypes.

Calculation of cohort distribution took place in each clonotype’s subgroup com-
pared to the whole sample with Fisher’s exact test (Figure 4C). We observed a significant
difference in the case of the most frequent clonotype CASSIRSSYEQYF+V19-01+J02-07
(p-value = 0.0019) and the fourth most common clonotype CASSLSSPQETQYF+V27-01+J02-
05 (p-value = 0.038). Specifically, CASSIRSSYEQYF+V19-01+J02-07 clonotype is detected
in a sample’s subpopulation where most subjects are characterised as healthy. In contrast,
CASSLSSPQETQYF+V27-01+J02-05 clonotype is detected only in convalescent subjects.

Additionally, the SARS-CoV-2 antigen targets of the six most common clonotypes were
identified. CASSIRSSYEQYF+TCRBV19-01+TCRBJ02-07 interacts with surface glycopro-
tein and ORF1ab, CASSLAGAYEQYF+TCRBV05-01+TCRBJ02-07 recognises the nucleocap-
sid phosphoprotein, CASSLSAPQETQYF+TCRBV27-01+TCRBJ02-05 recognises ORF1ab
and envelope, and CASSLSSPQETQYF+TCRBV27-01+TCRBJ02-05, CASSDRGPNQPQHF+
TCRBV27-01+TCRBJ01-05 and CASSDRGPTDTQYF+TCRBV27-01+TCRBJ02-03 interact
with ORF1ab. Public databases such as McPAS, TCR3d and VDJdb were used to query
the putatively cross-reactive components of the aforementioned TCRs. CASSIRSSYEQYF+
TCRBV19-01+TCRBJ02-07 (catalogued as CD8+ in the MIRA dataset and the other TCR
catalogues as well) was also found to interact with Influenza virus and Epstein-Barr Virus
(EBV). The description of this specific clonotype as part of the immune response against
Influenza virus has been previously described [51]. The most common clonotype, which
seems to be cross-reactive according to our results (CASSIRSSYEQYF+V19-01+J02-07),
is significantly associated with healthy individuals (p-value = 0.0019). The exact oppo-
site phenomenon takes place in CASSLSSPQETQYF+V27-01+J02-05 analysis, where we
did not detect any cross-reactivity and a significant correlation was observed with the
COVID-19-convalescent cohort (p-value = 0.038), shaping the hypothesis of diversification
in SARS-CoV-2 immunity dependent on past infections and/or vaccination.

These results verified the suspicions of cross-reactivity that surfaced through observa-
tions based on results of the initial analysis presented in Figure 2C. Figure 4D highlights
the most common TCR’s recognition sites on surface glycoprotein from SARS-CoV-2 and
matrix protein 1 (M1) from Influenza A virus. The same information is also depicted
in the form of a circular plot in Figure 4E. The remaining five most common clono-
types (CASSLAGAYEQYF+TCRBV05-01+TCRBJ02-07, CASSLSAPQETQYF+TCRBV27-
01+TCRBJ02-05, CASSLSSPQETQYF+TCRBV27-01+ TCRBJ02-05, CASSDRGPNQPQHF+
TCRBV27-01+TCRBJ01-05 and CASSDRGPTDTQYF+ TCRBV27-01+TCRBJ02-03) were not
found in VDJdb, McPAS or TCR3d to interact with other pathogens.

To further assess the cross-reactive properties of all TCRs in the MIRA dataset, the
epitopes in MIRA as well as epitopes in the three aforementioned public TCR databases
were used to match MIRA CDR3 sequences with antigens from SARS-CoV-2 and other
pathogens and diseases (Figure 5, Tables S2–S5). In general, some CDR3 sequences can
recognise epitopes from multiple antigens. Therefore, the number of SARS-CoV-2 antigen
connections with other pathogens’ and diseases’ antigens might not be equal to the number
of unique MIRA CDR3 sequences. In Figure 5, the connections between antigens from
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SARS-CoV-2 and other pathogens (Table S2) and diseases have not been divided according
to the CDR3 sequence origin (CD8+ or CD4+ T cell), since we have observed that some
sequences are associated with CD8+ T cells in MIRA and CD4+ T cells in McPAS, VDJdb
and TCR3d databases, or vice versa. The same analysis was repeated after grouping CDR3
sequences based on their CD8+ or CD4+ T cell origin in both MIRA and external databases
(Figure S1, Tables S3 and S4).

As shown in Figures 5A and S1, evidence regarding the cross-reactivity phenomenon
is widespread and links SARS-CoV-2 to a plethora of pathogens and other diseases that
can be grouped into three major categories (Table S6). The first category includes M.
tuberculosis and viruses such as Influenza virus, Cytomegalovirus (CMV), EBV, Human
Immunodeficiency Virus (HIV), Hepatitis C Virus (HCV), Yellow Fever Virus (YFV), Dengue
Virus (DENV) and Human T-lymphotropic Virus type 1 (HTLV-1). From 2136 CDR3
sequence connections between the MIRA and other repositories, 1792 (83.9%) can recognise
epitopes from SARS-CoV-2 and members of the first category (Tables S2 and S6). The
second category consists of malignancies and malignancy-related agents such as Melanoma,
Breast Cancer and Neoantigens. Roughly 9.9% (211 out of 2136) of the CDR3-mediated
connections between MIRA and the three public TCR profiling databases recognise epitopes
from the second category (Tables S2 and S6). On the other hand, 6.2% (133 out of 2136) of
the connections recognise epitopes from the third category, which reflects auto-immune
states and disorders arising from external stimuli such as Celiac Disease, Inflammatory
Bowel Disease (IBD), Diabetes Type 1, Psoriatic Arthritis, Allergy and Toxic Epidermal
Necrolysis (Tables S2 and S6).

The most cross-reactive partner of SARS-CoV-2 was found to be M. tuberculosis, with
747 CDR3-mediated connections recognising epitopes from both pathogens (Figure 5A,
Table S2). These CDR3 sequences were isolated mostly from CD8+ T cell TCRs in MIRA and
CD4+ in the other TCR repositories (Table S5). Specifically, 271 connections are associated
with ORF1ab and 127 with surface glycoprotein. Influenza virus exhibits the second highest
number of CDR3-mediated connections (498 out of 2136) with SARS-CoV-2 (Table S2). The
majority of CDR3 sequences are associated with CD8+ T cell TCRs in both MIRA and the
public TCR profiling databases (Table S5), in contrast to the case of M. tuberculosis. Notably,
144 connections are related to surface glycoprotein and 123 to ORF1ab.

To have a complete view of the cross-reactivity phenomenon, we further generated
a circular plot depicting the “cross-talk” between distinct antigen regions through the
recognition by MIRA CDR3 sequences (Figure 5B, Table S5). To ensure concise visualisation,
a subset with the most cross-reactive pathogens, as depicted in Figure 5A, was selected for
generating the plot, including M. tuberculosis, Influenza virus (A subtype), CMV, EBV and
HIV. Each scaled segment in the circle represents an antigen and every antigen is coloured
based on the pathogen it belongs to. The links connecting antigen pairs correspond to
the “cross-talk” between the antigens’ segments through their ability to be recognised by
a specific CDR3 in MIRA. Although M. tuberculosis is the most cross-reactive partner of
SARS-CoV-2, the matching epitope information is missing from McPAS, TCR3d and VDJdb
for the majority of CDR3 sequences. Thus, the M. tuberculosis connections in Figure 5B are
severely limited. The same phenomenon was also observed for the other pathogens, but to
a lesser degree.

4. Discussion

Over the last two years, the global impact of COVID-19 on healthcare [52] and the socio-
economic [53] field has been devastating. The response of both the scientific community
and pharmaceutical industry was swift and decisive in exploring the biological aspect
of SARS-CoV-2 and its pathological implications, as well as delivering pharmaceutical
products that could assist in restraining COVID-19. During the past year, an observed shift
in the literature was evident, highlighting the T cell immunological profile characterisation
in the framework of COVID-19 progression and severity [9–15]. Collaborations between
academia and industry resulted in the publication of immunological datasets from studies
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with thousands of subjects, such as the immunoACCESS© resource [15]. Specifically,
the MIRA dataset provides access to thousands of TCR clonotypes that can specifically
recognise SARS-CoV-2 epitopes (Figure 1A).

Our strategy is based on a novel ML-oriented TCR profiling assay analytic approach,
which can highlight the targeted antigens of the immune response against pathogens and
diseases (Figures 1B and 3). During the last two decades we have experienced an abundance
of breakthroughs in biotechnology that facilitated the dawn of the big data era for biology.
We believe the scientific community should emphasise the development of efficient and
accurate computational approaches, to exploit the wealth of information embedded in the
ever-increasing volume of biomedical data. ML can be the ideal substrate for combining
data from heterogeneous sources of information, while unveiling higher-order and more
abstract connections between the underlying mechanisms of biological phenomena and the
environment. In the context of COVID-19 related research and other infectious diseases, ML
could be used for combining epidemiological surveillance with data from immunoassays
(TCR-Seq and others), genomics, transcriptomics and even metagenomics. Such approaches
can provide a solid foundation for understanding the entanglement of genetic factors and
the environment, as well as their implications for the progression of pandemics, for example,
within different populations.

One key observation in our study is that T cell TCRs in the MIRA dataset with the
ability to recognise epitopes from ORF1ab and surface glycoprotein exhibit similar levels of
clonal expansion between the two cohorts and present the highest clonal expansion levels
in the healthy cohort (Figure 2C); this suggests either previously unreported COVID-19
exposure or putative cross-reactivity between SARS-CoV-2 and other pathogens. The
former hypothesis could not be verified by any means, since the samples’ collection date in
MIRA is not available. Therefore, we proceeded exploring whether MIRA TCRs exhibit
cross-reactive properties that can be a product of an immune response against both SARS-
CoV-2 and other pathogens and diseases.

Our analysis was based on the CDR3 sequences that are common between MIRA
and McPAS, TCR3d and VDJdb repositories. The results unveiled widespread evidence
of putative cross-reactivity that link SARS-CoV-2 to a plethora of pathogens and other
diseases (Figure 5), which can be grouped into three major categories: (a) M. tuberculosis
and viruses including Influenza virus, CMV, EBV and HIV among others, (b) malignancies
and malignancy-related agents, and (c) auto-immune states and disorders. Interestingly,
the majority of CDR3 sequences that target pathogens in the first category originate from
CD8+ T Cell TCRs, according to McPAS, TCR3d and VDJdb, with M. tuberculosis being
the exception. The association of BCG vaccine with CD4+ T cell response against M.
tuberculosis has been previously reported in the literature [54]. In contrast to the first
category, we observed the exact opposite pattern for CDR3 sequences that are associated
with pathological states from the second and third categories, since they are derived mostly
from CD4+ T cell TCRs.

M. tuberculosis was found to exhibit the highest levels of T cell cross-reactivity with
SARS-CoV-2. These results are in accordance with published epidemiological studies
conducted prior to SARS-CoV-2 vaccine implementation, which have suggested a negative
association between incidence, morbidity and mortality of COVID-19 and national Bacille
Calmette–Guérin (BCG) vaccination programs. Specifically, in countries where national
BCG vaccination has been implemented, lower numbers COVID-19 cases and related
deaths have been recorded [55–57]. A study conducted by Escobar et al. [58] found a 10.4%
reduction in mortality from COVID-19 for every 10% increase in a country’s BCG index.
Discovered in 1921, even today the function of BCG vaccine remains obscure to a certain
extent. The BCG vaccine contains attenuated Mycobacterium bovis, and induces humoral
and adaptive immunity, activating both non-specific and cross-reactive immune responses
in the host [59,60] against a variety of infectious (viruses, bacteria, fungi and parasites) and
non-infectious agents. Epigenetic and metabolic reprogramming of innate immune cells,
known as trained immunity, is considered responsible for these protective effects [61–64].
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Influenza virus exhibits the second highest number of CDR3 sequences that are puta-
tively cross-reactive with SARS-CoV-2. This type of cross-reactivity could be attributed to
the seasonal vaccination against Influenza virus and relevant exposure of a large portion of
the population to this virus. The role of protective immunity induced by the polyvalent
influenza virus vaccine (against Influenza A virus and/or Influenza B virus subtypes)
and the likelihood of COVID-19 has been previously examined [65–67]; meanwhile, others
explored this association from a clinical manifestation and disease outcome perspective [68].
Although the precise pathophysiological mechanisms underlying this association require
further investigation, three main theories have been put forward. The first theory relates to
antigenic mimicry which results in clonal activation and lymphocytes proliferation [69].
Depending on each individual’s HLAs, only a limited number of epitopes can be recog-
nised, and those are the immunodominant ones. A second theory of trained immunity
has also been proposed as the mechanism behind these beneficial heterologous effects of
vaccines [70]. Influenza virus vaccination acts as a non-specific exciter of our immune
response [71]. Debisarun et al. found that rather than binding, cytokines broaden T cell
responses against SARS-CoV-2 [72]. Salem et al. suggested flu-induced bystander immune
response as a probable protective mechanism [73].

Information related to T cell cross-reactivity between SARS-CoV-2 and the remaining
viruses from the first category of cross-reactive pathogens is scarce in the literature. Cellular
cross-reactivity against EBV and SARS-CoV-2 has not been studied to date. However, there
have been reports associating the clinical manifestation of COVID-19 with reactivation
of EBV infection and correlating it with severe disease progression, thus underpinning a
possible entanglement [74–76]. Cross-reactivity between SARS-CoV-2 and HIV has also
been reported in studies describing false positive HIV results in COVID-19 patients. Such
cases were associated with antibody cross-reaction during immunoassay screening tests,
while cross-reactive CDR3 regions were detected between the two viruses [77,78]. Sequence
analysis has shown that HIV and SARS-CoV proteins share common motifs that shape a
degree of homology [79]. In addition, studying similar antigenic features could help in
engineering super antibodies that neutralise different pathogens [80].

Evidence in the literature regarding the connection between SARS-CoV-2 and cancer
at various levels remains extremely limited. Most related studies examine the immune
response to SARS-CoV-2 in patients with cancer [81]. However, the cross-reactivity phe-
nomenon between SARS-CoV-2 and malignancy-related antigens has not been previously
reported. Conversely, since the COVID-19 pandemic was declared in 2020, numerous re-
ports in the literature have linked the immune response against SARS-CoV-2 proteins with
self-antigens, thus unveiling putative COVID-19 implications for autoimmune disorders
including immune thrombocytopenic purpura, Guillian–Barrė syndrome and subvariants,
antiphospholipid antibodies and lupus anticoagulant, Kawasaki and multisystem inflam-
matory syndrome in children [82–85]. In general, the emergence of autoimmunity after
viral infections involving EBV, CMV, HTLV-1, herpes and hepatitis virus among others has
been thoroughly described in the literature [86].

Interestingly, in the MIRA dataset there are some CD4+ and CD8+ T cell TCRs that
have common CDR3 sequences. The same observation was made when comparing CDR3
sequences between MIRA and other TCR repositories. There are numerous TCRs that
share the same CDR3 sequence, which originate from CD8+ T cells in MIRA and CD4+
T cells in other databases. However, the functional relevance of CD4+ and CD8+ T cells
with common CDR3 sequences remains obscure, since to the best of our knowledge this
phenomenon has not been debated in the literature.

The observations in this study are of multilevel significance, ranging from putative
indirect protection from severe COVID-19 infection based on vaccination against and/or
previous exposure to Influenza viruses, M. tuberculosis and other pathogens, to the associa-
tion of SARS-CoV-2 related TCRs with malignancies and autoimmune disorders. However,
there are several limitations related to this study. The MIRA dataset includes a very limited
number of samples associated with COVID-19-acute, COVID-19-non-acute and COVID-19-
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exposed cohorts, thus prohibiting any statistical or ML analysis that potentially connects
TCR profile irregularities with disease severity. We did however manage to make statis-
tically significant assumptions using samples derived from COVID-19-convalescent and
healthy cohorts, although ideally the number of these samples should be higher. Due
to the limited number of MIRA samples, the generalisation capacity of the ML models
presented here would possibly be limited on other SARS-CoV-2 TCR-Seq datasets. How-
ever, these models are serving a specific purpose in this study, which is to use them for
extracting meaningful biological information related to the antigens that can distinguish
MIRA cohorts. Another limitation relates to the availability of HLA allele information
connecting TCR clonotypes and epitopes in McPAS, TCR3d and VDJdb. The cross-reactivity
analysis focused only on the CDR3 amino acid sequence comparison between the MIRA
dataset and other databases, due to the limited availability of the relevant HLA information
for most TCR clonotypes in the external repositories. Therefore, it should be noted that
the cross-reactions described here could only take place in individuals with specific HLA
alleles, enabling the presentation of relative epitopes to potential long-lived memory T
cells developed during previous infection and/or vaccination. Additionally, the extent
of cross-reactivity is delimited by the inherent data bias in McPAS, TCR3d and VDJdb,
stemming from the scientific community’s focus on specific pathogenic cases.

5. Conclusions

We believe that our study provides a novel ML-based computational framework
for analysing TCR-Seq datasets and systematically highlights the breadth and depth of
“cross-talk” between antigens from different pathogens, a phenomenon that may also
exhibit therapeutic implications, especially in the COVID-19 context. It is our view that
the scientific community should accelerate the effort of generating TCR profiling data
without omitting the relevant HLA information, and include assays based on as many
human pathologies as possible. ML can play a pivotal role in combining such data with
multiomics and epidemiological surveillance, to build intelligent infrastructures that can
be an invaluable asset in fully understanding the underlying immune response complexity.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/biology11101531/s1, Figure S1: Cross-reactivity analysis of all
Multiplexed Identification of T cell Receptor Antigen (MIRA) T cell receptors (TCRs) only from CD8+
T cells; Table S1: PCA loadings; Table S2: Unique cross-reactive counts of all MIRA T cell CDR3
sequences; Table S3: Unique cross-reactive counts of MIRA CD8+ T cell CDR3 sequences; Table S4:
Unique cross-reactive counts of MIRA CD4+ T cell CDR3 sequences; Table S5: All MIRA cross-reactive
CDR3 sequences and the corresponding recognised epitopes from MIRA and external databases;
Table S6: Unique cross-reactive counts of all MIRA T cell CDR3 sequences and the corresponding
categories of cross-reactive pathogens.
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M1 and surface glycoprotein antigenic molecules was generated with Jmol, within Jalview software
based on 1AA7 (A and B chain view) and 6 × 29 (A chain view) Protein Data Bank [89] entries for M1
and surface glycoprotein, respectively. The antigenic epitopes were aligned on reference sequences
using the Clustal algorithm. The statistical, dimensionality reduction, ML and feature importance
analyses were performed with in-house developed software based on Python’s scipy and scikit-learn
as well as R’s rstudioapi, dplyr, plyr, GLDEX, TSDT, stats, stringr and ggplot2 libraries. The code and
processed data used in this study can be found in gitlab.com/hyimmera/mira_analysis (accessed on
23 September 2022). Further inquiries can be directed to the corresponding authors.
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