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Simple Summary: This article confirms that Bacillus velezensis strain GUMT319 is a plant growth-
promoting rihizobacteria that uses GUMT319 to increase the yield of grape. To reveal the mechanism
of GUMT319 in increasing the yield of grape, we analyzed the soil property and soil microbial
community composition of GUMT319-treated and untreated soil. Results showed that the physical
and chemical properties and the microbial composition of soil were all altered by Bacillus velezensis
strain GUMT319.

Abstract: Bacillus velezensis strain GUMT319 is a rhizobacteria biocontrol agent that can control
tobacco black shank disease. We took GUMT319 as a biological fertilizer on Vitis vinifera L. The test
group was treated with GUMT319 for one year and the control group had a water treatment. Yields of
GUMT319-treated grape groups were significantly increased compared to the controls. The average
length and width of single grape fruit, weight of 100 grape fruits, the sugar/acid ratio, and the
content of vitamin C were all increased in the GUMT319-treated grape group. The pH of the soil was
higher and the contents of alkaline hydrolyzable nitrogen and available potassium were significantly
lower in the GUMT319-treated groups than the controls. The soil microbial community composition
was evaluated by 16S rDNA high-throughput sequencing, and the Shannon index and Simpson
index all showed that soil microbes were more abundant in the GUMT319-treated group. These
results indicate that GUMT319 is not only a biocontrol agent, but also a plant growth-promoting
rihizobacteria. It can increase the yield of grape by altering the physical and chemical properties and
the microbial community composition of the soil.

Keywords: Bacillus velezensis; PGPR; Vitis vinifera; rhizobacteria

1. Introduction

Rhizosphere bacteria include many beneficial microorganisms. Rhizosphere bacteria
that increase the yield and quality of plants have been termed plant growth-promoting rhi-
zobacteria (PGPR) [1]. So far, many PGPR have been identified. For example, Pseudomonas
fluorescens strain WCS417r can prevent the invasion of Fusarium. oxysporum by inducing the
systemic resistance of carnation plants [2]; P. fluorescens strain G8-4 and P. putida strain 34-13
can inhibit the infection of Colletotrichum orbiculare by inducing the systemic resistance of
cucumber [3]; P. fluorescens strains MKB 100 and MKB 249, P. frederiksbergensis strain 202,
and Pseudomonas sp. strain MKB 158 can control Fusarium spp. in wheat and barley by
secreting antibiotic substances [4]; P. putida strain 06,909 can significantly reduce cadmium
phytotoxicity and increase the metal accumulation in sunflower plant roots [5]; nitrogen-
fixing rhizobacteria can increase the nitrogen content in legume host plants, for example
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Rhizobium etli can increase the nitrogen content in beans [6]; after treatment by B. circulans,
the total tuber yields and average tuber weight of per treated potato were significantly
higher than in the control group [7].

The mechanisms of how PGPR improve the yield and quality of plants are well studied
and have been summarized in a recent review paper. PGPR functions generally consist of
biocontrol, enhancement of plant tolerance, and plant growth promotion [8]. These aspects
can be further divided into components. For example, the PGPR mechanisms used to
promote plant growth can vary. P. stutzeri strain A1501 can increase the growth and nitrogen
accumulation of maize [9]. At least 50% of all bacteria can solubilize phosphorus. Bacillus,
Rhizobium, and Pseudomonas are the most significant phosphorus-solubilizing bacteria [10].
Bacillus mucilaginosus, B. edaphicus, and B. circulans have efficient potassium-solubilizing
capability [11]. Some PGPR species promote the iron uptake ability of plant roots and reduce
the abundance of pathogenic microbes through the production of siderophores [12,13].
P. aeruginosa strain PF23EPS+ can increase the production of salicylic acid in sunflower and
promote plant growth [14]. The colonization of PGPR in the rhizosphere and roots can
exclude plant disease pathogens and help plants absorb soil nutrients [15].

Bacilli rhizobacteria is a potential repository for PGPR [16,17]. Many Bacillus spp.
are reported to be PGPR. Colonization of B. velezensis strain SQR9 on cucumber roots
can increase root secretion of tryptophan to increase colonization of SQR9 and reduce
raffinose secretion of cucumber roots. This can inhibit the colonization of F. oxysporum f. sp.
cucumerinum [18,19]. B. velezensis strain FZB42 has been considered to be a Gram-positive
model strain for studies on plant growth promotion and biocontrol [20,21]. The subclass IId
bacteriocin thuricin 17 produced by B. thuringiensis strain NEB17 stimulates plant growth
against abiotic stresses [22]. Biological and bioinformatical tests demonstrated that B.
velezensis strain SC60 can inhibit the growth of many plant pathogens and promote the
growth of Sesbania cannabina [23].

The overuse of fertilizers and pesticides has caused many problems for agricultural
production and the environment. Application of PGPR can help maintain sustainable
agricultural development [8,24–27]. B. velezensis strain GUMT319 is a PGPR rhizobacteria
isolated from Guizhou province [28]. In this study, we treated vineyard soils with GUMT319
to determine the effects of GUMT319 on grape yield and found that GUMT319 can function
like a PGPR.

2. Materials and Methods
2.1. Experimental Design and Plant Management

The Bacillus velezensis strain GUMT319 rhizobacteria was originally isolated from the
rhizosphere of field-grown tobacco plants in Guizhou with a high incidence of tobacco
black shank. Previous studies confirmed that GUMT319 is a useful biocontrol agent [28].
We treated the Vitis vinifera L. variety ‘Sweet Sapphire’ with GUMT319 by root irrigation
to determine its impact on grape plant growth. We set up three experimental replicates
with an area of 0.667 hm2 each for both the GUMT319-treated group and the GUMT319
untreated group. During growth, the grape plants were irrigated with 3 kg of a GUMT319-
containing powder (amount of GUMT319 was 3 × 1011 CFU/g) (CFU stands for colony
forming units) per 0.0667 hm2 to the rhizosphere of grape plants. The treatment frequency
of GUMT319 on grape plants was every four months from 10 October 2019 to 12 October
2020. The land areas of the GUMT319-treated and untreated group are both 0.667 hm2, and
two sets of biological replicates were set up in the same garden. All the other agricultural
practices were the same between the GUMT319-treated and untreated grape plants.

2.2. Physical and Chemical Properties Evaluation of the Grape

One hundred grape fruits of each treatment were randomly picked and evaluated.
After weighing, the grape fruits were measured for length (polar) and width (equatorial)
of each fruit (mm) using a Vernier caliper [29]. The firmness of grape fruits were tested as
the method described previously [30]. Ten fruits of each treatment were randomly picked
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and used to analyze flesh firmness with a penetrometer (Model FT327; Effegi). Each grape
fruit was analyzed three times from three sites (without peel) along the equator, with
approximately 120◦ apart.

Vitamin C content in grapes was determined by molybdenum blue colorimetry [31].
The sugar and acid content of the grapes were evaluated using headspace solid phase
micro-extraction/gas chromatography–mass spectrometry (HS-SPME/GC-MS) analysis
method proposed by Song et al., 2019 [32].

2.3. Soil Sampling

In August 2021, 10 months after the last irrigation of GUMT319, soil samples (1 kg
each) were randomly collected from locations in the grape orchard at a depth of 0–20 cm
near the rhizosphere of GUMT319-treated or untreated grape plants. We collected the soil
samples 10 months after the last treatment of GUMT319, because we wanted to eradicate
the effects of GUMT319 itself on the 16S rDNA sequencing result. Three samples from the
GUMT319-treated area and three samples from the untreated area were collected. The soil
samples were taken to a laboratory for measurement of soil chemical properties and for
16S rDNA high-throughput sequencing.

2.4. Determination of Soil Chemical Properties

The soil samples were sent to the Agricultural Resources and Environment Center of
Guizhou Academy of Agricultural Sciences (ARECGAAS) where the chemical properties
were measured. The soil pH was determined using a method previously reported [33].
Suspensions (1:2.5 soil: CaCl2) were prepared and the pH was measured using a laboratory
870 pH meter (Schott Instruments, Mainz, Germany) [34]. The organic matter (C, N, and S)
and elemental composition (wt %) in soil samples were determined following the method
established by Anderson [35].

2.5. 16S rDNA Sequencing and Bioinformatics

The 16S rDNA sequencing followed previously described protocols [36,37]. The V3-V4
region of 16S rDNA was cloned and prepared for high-throughput sequencing on an Illu-
mina HiSeq 2500 platform in Novogene Co., Ltd. (Novogene, Beijing, China). The DADA2
method is mainly used for noise reduction. The DADA2 method is more sensitive and spe-
cific than the traditional operational taxonomic units (OTU) method and can detect the real
biological variation missed by the OTU method while producing fewer false sequences [38].
QIIME2 and QIIME were used separately to obtain the alpha-diversity and beta-diversity
of all groups [39,40]. Simpson and Shannon indices were used to identify the richness
and diversity of the microbiome of each group [41]. In the Beta diversity research, four
indicators, including the weighted unifrac distance, unweighted unifrac distance, jaccard
distance, and Bray–Curtis distance, were used to measure the dissimilarity coefficient of the
two samples. Then, principal coordinates analysis (PCoA) and principal component analy-
sis (PCA) were conducted to evaluate the differences between the sample groups [42,43].
Differences and changes related to functional genes in the microbial community of different
groups of samples in the metabolic pathway were observed through the composition and
difference analysis of the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic
pathway using PICRUSt2 software.

2.6. Statistical Analysis

Data in this study were analyzed by SPSS and Origin [44]. One-way analysis of
variance was used to compare the data, followed by Duncan’s test at 5% level of significance
to determine the significance of differences between treatment means. All analyzed data
are presented as arithmetic means ± standard deviation [45].
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3. Results
3.1. Effect of B. velezensis Strain GUMT319 on Grape Growth

Results of the field experiment are shown in Figure 1. After one year of constant
treatment, the morphology of the GUMT319-inoculated grape plants was significantly
different from the control plants. The ear length of the GUMT319-treated grape plants is
longer than the controls, and the roots of GUMT319-treated plants had more branches and
root hairs than the control plants.
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Figure 1. Growth and yield parameters of grape plants treated with and without Bacillus velezensis
strain GUMT319.

3.2. Fruit Morphological and Architectural Parameters

To evaluate the effect of GUMT319 on grape fruits, we measured physiological indi-
cators of both the GUMT319-treated and control grapes. The lengths and widths of the
grapes in the treatment group were significantly larger than those in the control group
(Figure 2A,B). The firmness and the weight of a single fruit were also measured. Fruits
of GUMT319-treated plants had greater firmness and higher 100-fruit weight than fruit
from the control plants (Figure 2C,D). We examined the sugar/acid ratio and the vitamin C
content of the fruits and found that the sugar/acid ratio and vitamin C content of grapes
in the GUMT319-treated group were significantly higher than those in the control group
(Figure 2E,F).
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Figure 2. Grape fruit parameters. The error bars represent standard deviation (SD). (A) Length
of single fruit: GUMT319 untreated 42.94 ± 2.19 b, and GUMT319 treated 51.68 ± 0.83 a (mm).
(B) Width of single fruit: GUMT319 untreated 17.06 ± 0.39 b, and GUMT319 treated 19.94 ± 0.59 a
(mm). (C) Firmness of grape fruit: GUMT319 untreated 3.39 ± 0.38 b, and GUMT319 treated
4.46 ± 0.60 a (Kg/m2). (D) Weight of 100 grape fruits: GUMT319 untreated 808.03 ± 74.73 b, and
GUMT319 treated 1040.87 ± 37.42 a. (E) Sugar/acid ratio: GUMT319 untreated 8.85 ± 4.23 b, and
GUMT319 treated 13.64 ± 3.48 a. (F) The content of vitamin C: GUMT319 untreated 1.27 ± 0.40 b,
and GUMT319 treated 1.50 ± 0.20 a.

3.3. Changes in Soil Chemical Properties

Because the growth of plants is inseparable from the soil environment in which they
are located, we measured the physicochemical properties of control soil and soil treated
with GUMT319. The soil pH of the GUMT319 treatment was significantly higher than that
of the control group (Figure 3A). The levels of alkaline hydrolyzable nitrogen and available
potassium in the treatment group were significantly lower than those in the control group
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(Figure 3B,C). There were no significant changes in soil organic matter, total potassium,
and total phosphorus content (Figure 3D–F).
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Figure 3. Properties of the GUMT319-treated and untreated soil. The error bars represent standard
deviation (SD). (A) The pH value of the soil: GUMT319 untreated 4.90 ± 0.26 b, and GUMT319
treated 5.85 ± 0.15 a. (B) The content of available potassium: GUMT319 untreated 188.33 ± 0.47 b,
and GUMT319 treated 172.33 ± 4.71 b (mg/Kg) (C) The content of alkaline hydrolyzable nitrogen:
GUMT319 untreated 236.16 ± 3.00 b, and GUMT319 treated 215.94 ± 1.32 a (mg/Kg). (D) The
content of soil organic matter: GUMT319 untreated 47 ± 2.22 a, and GUMT319 treated 47 ± 1.43 a
(mg/Kg). (E) The ratio of total potassium: GUMT319 untreated 1.21 ± 0.02 a, and GUMT319 treated
1.17 ± 0.05 a (%). (F) The ratio of total phosphorus: GUMT319 untreated 0.085 ± 0.001 a, and
GUMT319 treated 0.091 ± 0.004 a (%).
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3.4. Effect of GUMT319 on the Soil Microbial Community Composition

The change of rhizosphere microbial composition also affects the physical and chemical
properties of soil and the growth of plants. Therefore, we conducted 16S rDNA high-
throughput sequencing on the soil sample of GUMT319-treated and untreated plants
to observe the impact of GUMT319 on the rhizosphere microbial composition. The 16S
rDNA sequencing results showed differences in the composition of grape rhizosphere
microbes between the GUMT319 treated and non-treated plants; there are 37 upregulated
microbes and 6 downregulated microbes in GUMT319-treated soil when compared to the
untreated soil (Figure 4). Both the Shannon index (Figure 5A) and the Simpson index
(Figure 5B) results confirmed that the species richness of rhizosphere microorganisms in
the GUMT319-treated soil was higher than that in the untreated soil. We also performed a
functionally annotated relative abundance cluster analysis of rhizosphere microbes between
the GUMT319-treated and untreated soil. Results showed that genes in the KEGG pathways,
such as KO02529, KO05349, KO2552, and KO2454, were expressed differently in GUMT319-
treated and untreated soil microorganisms (Figure 6).
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Figure 4. Volcano map of the species diversity of the microbes in GUMT319-treated and untreated
grape plant rhizosphere. Result showed that there are 37 upregulated microbes and 6 downregulated
microbes that appeared in GUMT319-treated soil compared to the untreated soil. Species with
differences in richness were selected by log2 fold change > 1 and q value < 0.005. NoSignifi represents
microbes with no significant difference in species richness.
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Figure 5. Species diversity analysis of the microbes in GUMT319-treated and untreated grape plant
rhizosphere. Both (A) Shannon index and (B) Simpson index results showed that the species richness
of rhizosphere microorganisms in the GUMT319 treatment groups was higher than that in the
untreated group.
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Figure 6. Differences and changes related to functional genes in the microbial community of
GUMT319-treated and untreated samples in the metabolic pathway.

4. Discussion

Providing adequate food for the continuously increasing human population is a world-
wide problem [46]. Increased use of fertilizers and pesticides provides some benefits, but
their use is accompanied by many environmental problems. Therefore, more environ-
mentally friendly and sustainable ways for increasing food production are needed. PGPR
microorganisms were proved to have the ability to enhance yield in many crop produc-
tion systems. For example, P. fluorescens N04, P. koreensis N19, Paenibacillus alvei T19, and
Lysinibacillus sphaericus T22 can alter the synthesis of secondary metabolites and aromatic
amino acids of tomato plants to increase their defense response to various stresses (either
biotic or abiotic) and increase fruit yields [47]. The endophytic strain of Beauveria bassiana
can promote the growth of grape (Vitis vinifera), but the mechanism by which B. bassiana
functions to promote grape growth is unclear [48].

We found that the B. velezensis strain GUMT319, a newly identified biocontrol agent
for controlling tobacco black shank disease, also has a yield-increasing effect on grapes;
the fruits on GUMT319-treated grape plants were larger and heavier than fruits on control
grape plants. In addition, the sugar/acid ratio and vitamin C content of the GUMT319-
treated grapes were higher than the controls. The ideal substrate for plant growth usually
has a high water-holding capacity, good rehydration after drying, good aeration, stable
structure, optimal pH, high cation exchange capacity, absence of toxic compounds, and low
microbial activity and is free of pests and weeds [49]. We tested the chemical properties
of the GUMT319-treated soils to determine if the yield-improving action of GUMT319
on grape plants functions in altering the physical and chemical properties of the soils.
We found that the soil pH value increased from 4.95 to 5.80 after GUMT319 treatment,
and the levels of alkaline hydrolyzable nitrogen and available potassium were reduced
in the GUMT319-treated field. The microbial community can increase the storage of C in
near-neutral pH soils [50]. The increase of C in the soil may be related to the increased yield
of GUMT319-treated grape plants; however, this is only one of our inferences, and further
experiments need to be designed to prove whether this view is correct or not. The decrease
in alkaline hydrolyzable nitrogen and available potassium in the GUMT319 treatment
suggests that the grapes treated with GUMT319 absorbed more alkaline hydrolyzable
nitrogen and available potassium from the soil. The alkaline hydrolyzable nitrogen and
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available potassium were beneficial to the synthesis of organic matter in all organisms,
including the grape plants; this might also be the reason why the grape plants treated with
GUMT319 could have higher yield.

We further compared the composition of the rhizosphere microbial community of
the GUMT319-treated soil and untreated control soil by 16S rDNA high-throughput se-
quencing. Result showed that the rhizosphere microbial composition of soil treated with
GUMT319 was significantly more abundant than the untreated soil. Microbes in GUMT319-
treated and untreated soil showed functional differences in KEGG pathway like KO02529,
KO05349, KO2552, and KO2454. These differently expressed microbial community and
KEGG pathways could also associated with the altered yield of grape plants; for example,
KO2552 is a pathway that increased in GUMT319-treated soil. It is a pathway that directs
the decomposition of N(alpha)-Benzyloxycarbonyl-L-leucine into Benzyl alcohol, CO2, and
L-Leucine (https://www.kegg.jp/entry/R02552, accessed on 1 October 2022). As we know
leucine is an important amino acid for plants and is required for plant growth, it is very
logical to think about whether the increase of leucine sources in soil would affect the yield
of grape, but this hypothesis need further experiments to verify it.

5. Conclusions

In summary, this study demonstrated that the Bacillus velezensis strain GUMT319
is a PGPR. It can significantly increase grape yields, and it can alter the soil microbial
community composition. The change of the soil microbial community may connect with
the yield increase and the alternation of the physical and chemical properties of the soil,
but these hypotheses need to be further studied.
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