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Simple Summary: Lately, investigations of artificial intelligence as an assisting tool for analyzing and
identifying stem cells have increased. In this systematic scoping review, we aimed to identify and map
the available artificial-intelligence-based techniques for imaging analysis, the characterization of stem
cell differentiation, and trans-differentiation pathways. After an extensive search for the literature
following a structured methodology, we included 27 studies in our systematic scoping review that we
extracted the relevant data from. Based on the results of the included studies, artificial intelligence
has the potential to serve as an assisting tool in stem cell imaging. However, it is still considered
relatively new and under maturation. The goal of our review is to guide and help researchers while
planning for future investigations.

Abstract: This systematic scoping review aims to map and identify the available artificial-intelligence-
based techniques for imaging analysis, the characterization of stem cell differentiation, and trans-
differentiation pathways. On the ninth of March 2022, data were collected from five electronic
databases (PubMed, Medline, Web of Science, Cochrane, and Scopus) and manual citation searching;
all data were gathered in Zotero 5.0. A total of 4422 articles were collected after deduplication; only
twenty-seven studies were included in this systematic scoping review after a two-phase screening
against inclusion criteria by two independent reviewers. The amount of research in this field is
significantly increasing over the years. While the current state of artificial intelligence (AI) can tackle
a multitude of medical problems, the consensus amongst researchers remains that AI still falls short
in multiple ways that investigators should examine, ranging from the quality of images used in
training sets and appropriate sample size, as well as the unexpected events that may occur which the
algorithm cannot predict.

Keywords: artificial intelligence; stem cells; induced pluripotent stem cells; embryonic stem cells;
adult stem cells; imaging

1. Introduction

The emergence of stem cell research began in the year 1961, which marked the dis-
covery of bone multipotent stem cells [1]. After several decades, the human pluripotent
stem cells were first used in the preclinical stages of research which included isolating cells,
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implementing their functions, identifying their roles, and applying animal trials (such as
injecting human-derived cardiomyocytes in damaged rodent hearts and witnessing their
improvements) [2,3]. In the past few years, a trend in stem cell research has exponentially
increased as it passed to the clinical stages, where the advancement of technology has en-
abled such innovation to potentially transition into human clinical trials in the future [2,3].
Stem cells are unspecialized human cells capable of self-renewal through mitosis, even-
tually forming more cells. Such a division generates two types of cells in which the first
differentiate into a specific type of cell, whereas the second sustains self-renewal ability [4].
Three categories make up the stem cell division types which consist of induced pluripotent
stem cells (iPSCs), embryonic stem cells (ECSs), and adult stem cells (ACSs) [5]. Pluripotent
stem cells (PSCs) are defined by their ability to differentiate into the three layers of germ
cells (ectoderm, mesoderm, and endoderm). Both iPSCs and ESCs are considered to be
PSCs due to their ability to differentiate into the three germ layer derivatives, but a distin-
guishing feature between iPSCs and ESCs is that IPSCs are special reprogrammed somatic
cells, generating pluripotent patient-specific cell lineages capable of aiding model human
diseases [6]. Unlike iPSCs and ECSs, ACSs have a lower differentiation level, termed
multipotent, and hence can differentiate into more tissue-specific stem cells [7]. ACSs are
rare undifferentiated cells that spread throughout the entire body and transform into a
proliferative state from their quiescent one in order to divide into new cells that would
replace the naturally dying ones [7].

The future of stem cell-based therapy is becoming the precedent in advanced medicine.
The potential for stem cell implementation grows with every experiment, bringing a new
look at the possibilities of transplantology and regenerative medicine [8]. These therapies
have targeted multiple medically severe conditions underscored by defective cell division
or differentiation, such as cancer or congenital disabilities [8]. A wide variety of diseases
are under the scope of stem-cell-based therapy in various fields of medicine, including
cardiology (heart failure) [9] and ophthalmology (retinal and macular degeneration) [10].
Stem cells transformed the idea of treating what was once considered untreatable, for
example certain neurodegeneration diseases, including Alzheimer’s and Parkinson’s [11].
In addition, arthroplasty has seen the impact of stem cells in various forms, such as healing
tendon injuries, as well as in the cases of osteoarthritis, highlighting stem cell use in cartilage
repair [12,13]. Stem cell research has also made its way to fertility disease, where the ability
to produce sperm cells from iPSCs proved not only to be successful but also produced
healthy and fertile mice [14,15]. Another field of medicine that has the potential to become
a revolutionary step in stem cell research is diabetes, where induced stem cells differentiate
into the missing pancreatic beta cells instead of transplanting them for a donor [16]. The
most significant advancements are highlighted in hematopoietic stem cell research, earning
them the title of being the most popular stem cell due to extensive experimentation and
studies over the last fifty years, laying numerous foundations that have guided other
medical fields in stem cell research and development [8]. As time progresses, research on
stem cells is expanding beyond fields in medicine, reaching disciplines of dentistry and
pharmacology.

The field of pharmacology has also been infiltrated by stem cell research. Notably,
human-induced pluripotent stem cells (hiPSCs) saw their upbringing in 2009 when they
were screened to model a type of neuropathic disease called familial dysautonomia, where
multiple model features were discovered, and drugs targeting these features were manufac-
tured and later tested [17]. Other examples include screening an anticancer drug, Bosutinib,
which inhibits Src/c-Abl receptors, on hiPSCs extracted from amyotrophic lateral sclerosis
(ALS) patients [18]. Now, the state of pharmacologic stem cell research has advanced
tremendously, reaching the forefront of gene editing, CRISPR/cas9, and when combined
with the stem cell application, can provide revolutionary input to the development of drug
therapies that occurs through the integration of genes into hiPSCs, ultimately leading to
both the development of therapeutic drug candidates and also the selection of the best
drug out of these candidates [18]. Hence, such an approach to stem cells allows for sys-
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temic compound and drug evaluation regarding their safety, tolerability, and efficacy when
applied for certain severe diseases due to drug screening on iPSCs [19].

The revolutionary advancements in technology, underlined by artificial intelligence
(AI), have made stem cells available in terms of selecting the most suitable medication,
establishing a diagnosis, and formulating risks and benefits when it comes to therapy [20].
In particular, emerging techniques of machine learning, deep learning, and convolutional
neural networks (CNN) have assisted the framework of the reliable detection for various
functions, including iPSC colony classifications [2], non-invasive cell therapy character-
izations of normal versus abnormal cells [2], and image-based cellular morphology [2].
The accessibility of a wide variety of medical images combined with the continuously
developing technology in the field of AI will take medicine to a whole different level [2].
The goal of the current research is to map and identify the available AI-based techniques
for the imaging analysis of stem cells, the characterization of stem cell differentiation, and
trans-differentiation pathways.

2. Materials and Methods

Guided by the Joanna Briggs Institute (JBI) methodology for a scoping review [21] and
PRISMA-ScR (Transparent Reporting of Systematic Reviews and Meta-analyses Extension
for Scoping Reviews) checklist [22], this systematic scoping review was conducted, as
defined by its protocol that was developed previously by the research team [23].

2.1. Identifying the Research Question

Following the identification of the population, concept, and context (PCC) [21] compo-
nents, a research question was developed. What are the available applications of AI-based
imaging analysis for various types of stem cells?

The PCC component is established as follows:

• Population: stem cells;
• Concept: AI-based technique;
• Context: imaging analysis.

2.2. Searching Strategy

On 9 March 2022, we searched five electronic databases (PubMed, Medline, Web of
Science, Cochrane, and Scopus) to identify inclusive studies based on a research strategy
answering the research question (Table S1). Following a primary search, the complete
searching strategy was then developed and customized for each database using specific
queries. Additionally, we carried out a manual citation search of the retrieved data by
screening the reference section of all studies to look for potential studies answering our
research question.

The keywords included in the queries are as follows: algorithm, algorithm*, artificial
intelligence, AI, automated, automatic, semi-automated, semi-automatic, deep learning,
convolutional neural network, CNN, machine learning, stem cells, stem cell*, and imaging.

All the studies found were imported and stored in the Zotero 5.0 (Corporation for
Digital Scholarship, Vienna, VA, USA) library. The library was deduplicated using web-
based software and an SR accelerator [24], and a manual review by J.I was performed to
confirm the removal of duplicates.

2.3. Eligibility Criteria

We generated the inclusion and exclusion criteria based on the PCC mnemonics [21].
Quantitative studies testing AI-based imaging analysis on any type of stem cell (iPSCs,

ECSs, ACSs, and PSCs) of animals or humans were included without any language or
date restrictions due to the novelty of this field. We excluded preprints and conference
papers, as well as qualitative studies and quantitative studies investigating the use of AI
technology for other purposes, including the imaging analysis of any type of cells rather
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than of stem cells. The studies where the full text was inaccessible were excluded. The
inclusion and exclusion criteria are presented in Table 1.

Table 1. Table of Inclusion and Exclusion Criteria.

Inclusion Criteria Exclusion Criteria

Studies involving any type of Stem cells (iPSCs,
ECSs, ACSs, PSCs)

Studies investigating different types of cells
rather than stem cells

Studies using AI-based imaging analysis Studies using AI technology for other purposes
than imaging analysis

Published studies in any language Reviews
No date restriction Preprints and conference papers
Full-text accessible Full-text not accessible

2.4. Study Selection and Data Extraction

In the first phase of study selection, the title and abstract of all studies after deduplica-
tion were screened against the inclusion criteria by two independent reviewers (J.I. and
M.A.C.). The reviewers met several times during this process; the first session was based on
testing the study selection method and ensuring the understanding of the inclusion criteria
by both reviewers. During the second phase, the reviewers again independently assessed
the full text of the held studies following the first screening phase based on inclusion
criteria. In case of any disagreements between reviewers at any stage, the opinion of the
third reviewer (M.D.-K.) was taken, or the conflict was solved by discussion between the
two reviewers.

Data were extracted from the included studies by one reviewer (M.A.C.) and evaluated
independently by the second reviewer (J.I.), and any disagreement between them was
resolved by discussion or by the opinion of the third review (M.D.-K.). The data extraction
tools were developed based on the JBI methodology for scoping review [21].

3. Results
3.1. Search Result

In total, 4422 articles were collected from the five electronic databases. Subsequently,
1574 articles were eliminated after deduplication of the library, progressing our screening
for titles and abstracts against the inclusion criteria of 2848 studies. After the first screening
phase, 28 articles were eligible for full-text analysis. While collecting the full text, two
studies were eliminated due to the inaccessibility of the full text, and three other studies
were excluded after the full-text screening as they were not studying stem cells. Finally,
four additional articles were added through manual citation searching. In total, 27 studies
were included in this systematic review (Figure 1). The level of the reviewer agreement
was calculated using kappa statistics, K = 0.862, indicating a significant agreement between
both reviewers.

3.2. Extracted Data

The extracted data will include the study author(s), the year of publication, the study
location, the study aim, the type of cell, the sample size, the used algorithm, and the
findings (Table 2). Additionally, we performed a demographic analysis to visualize the
distribution of included studies on the world map with the number of publications per
country (Figure 2) and a bar chart of the number of publications per year (Figure 3).
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Table 2. Data extracted from included studies.

Author, Study, Location & Year
of

Publication
Study Aim Cell Type Sample Size Algorithm Findings

Fischbacher et al., USA, 2021.
[25]

Automatic detection and
identification of colony
presence and clonality

Human-induced
pluripotent stem cells (hiPSCs) Approximately 30,000 images

Monoqlo
RetinaNet

ResNet

The algorithm was capable of
analyzing the data volumes in

less than an hour.

Guan et al.,
USA, 2021.

[26]

Developing a deep learning
classifiers for the classification of

human embryonic stem cells
(hESCs) on a video dataset

hESCs
27,603 unlabeled grayscale

images and 3559 labeled
grayscale images

Random network (RandNet)
The proposed approach achieved

a classification accuracy of
97.23 ± 0.94%.

Guo et al., China, 2021.
[27]

Setting up a workflow to use
machine-learning-assisted

high-content analysis to study
embryo-like structures

Mouse iPSCs, ESCs, and
trophectoderm stem cells (TSCs) N/A Algorithms developed by the

PerkinElmer HCS system

The workflow was able to
establish a robust, unbiased, and

automated machine
learning-based protocols.

Imamura et al., Japan, 2021. [28]
iPSC detection using deep

learning for amyotrophic lateral
sclerosis prediction

iPSCs
4500 images for training

1350 images for validation
900 images for testing

CNNs
The algorithm achived an

average accuracy of 0.90 ± 0.10
for cell classification.

Joy et al., USA, 2021.
[29]

Training a group of neural
networks to localize individual
cell nucleus in an hiPSC colony,

and to generate longitudinal
measures of cell and cellular

neighborhood properties

hiPSCs 12 time lapse movies

FCRN-A
FCRN-B
U-Net

Residual U-Net
Count-ception

The trained group of neural
networks was able to identify the

characteristics of multicellular
organization at the single-cell

local neighborhood and
whole-colony scales.

Mota et al., USA, 2021.
[30]

Proposing an objective aproach
that determines

the morphological phenotypes of
mesenchymal stem cells (MSCs)

for culture efficacy prediction

Human bone-marrow-derived
MSCs (hBMSCs)

Training dataset 71 images
Validation dataset 36 images

Proposed a new algorithm
generated using MATLAB

The proposed method showed
88% sensitivity and 86% precision

for overall cell detection.

Zhu et al., China, 2021.
[31]

Building a CNN system that uses
unlabelled brightfield single-cell

images to recognize
differentiated neural stem cell

(NSC) features

NSCs 119,533 images for training
29,895 images for testing

Xception
ResNet

VGGNet
Inception-v730

The model estimated the
proportion of final cell-type

differentiation in early stages of
differentiation before the

common laboratory techniques
were able to detect it.

Chang et al., Taiwan, 2019.
[32]

Establishing a traceable method
for human iPSC formation from

CD34+ cord blood cells
CD34+ cells 144 images CNNs

The machine learning method
provided a time-series

visualization and
quantitative analysis of the hiPSC

induction and transition
process.
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Table 2. Cont.

Author, Study, Location & Year
of

Publication
Study Aim Cell Type Sample Size Algorithm Findings

Orita et al., Japan, 2019.
[33]

Training a CNN model using
bright-field images

hiPSC-derived cardiomyocytes
(hiPSC-CMs)

14,000 images for training
2000 images for validation

2000 images for testing
VGG16

The tested model showed an
average of 0.897 ± 0.01 accuracy,

0.946 ± 0.005 precision,
0.843 ± 0.02 recall, and
0.890 ± 0.01 F1-score.

Waisman et al., Argentina, 2019.
[34]

Training CNN to distinguish the
pluripotent stem cells from

early-differentiating cells based
on cellular morphology

Mouse embryonic stem cells
(mouse ESCs) 1116 images ResNET50

DenseNet

The tested model was able
achieve distinguishment with a

99% accuracy.

Zhang et al., China, 2019.
[35]

Proposing a
machine-learning-based

approach to detect iPS progenitor
cells

during the early stage of
reprogramming and

against normal mouse embryonic
fibroblasts (MEFs) in the same

stage

iPS progenitor cells and MEFs N/A XGBoost

The model predicted iPS
progenitor cells with a minimum
precision of 52% and a maximum

precision of 75%.

Kavitha et al., South Korea, 2018.
[36]

Evaluating several machine
learning classifiers for iPSC

colony characterization based on
a quantitative texture extraction

iPSC and inactive MEFs 169 phase-contrast microscopic
images

Support vector machine (SVM)
Random forest (RF)

Multilayer perceptron (MLP)
Decision tree (DT)

Adaptive boosting (Adaboost)
classifier models

SVM, RF, and Adaboost
delivered better classification

performances than DT and MLP.
The proposed automated fused

statistical, shape-based, and
moment-based texture pattern

features that are potentially more
helpful to biologists for

characterizing the colonies of
stem cells.

Kusumoto et al., Japan, 2018. [37]

Testing an automated method for
identifiying iPSC-derived
endothelial cells based on

morphology

640 images for training
160 images for validation

600 images for testing

LeNet
AlexNet

The deep learning technique was
able to detect iPSC-derived
endothelial cells with 90%

accuracy.
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Table 2. Cont.

Author, Study, Location & Year
of

Publication
Study Aim Cell Type Sample Size Algorithm Findings

Theagarajan et al., USA, 2018.
[38]

Proposing a system for hESC
images image classification using

CNN and triplet CNN in a
hierarchical system which allows

for their classifications into 6
categories

hESCs 784 images
Conv

Maxpool
FC Layer

The proposed system classified
hESC images with 85.67%
accuracy using the CNN

Alone and recorded a 91.38%
accuracy using the CNN and

Triplet CNN and
94.11% accuracy by fusing the
outputs of the CNN and triplet

CNNs.

Buggenthin et al., Germany,
2017. [39]

Testing a deep learning method
that predicts the lineage choice in

the differentiating primary
hematopoietic progenitors

Murine hematopoietic stem and
progenitor cells (HSPCs) 2,400,000 image patches CNN

Recurrent neural network (RNN)

Without a molecular labeling, the
algorithm was able to identify

cells with differentially expressed
lineage-specifying genes.

Chang et al., Taiwan, 2017.
[40]

Automatic detection
and localization of human iPSC

regions in brightfield
microscopy images

CD34+
cells 132 images CNN

The automatic method
successfully localized and
detected human iPS cell

formation, ultimately producing
an iPS cell culture perk.

Fan et al., China, 2017.
[41]

Testing a label-free and
quantitative automated system

for iPSCs segmentation and
classification

iPSCs (human and animals) 50 images Modified AlexNET

No significant differences were
recorded between the used
algorithm and the manual

method for cell classification.

Li et al., China, 2017.
[42]

Proposing a system of
multi-stage frameworks using

content-based microscopic image
analysis (CBMIA)

hiPSCs 81 microscopic
images

Improved supervised normalized
cut (ISNC) segmentation

algorithm
k-means clustering algorithm

Results show that the CBMIA
system was able to support a

high-performing clustering result,
allowing for the prediction of the
stem cell differentiation process.

Joutsijoki et al., Finland, 2016.
[43]

Assessing the automated quality
of iPSC colony

image identification where feeder
cells are included and not

included

iPSCs 173 images

Multiclass support vector
machines

Scaled invariant feature
transformation

(SIFT)

The k-NN classifier achieved
accurate results with an accuracy

of 62.4%.

Wuttisarnwattana P et al.,
Thailand, 2016.

[44]

Describing a novel
machine-learning-based
approach for detecting

fluorescently labeled stem cells in
cryo-imaging data

Mouse multipotent adult
progenitors cells (MAPCs) 700 fluorescent images A novel algorithm created using

MATLAB

The new tested software allowed
for an accurate detection and

quantification of cells anywhere
in the entire whole mouse

volume with single-cell
sensitivity.
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Table 2. Cont.

Author, Study, Location & Year
of

Publication
Study Aim Cell Type Sample Size Algorithm Findings

Bajcsy et al., USA, 2015.
[45]

Designing algorithms that can be
applied to a very large number of

confocal microscopy images
(z-stacks) for three-dimensional

(3D) segmentation

hBMSCs More than 1000 z-stacks A set of six newly constructed 3D
segmentation algorithms

The most accurate 3D
segmentation algorithm achieved
an average precision of 0.82 and
accuracy of 0.84 measured by the

Dice similarity index.

Lou et Al., USA, 2014.
[46]

Developing a modular
interactive nuclear segmentation

(MINS) as a MATLAB/
C++-based segmentation tool
tailored for counting cells and

fluorescent-intensity
measurements

Murine extraembryonic
endoderm stem and embryonic

stem cells (ESCs)
N/A Seeded geodesic image

segmentation (SGIS)

The framework achieved a
balance between computational

complexity and runtime.

Maddah et al., USA, 2014.
[47]

Presenting a new method that
can reliably extract and quantify

beat
signals from cardiomyocyte cell

cultures

iPSC-derived cardiomyocytes More than 500 videos Hierarchical clustering algorithm

The use method was able to
properly characterize

stem-cell-derived
cardiomyocytes.

Maddah et al., USA, 2014.
[48]

Presenting a framework for the
automated analysis of

phase-contrast images of stem
cells to capture and quantify

morphological changes during
colony growth

iPSCs Over 500 time-lapse sequences
images N/A

The proposed novel framework
demonstrated the successful

classification of stem cells based
on texture pattern recognition.

Paduano et al., Italy, 2013.
[49]

Developing an analysis pipeline
which can automatically process

images of stem cell colonies in
optical

microscopy in order to study
markers of embryonic stem cells

(ESCs)
heterogeneity

Mouse ESCs 57
images

A proposed approach in
MATLAB, CLAHE (image

adjustment)
Orientation matching algorithm

The tested algorithm achieved
proper image processing.

Faustino et al., Brazil, 2011.
[50]

Presenting an algorithm that
counts and detects ESCs in

fluorescence microscopy images
Murine ESCs 234 images Developed their own

graph-mining algorithm

The used method achieved an
average F-measure

above 90%.

Faustino et al., Brazil, 2009.
[51]

Proposing an automatic method
for ESC detection and counting
under fluorescence microscopy

images

ESCs 92 images
The algorithm was implemented

in Java language 6.0 using the
development tool Eclipse 3.2

The used method resulted in an
average of 93.97% precision,

recall 92.04%, and 92.87%
F-measure.
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Upon a demographical analysis of the collected data, the United States was the highest
contributing country in this field with 9 studies out of 27 (33.3%) [25,26,29,30,38,45–48],
followed by China (13.5%) [27,32,41,42], Japan (11.1%) [28,33,37], and Brazil [50,51] and
Taiwan [32,40] (both 7.4%). Argentina [34], Finland [43], Germany [39], Italy [49], South
Korea [36], and Thailand [44] each had one study each (3.7%), as shown in Figure 2.

The number of publications studying stem cell image analysis using artificial intelli-
gence increased throughout the years. Based on the included publications, the majority of
published studies were in 2021 (seven studies) [25–31].

4. Discussion

A microscopic evaluation of all types of cultured cells is a routinely performed task in
the laboratory setting. The contrast microscope is commonly used at various magnifications
for cell analysis. The general criteria for cultured cells are confluence, dead cells, or severely
atypical morphology. Therefore, operators must be trained in cell morphology and their
ongoing relationship in all cases. The advanced approach to this task uses automatically
extracted data that should include the most important parameters, including the cells’
confluence, cell-free areas, dead cells, and cell morphology changes. When performed
manually, it suffers from low reproducibility and, on top of that, must be assessed quickly
to ensure sufficient throughput. Some of the available software requires an invasive
approach using either reporter genes or immunofluorescence labeling, which may lead to
the irreversible modification of the cell sample or cell line death. Both systems require either
cell modifications or cell sample sacrifice. Only methods that are non-invasive and capable
of processing large extensive image data within a short time frame are applicable. They
also need to be able to perform multi-class segmentation to assess all required parameters.
Deep-learning-based algorithms are at the forefront of such complex tasks.

This systematic scoping review aimed to identify the currently available AI methods
which support the laboratory evaluation of stem cells. An analysis of the included studies
revealed that the visual assessment of stem cells was mainly based on the morphological
features of cells in colonies and the attempt to indicate their expected features. The potential
of several algorithms was tested by authors to assess the level of differentiation and
morphological changes during stem cell culture and an attempt to distinguish between
different types of cells during their development stages based on the morphological features.
An assessment made with the help of algorithms has a chance to be more effective and also
less time-consuming. The key to developing successful algorithms is the correct selection of
images, the use of appropriate data sets, and enough training images. Some of the studies
described above boast a large sample size for training purposes; this significantly increases
the reliability of the results.
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4.1. iPSC

iPSCs have the potential to differentiate into all cell types, except extraembryonic cells,
and possess a high proliferative capacity, and can be cultured on an industrial scale. These
features make them an area of great interest for potential application in advanced therapies.

In the following section, we present the 16 studies that test the power of artificial
intelligence in analyzing, identifying, and classifying human or animal iPSC.

Fischbacher et al. [25] tested the power of three algorithms (Monoqlo, RetinaNet, and
ResNet) in the automatic detection of colony presence and the identification of clonality
on approximately 30,000 images. Developed using the PerkinElmer HCS system, Guo
et al. [27] tested the ability of the algorithm on high-content analysis to study embryo-
like structures derived from several mice-induced PSC lines, TSCs and ESCs. Imamura
et al. [28] built an ALS prediction model using a CNN-based deep learning algorithm where
4500, 1350, and 900 images were used for training, validation, and testing, respectively.
Joy et al. [29] trained five different neural networks (FCRN-A, FCRN-B, U-Net, Residual
U-Net, and Count-ception) to localize each cell nucleus individually in a human-induced
pluripotent stem cell (hiPSC) colony, generating longitudinal measures of cell and cellular
neighborhood properties.

Chang et al. [32] and Chang et al. [40] tested CNN and human iPSCs. Chang et al. [32]
tested CNN’s ability to trace human iPS cell formation from CD34+ cord blood cells on
144 images. In contrast, Chang et al. [40] applied the CNN on 132 images for the automatic
detection and localization of human iPSC regions in brightfield microscopy images.

Orita et al. [33] trained VGG16 using bright-field images of cultured human-induced
pluripotent stem cell-derived cardiomyocytes (hiPSC-CMs). The sample size was divided
into 14,000 images for training, 2000 for validation, and 2000 for testing.

Zhang et al. [35] used XGBoost to model an algorithm for iPS cell identification
against MEFs in the same stage by using live-cell images during the early stages of iPSC
reprogramming

Kavitha et al. [36] used a set of 169 phase-contrast microscopic images of iPSC colonies
and five different machine learning algorithms (support vector machine (SVM), random
forest (RF), multilayer perceptron (MLP), decision tree (DT), and adaptive boosting (Ad-
aboost) classifier models) to evaluate the selected iPSC colony features (shape, statistics,
spectrum, etc.) and to eventually characterize stem cells where SVM, RF, and Adaboost
were significant outperformers amongst the algorithms used. With the utilization of LeNET
and AlexNET, Kusumoto et al. [37] tested a morphology-based automatic method for iden-
tifying endothelial cells derived from iPSCs which required 640 images for training and
160 for validation. Buggenthin et al. [39] implemented RNNs and CNNs to evaluate how
accurately a deep learning method can predict lineage choice in differentiating primary
hematopoietic cells.

Fan et al. [41] utilized a modified version of AlexNET to quantitatively test the auto-
matic and label-free classification and segmentation of iPSC colonies derived from humans
and animals. Using the improved supervised normalized cut (ISNC) segmentation and
k-means clustering algorithm, Li et al. [42] proposed a multi-stage framework system,
CBMIA, which was tested on 81 microscopic human iPSC images.

Joutsijoki et al. [43] assessed the automated quality identification of iPSC colony images
using multiclass support vector machines and scaled invariant feature transformation
(SIFT), where feeder cells were included and not included, using 173 images.

Finally, two studies by Maddah et al. [47] and Maddah et al. [48] used recorded videos
to test AI. Maddah et al. [47] successfully identified iPSC-derived cardiomyocytes in the
analyzed cell culture based on an algorithm that captures the beating signals, implementing
a hierarchical clustering algorithm trained using 500 recorded videos. Utilizing more
than 500 time-lapse sequence images of iPSCs, Maddah et al. [48] tested and presented
a framework for automated analysis of phase-contrast images of iPSCs to capture and
quantify morphological changes during colony growth.



Biology 2022, 11, 1412 12 of 15

4.2. ESC

There is a high demand for the precise and automatic quantification of ESC pluripo-
tency in challenging to evaluate the environment of mixed colonies with undifferentiated
and differentiated cells. Seven analyzed studies classified the human and animal ESC using
a different algorithm, presented in the following.

Guan et al. [26] used 27,603 unlabeled grayscale images for fine-tuning and 3559 la-
beled ones for training the model, aiming to develop a deep learning method for hESC
classification on a dataset of videos. Random network (RandNet) achieved a classification
accuracy of 97.23 ± 0.94%. Waisman et al. [34] focused on designing an algorithm capable of
distinguishing an early-differentiating cell from pluripotent cells by utilizing the ResNet50
and DenseNET architecture. In total, 1116 images under various differentiation-inducing
conditions of mouse ESCs were used.

Theagarajan et al. [38] proposed a system for classifying hESCs into six categories
using the CNN approach alone or in combination with Triplet CNN, achieving more than
94% accuracy. A total of 784 realistic unlabeled images were used to train, validate, and
test the CNN for classifying hESCs images in a hierarchical system, allowing for their
classifications into six categories.

Lou et al. [46] also addressed the segmentation issue, focusing mainly on nuclear seg-
mentation by procuring MINS, which was developed on a MATLAB/C++-based segmen-
tation tool on murine extraembryonic endoderm stem cells and ESCs. Paduano et al. [49]
applied a MATLAB script pack and an orientation matching algorithm to mESCs. The
developed algorithm was trained using 57 images and was able to properly process images.
Faustino et al. [50] tested a developed algorithm for counting and detecting fluorescence
microscopy images, where a total of 234 images of murine embryonic stem cells were
used. Using a database of 92 images, Faustino et al. [51] implemented Java language 6.0
and Clipse 3.2 (development tool E) to shed light on fluorescent microscopy image use in
automated embryonic stem counting and cell detection.

4.3. Other Stem cells

The presented studies in this section analyzed and identified different types of stem
cells. Two studies classified hBMSCs, and the others screened NSCs and MAPCs using AI.

In their study, Mota et al. [30] proposed an objective approach for automatically
classifying mesenchymal stem cell (MSC) efficacy using a training dataset of 71 images and
a dataset of 36 images for validation. Bajcsy et al. [45] focused on three-dimensional (3D)
focal segmentation in their algorithm process, where they managed to construct six new
3D segmentation algorithms using over a thousand z-stacks (3D images). Zhu et al. [31]
trained and tested Xception, ResNet, VGGNet, and Inception-v730 to recognize the features
of differentiated NSCs via un-labelled brightfield single-cell images. The number of NSC
images used for training and testing was 19,533 and 29,895, respectively. Wuttisarnwattana
et al. [44] delved deeper into fluorescent imaging and focused on cryo-imaging, specifically
creating fluorescent images of MAPCs, from which 700 images were taken.

5. Conclusions

CNN is used to address several tasks and issues in the medical field and is extensively
studied to implement its potential into the domain of stem cell biology in the form of
automatic identification of cell types, their features, and development stages with the use of
microscopic images without the necessity for molecular labeling. Deep learning technology
has significantly improved, and the accuracy of the CNN image classification task has
vastly exceeded that of humans. The segmentation process assigns each pixel in the image
to an object class, making the classification of the image on the pixel level achievable within
the boundary area.

Automatic algorithms outperform human-labeling skills in multiple ways, but proper
annotation is still required to achieve this level of effectiveness. AI is at the forefront of
accelerated progress in biomedical research and will majorly influence each stage of stem
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cell studies, consequently impacting the transfer of its research results to clinical practice.
The amount of research in this field is significantly increasing with time. However, there are
important factors affecting the final results that investigators should consider: the quality
of images used as a training set, the sample size, and the elimination of unexpected events
that the algorithm cannot predict.
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