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Simple Summary: Choerospondias endocarp and leaf fossils were found in the Shengxian Formation
of Zhejiang, eastern China. We performed cuticle analysis on leaves and micro-CT on endocarps to
reconstruct three-dimensional morphological characteristics. Fossil records suggest that Choerospondias
spread from low to middle latitudes throughout geological time, and migrated to the northern
boundary of the distribution range in China during the late Miocene. Based on the climatic parameters
under which extant Choerospondias live, the paleoclimatic values of eastern Zhejiang in the late Miocene
were obtained and compared with previously published paleoclimatic data. The results suggest that
the climate of the late Miocene in the Tiantai region of Zhejiang was warm and humid, similar overall
to the modern climate of this region.

Abstract: Choerospondias (Anacardiaceae), characterized by radially arranged germination pores near
the top, is a monotypic genus mainly distributed in subtropical and tropical eastern Asia, while
fossil records indicate a wide distribution throughout Eurasia during the Cenozoic. In this study, we
reported three-dimensionally preserved Choerospondias endocarps, and the associated compressed
leaves from the late Miocene Shengxian Formation in Tiantai, Zhejiang, eastern China. The plant
remains were assigned to two new fossil species. The endocarps were identified as Choerospondias
tiantaiensis sp. nov., and the leaves were identified as Choerospondias mioaxillaris sp. nov. Based on
fossil records and climate fluctuation during the Cenozoic, we conclude that Choerospondias may have
originated from Europe in the early Eocene and then spread to Asia along the coast and island chains
of the Tethys and Paratethys oceans. The distribution position of the current fossils was adjacent
to the northern boundary of the modern distribution of Choerospondias in East Asia, indicating that
the distribution pattern of Choerospondias in East Asia likely formed no later than the late Miocene.
We reconstructed the late Miocene paleoclimate of eastern Zhejiang by using the method of climate
analysis of endemic species (CAES), and then compared it to the data reconstructed in previous
studies. The results indicate that the late Miocene climate in eastern Zhejiang was similar to or
warmer and more humid than the modern climate in this region.

Keywords: Choerospondias; late Miocene; paleogeography; paleoclimate; eastern Zhejiang, China

1. Introduction

Choerospondias, which belongs to the subfamily Spondioideae in the Anacardiaceae,
is a deciduous tree [1,2]. This genus is monotypic—C. axillaris (Roxb.) Burtt et Hill. It is
mainly distributed in southern Japan and south of the Yangtze River in China, as well
as in the northern part of the Indochina Peninsula and the Eastern Himalayan region
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(Figure 1), while the hirsute variety C. axillaris var. pubinervis is distributed in eastern
Sichuan, southern Gansu, western Hubei, and western Hunan [1].

Only seven macrofossil records of Choerospondias have been previously reported. All
are endocarp fossils distributed in Europe and East Asia. In addition, leaf fossils have not
been reported. There are two fossil records in Europe: the first is C. sheppeyensis, which is
the earliest fossil record from early Eocene London, southern England [3–5], while the other
is the middle Miocene C. turovensis from Turow, Poland [6]. In East Asia, three samples
are from Japan, including two fossils of C. axillaris (Roxb.) Burtt et Hill. from late Miocene
and Pliocene Honshu [7–9] and one fossil of Choerospondias. sp. cf. C. axillaris from the
Pliocene [10,11]. Two fossils are from China, including C. nanningensis from late Oligocene
Nanning, Guangxi [12], and C. fujianensis from middle Miocene Fotan, Fujian [13], both of
which are located at low latitudes near the Tropic of Cancer. Among these fossil endocarps,
C. nanningensis has the lowest latitude. Choerospondias endocarps have also been found at
several archaeological sites in China corresponding to the Quaternary period, indicating
that early humans living in these areas used Choerospondias as a food source [13–17]. Previ-
ous studies on Choerospondias fossils tend to focus on taxonomy and paleoecology, while
the origin and dispersal pathways of the Choerospondias remain ambiguous.

In this research, two fruit fossils and three leaf fossils were collected simultaneously
from the Shengxian Formation, eastern Zhejiang, China. Micro-CT and microtomy tech-
nology were used to observe the whole three-dimensional morphology. Based on these,
the fossilized endocarps of Choerospondias from the Shengxian Formation were reliably
identified as a new species. In addition, the fossil leaves of Choerospondias were investigated
for the first time. According to the leaf architecture and cuticular features, the leaf remains
were also classified into a new species. Furthermore, the biogeographic dispersal of the
genus was inferred based on the fossil records of Choerospondias. Finally, according to the
climatic parameters under which extant Choerospondias live, the paleoclimate of eastern Zhe-
jiang in the late Miocene was reconstructed and further compared to previously obtained
values.
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distribution of Choerospondias axillaris in Asia is shown in the light blue area. The symbols indicate 

Figure 1. Distribution of extant and fossil Choerospondias (modified from [18]). The extant distribution
of Choerospondias axillaris in Asia is shown in the light blue area. The symbols indicate fossil sites
of Choerospondias in different geological ages. The red asterisk represents the fossil site in eastern
Zhejiang.

2. Materials and Methods
2.1. Geological Setting

The Choerospondias fossils studied here were collected from the Shengxian Formation
(29◦09′ N, 121◦14′ E) in eastern Zhejiang, China. The lithology of the Shengxian Formation
is composed of a set of continental volcanic basalt intercalated sedimentary layers that
consist of dark-gray or gray fluvial-lacustrine diatomite mudstone, siltstone, sandstone,
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and a thin lignite layer, forming a unique multicyclic stratigraphic sequence of basalt
and clastic rock [19] (Figure 2). Ho et al. [20] and Wang et al. [21] dated the formation
to 13.0~10.5/9.4 Ma (40Ar-39Ar method) or 13.00~10.38 Ma (K-Ar method). He [22] de-
termined the age to be 13.0~6.0 Ma, i.e., the middle Miocene to late Miocene, using the
40Ar/39Ar dating method. Using stratigraphic correlation [23] and comparison [24–26], the
geological age of the Shengxian Formation was confined to the late Miocene. There are
abundant plant fossils preserved in the intercalated sedimentary layers of the Shengxian
Formation. The fossil plants are mainly composed of angiosperms and a few conifers and
rare ferns [19,24–31].
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2.2. Material Preparation

The two fruits and three leaves studied in this paper were collected from the late
Miocene Shengxian Formation in eastern Zhejiang, China. The specimens of living Cho-
erospondias were collected from the Hangzhou Botanical Garden in July 2021. All the extant
and fossil Choerospondias specimens are stored in the Geological Museum of Chang’an
University.

2.2.1. Fossil Preparation

For the treatment of endocarp fossils, the surfaces of the fossils were first wiped
with anhydrous ethanol and then photographed under a VHX-1000 super depth-of-field
microscope. Next, we used the ZEISS Xradia 520 Versa 3D X-ray microscope at Northwest
University to obtain raw CT data on the internal structure of the endocarp fossils. The data
were then processed using the Visual Studio MAX 3.0 software (Volume Graphics, Germany)
to obtain virtual sections. According to these processed data, the 3D structures of the fruit
fossils were accurately reconstructed. In addition, transversal sections were obtained for a
conventional anatomic study using the epoxy resin embedding method [32]. They were
subsequently observed and photographed under a Leica DM1000 optical microscope.

For the treatment of leaf fossils, the fossils were photographed with a Leica M165FC
stereomicroscope. The cuticular analysis was performed according to the procedure de-
scribed by Liang et al. [33]. The fossils were moistened well in distilled water and then
soaked in 20% HCl solution for 12 h to remove calcareous sediments; then, they were
washed to neutrality using distilled water. Subsequently, they were soaked in HF solution
(40%) for 12 h to remove siliceous sediments and then washed again with distilled water
until neutral. Next, they were transferred into 70% HNO3 reagent and immersed for 4–12 h.
When the color of the cuticles changed from black to transparent light brown, the samples
were taken from the solution and washed with distilled water. Next, the cuticles were
immersed in distilled water for 1–2 h to fully remove any residual HNO3 in the cuticle.
Following this procedure, the leaves were soaked in 0.4% NaClO solution for 5–10 s and
observed under a dissecting microscope until the leaf edges showed signs of epidermal
separation, at which point they were washed to neutrality with distilled water. The cuticles
were stained with 1% safranin solution for less than 10 s, depending on the thickness of
the leaf fossil, and then mounted. Finally, they were photographed under a Leica DM1000
optical biomicroscope.

The terminology used for describing the endocarp fossils follows that of Fu et al. [12]
and Herrera et al. [34]. The terminology used for describing the leaf fossils follows that of
Li et al. [35] and Wang et al. [36].

2.2.2. Extant Leaf Cuticle Treatment

A small piece of leaf from extant Choerospondias was cut off and placed into a beaker
with a mixed solution containing 30% H2O2 and 99% CH3COOH (1:1 v/v) before being
transferred into a water bath kettle kept at 70 ◦C for approximately 6 h. When the leaf
became transparent with the occurrence of bubbles, it was washed to neutrality using
distilled water. The upper and lower epidermis were peeled off using dissecting needles
and tweezers. Subsequently, the epidermis was gently brushed to remove the adhered
mesophyll. The clean upper and lower epidermis were stained with 1% safranin solution
for approximately 1 min and then mounted. Finally, they were photographed under a Leica
DM1000 optical biomicroscope.

3. Systematic Paleobotany

Order: Sapindales Juss. ex Bercht. et J. Presl.
Family: Anacardiaceae R. Br.
Subfamily: Spondiadoideae Kunth ex Arn.
Genus: Choerospondias Burtt et Hill.
Species: Choerospondias tiantaiensis Liang Xiao et Zeling Wu sp. nov.
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Etymology: The epithet refers to Tiantai County, where the specimens were collected.
Holotype: JHU3-16-059 (Figure 3A–C and Figure 4A–J).
Paratype: JHU3-231 (Figure 3D–F).
Locality: Jiahu Village, Tiantai County, Zhejiang Province, China (29◦09′ N, 121◦14′ E,

Figure 2).
Stratigraphy: The Shengxian Formation.
Age: Late Miocene.
Repository: Geological Museum of Chang’an University, Chang’an University, Xi’an,

China.
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Figure 3. Characteristics of endocarps of Choerospondias tiantaiensis under a VHX-1000 super-depth-
of-field microscope ((A–C), JHU3-16-059; (D–F), JHU3-231). (A,D): Lateral view of endocarp 
showing the germination pores (yellow arrows). (B,E): Top view of endocarp showing the five 

Figure 3. Characteristics of endocarps of Choerospondias tiantaiensis under a VHX-1000 super-depth-
of-field microscope ((A–C), JHU3-16-059; (D–F), JHU3-231). (A,D): Lateral view of endocarp showing
the germination pores (yellow arrows). (B,E): Top view of endocarp showing the five germination
pores (yellow arrows). (C,F): Base view of endocarp showing the five apertures in a whorl (yellow
arrows). (A,D), scale bar = 2 mm. (B,C,E,F), scale bar = 1 mm.
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Figure 4. Characteristics of endocarps of Choerospondias tiantaiensis under micro-CT. ((A–J), JHU3-16-
059) (A,F): micro-CT volume renderings. (B–E,G–J): micro-CT orthoslices of endocarp showing the
internal structures. s = septa; ca = central axis; L1 = lacunae; L2 = locules; GP = germination pore.
(B–E): Transverse sections of fossil endocarp from the top to the base, showing the arrangement of
locules (yellow-dotted lines) and lacunae through the long axis of the endocarp. (G–J): Longitudinal
sections of fossil endocarp showing the arrangement of locules (yellow-dotted lines) and germination
pores. (A–E), scale bar = 2 mm; (G–J), scale bar = 3.5 mm.

Diagnosis: The endocarps were ovoid to oval with obscure ridges on their surface and
some irregularly arranged pits. Five germination pores were observed distributed radially
near the top. Five pits radially situated around the subacute base of the outer endocarp
were also observed. The endocarp wall was composed of irregularly arranged fibers and
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smaller oval-shaped isodiametric sclereids. A clear boundary existed between the nexine
and endothecium of the endocarp.

Description:
External features of endocarps—The endocarps were black, woody, slightly com-

pressed, ovoid to oval in shape, 16.4–20 mm long, and 9.8–11.7 mm wide, with length–
width ratios ca. 1.7. Five inconspicuous ridges were arranged longitudinally along the
longitudinal axis of the outer surface of the endocarp. A large number of pits were loosely
arranged on both sides of each ridge. There were five germination pores in each endocarp,
which were arranged radially near the top. Each pore corresponded to a locule. A corre-
sponding number of inconspicuous longitudinal ridge arrangements were observed on the
surface of the endocarp. The shapes of the germination pores were obovate to elliptical
with a diameter of 3.6–4.7 mm (Figure 3).

Internal features of endocarps—The endocarps were oblong when viewed in the
transversal sections and were possibly compressed during diagenesis. There were five
locules radially arranged inside. All locules in each fruit fossil collected in this research
were well-developed. In the transversal sections, the five locules had ovoid to elliptical
shapes and were 1.6–2.1 mm long and 1.1–2.0 mm wide (Figure 4B–E). In the longitudinal
sections, the endocarps had a long oval shape, 4.5–7.8 mm long and 1.5–2.7 mm wide
(Figure 4G–J). Five septa were arranged radially on the medial axis with round to long
teardrop shapes (probably due to compression). The locules were distributed on both sides
of the septa. Five irregular pores were observed in a radial arrangement in the cross section
near the bottom (Figure 4B–E).

Anatomical features of endocarps—The endocarp wall was composed of irregularly
arranged fibers and smaller oval-shaped isodiametric sclereids (Figure 5A–C). Abundant
and obvious dark filler was observed in the space between the germination pore and
the locules. The dark inner nexine of the endocarp was arranged tightly and irregularly.
However, the arrangement of fibers in the endothecium of the endocarp was loose and
lighter in color. Thus, a clear boundary between the nexine and endothecium of the
endocarp was easily observed (Figure 5D).
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Figure 5. Internal structure and anatomical details of the Choerospondias tiantaiensis sp. nov. fossil
endocarp ((A–E), JHU3-16-059). (A): Fibers and sclereids of the endocarp wall, scale bar = 0.1 mm.
(B): Details of sclereids, scale bar = 0.1 mm. (C): Fibers structure in the septum, scale bar = 0.1 mm.
(D): Irregular arrangement of fibers outside the endocarp and closely arranged sclereids inside
the endocarp in transmitted light. Scale bar = 0.1 mm; oe, outer endocarp; ie, inner endocarp.
(E): Longitudinal section showing the overall structure of the endocarp, locules, and germination
pore (Gp). Scale bar = 5 mm.
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Comparison:
Choerospondias fruit is a drupe type, which is oval or obovate–oval. Its outer layer is

woody. The germination pores are arranged radially on the top of the inner layer. Each
locule in the germination pore contains a single seed [1,34]. The endocarp fossils in this
study possessed the distinct characteristics of Choerospondias mentioned above. Thus, it
was uncontroversial to classify the present fossil endocarps as Choerospondias.

Choerospondias fossils have been reported from the early Eocene to the Pleistocene
strata [3–6,8,12,13,37,38]. The differences between those fossil species are reflected in their
size, number of germination pores, and internal anatomical characteristics. The sizes of
the present fossil endocarps were 16.4–20 mm × 9.8–11.7 mm, while those of the early
Eocene C. sheppeyensis fossils from England and middle Miocene C. turovensis fossils from
Poland were 12–13 mm × 11–12.5 mm [3,4,37] and 9.5–12 mm × 5–9 mm [6], respectively.
It was shown that the two Choerospondias fossils from Europe were significantly smaller
than the Zhejiang fossils. Among the Asian Choerospondias fossil endocarps, the Pliocene
C. sp. cf. C. axillaris [38] endocarp fossil from Japan was large (45 mm × 23 mm), almost
twice as large as the Zhejiang fossil. Because of the difference in size, the possibility of
identifying the fossil as C. sp. cf. C. axillaris was also ruled out. Additionally, all three
Choerospondias fossils mentioned above lacked the anatomical characteristic of the endocarp,
which prevented further micromorphological comparison.

The size of the Choerospondias fujianensis fossils from middle Miocene Fujian was
15.7–21.4 mm × 15.7–20.5 mm, larger than that of the Zhejiang fossils (16.4–20 mm × 9.8–
11.7 mm) [13]. Moreover, C. fujianensis appeared to have seven pores, while the Zhejiang
fossils only had five pores. Furthermore, the boundary between the inner and outer
layers of the C. fujianensis endocarp was indistinct, different from clear boundary of the
Zhejiang fossils. The size of the late Oligocene C. nanningensis fossils from Guangxi was
slightly larger (15–21 mm × 13–17 mm) than that of the Zhejiang fossils [12]. However,
the boundary between the inner and outer layers of the C. nanningensis endocarp was also
blurred, again different from that of the Zhejiang fossils. Therefore, the Zhejiang fossils
considered in this research could not be classified as any known fossil species.

The endocarp of Zhejiang fossils is similar to that of extant Choerospondias axillaris in
sunken bilabial germination structure, the number of germination pores, and the corre-
sponding pits at the base of the endocarps. Symmetrically distributed internal lacunae and
locules of Zhejiang fossils, along with other anatomical features, were consistent with those
of the extant Choerospondias endocarp (Table 1). For external morphology, the endocarp
fossils from Zhejiang (16.4–20 mm × 9.8–11.7 mm) were smaller than the extant endocarp
(21–25 mm × 14–17 mm). The difference in size between the fossilized and extant endocarp
may have been due to compression and dehydration during fossilization. However, due to
the absence of other organs, such as flowers, as well as the remote gap between the late
Miocene and today (approximately 13–6 Ma), we treated the fossil endocarps as a new
species, C. tiantaiensis.

Order: Sapindales Juss. ex Bercht. et J. Presl.
Family: Anacardiaceae R. Br.
Subfamily: Spondiadoideae Kunth ex Arn.
Genus: Choerospondias Burtt et Hill.
Species: Choerospondias mioaxillaris Liang Xiao et Zeling Wu sp. nov.
Etymology: The epithet refers to the Miocene Choerospondias axillaris, indicating that

the present fossil leaf resembles the extant Choerospondias in morphology.
Holotype: DLC-14-100A (Figure 6C).
Paratype: GT-14-629 (Figure 6A), GT-14-468 (Figure 6B).
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Figure 6. Leaf architecture of the extant and fossil Choerospondias ((A), GT-14-629; (B), GT-14-468; 
(C), DLC-14-100A). (A–C): Fossil Choerospondias. (D): Extant Choerospondias. (E): Leaf margin of fossil 
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Sketch of the extant Choerospondias. Scale bar = 1 cm. 

Figure 6. Leaf architecture of the extant and fossil Choerospondias ((A), GT-14-629; (B), GT-14-468; (C),
DLC-14-100A). (A–C): Fossil Choerospondias. (D): Extant Choerospondias. (E): Leaf margin of fossil
Choerospondias. (F): Leaf margin of the extant Choerospondias. (G): Sketch of fossil Choerospondias. (H):
Sketch of the extant Choerospondias. Scale bar = 1 cm.

Locality: Jiahu Village, Tiantai County, Zhejiang Province, China (29◦09′ N, 121◦14′ E,
Figure 2).

Stratigraphy: The Shengxian Formation.
Age: Late Miocene.
Repository: Geological Museum of Chang’an University, Chang’an University, Xi’an,

China.
Diagnosis: Leaves ovate to ovate-lanceolate, apex shape long and acuminate, base

shape convex slightly. The leaf margin was entire. Primary venation pinnate, Secondaries
brochidodromous. Secondary angles to midvein 40–60◦. Intersecondary vein present. The
basal veins of the intersecondary veins parallel to the secondary veins. Epidermal cells
were irregular and polygonal in shape, anticlinal walls undulated shallowly. Trichome
multicellular. Stomata cyclocytic.

Description:
Leaf architecture—The leaves were ovate to ovate-lanceolate, 5–8.5 cm long, and

2–3.6 cm wide. The leaf margin was entire. The leaf base was slightly convex, with an
angle of approximately 100–119◦, and no petiole was preserved. The leaf apex was long
and acuminate and the angle was about 53◦. The venation was brochidodromous. The sec-
ondary veins—pinnately arranged, 10 pairs—were found to rise from the primary vein at an
angle of approximately 40–60◦, gradually becoming thinner near the leaf margin, with the
basal veins of the intersecondary veins parallel to the secondary veins (Figure 6A–C,E,G).

Leaf cuticle characteristics—The upper epidermal cells were irregular and polygonal,
varying from quadrilateral to hexagonal. The anticlinal walls were shallowly undulated.



Biology 2022, 11, 1399 9 of 18

The lower epidermal cells were also irregular and polygonal. The stomatal apparatus was
15–35 µm long and 10–30 µm wide, cyclocytic and randomly distributed. The trichome
bases were multicellular (Figure 7).

Table 1. Comparisons of Zhejiang Choerospondias endocarps with extant and other fossil species.

Species Endocarp
Shape

Length
(mm)

Width
(mm)

Outer
Surface of

the
Endocarp

Number of
Locules Per

Fruit
Locality Age Source

C. axillaris Obovoid 21–25 14–17
Longitudinal

ridges and
small pits

Predominantly
5,

occasionally
3, 4, or 6

– Modern [34]

C. sheppeyensis Obovoid 12–13 11–12.5 Longitudinal
rows of pits 5 Sheppey,

England Early Eocene [3,4,37]

C. turovensis Elongate
obovoid 9.5–12 5–9 Longitudinal

rows of pits 5 or 6 Turow, Poland Middle
Miocene [6]

C. fujianensis Obovoid to
ovoid 15.7–21.4 15.7–20.5

Longitudinal
grooves and
scattered pits

5 or 7 Fujian, China Middle
Miocene [13]

C. nanningensis Obovoid 15–21 13–17
Obscure

ridges and
few pits

Predominantly
5,

occasionally
3, 4, or 6

Nanning,
China Late Oligocene [12]

C. axillaris
(Roxb.) Obovoid 21–25 14–18

Pits arranged
over the

entire
surface

5 Honshu, Japan;
Kyushu, Japan

Late Miocene/
Pleistocene [8]

C. sp. cf.
C. axillaris Ovoid 45 23 no

description 5 Honshu, Japan Pliocene [38]

C. tiantaiensis sp.
nov. Obovoid 16.4–20 9.8–11.7

Scattered,
obvious pits;
prominent

bottom

5 Zhejiang,
China late Miocene (This

study)

Comparison:
Here, fossilized Choerospondias leaves were compared to their living equivalents for the

first time. The fossils investigated in the current study resemble the extant Choerospondias in
size as well as in leaf shape, basal and apical morphology, and especially vein architecture.
For the extant Choerospondias leaves, the angle between the secondary veins and the midrib
was approximately 50–60◦, which enlarged from the apex to the base. The tertiary veins
were unbranched and almost perpendicular to the secondary veins. On the other hand,
the secondary veins of the Zhejiang leaf fossils possessed a relatively uniform angle that
intersected the midrib at 40–60◦. After a detailed comparison, it was concluded that the
difference in leaf architecture between the fossil and extant Choerospondias leaves was small.

In this research, we further obtained the cuticular microstructure of fossilized Cho-
erospondias leaves. The stomatal apparatus was found to be cyclocytic. A few multicellular
trichome bases were observed on the epidermis, distributed mainly on the leaf veins. These
identified features are consistent with those of extant Choerospondias leaves, as described
by Zheng et al. [2]. In addition, other epidermal characteristics, including cell shape, anti-
clinal walls, and venation cell shape, were also similar between the fossilized and living
Choerospondias leaves (Table 2). However, due to the remote gap between the late Miocene
and today, we treated the fossil leaves as a new species, Choerospondias mioaxillaris sp. nov.
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epidermal of fossil Choerospondias. (E): Lower epidermal stomatal apparatus of the extant 
Choerospondias. (F): Lower epidermal stomatal apparatus of fossil Choerospondias. (G): Extant 
Choerospondias trichome base. (H): Fossil Choerospondias trichome base. (A,B): Scale bar = 0.1 mm; 
(C–H): scale bar = 0.05 mm. 

  

Figure 7. Epidermal characteristics of the extant and fossil Choerospondias ((B,D,F,H), GT-14-629).
(A): Epidermal cells in the upper epidermis of the extant Choerospondias. (B): Epidermal cells in the
upper epidermis of fossil Choerospondias. (C): Lower epidermal of extant Choerospondias. (D): Lower
epidermal of fossil Choerospondias. (E): Lower epidermal stomatal apparatus of the extant Choerospondias.
(F): Lower epidermal stomatal apparatus of fossil Choerospondias. (G): Extant Choerospondias trichome
base. (H): Fossil Choerospondias trichome base. (A,B): Scale bar = 0.1 mm; (C–H): scale bar = 0.05 mm.
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Table 2. Comparison of leaf architecture and cuticular features of fossil and extant Choerospondias.

Type Fossil Choerospondias Extant Choerospondias

Leaf morphological
characteristics

Leaf shape

Ovate to ovate-lanceolate, long
acuminate apex, slightly convex base,
broadly cuneate, asymmetrical at the
basal insertion, petiole not preserved,

leaf base angle about 100~119◦

Ovate, ovate-lanceolate, long
acuminate apex, broadly cuneate or

subrounded base

Leaf size 5–8.5 cm long, 2–3.6 cm wide 4–12 cm long, 2–4.5 cm wide

Leaf edge Untoothed margin Untoothed margin or serrate in young
plants

Venation of leaves

Lateral veins arranged pinnately,
10 pairs, opposite or alternate; leaf

apices at an angle of about 53◦; simple
brochidodromous, lateral veins at a

more uniform angle with midrib, about
40–60◦

Lateral veins pinnately arranged,
Simple brochidodromous, 8~12 lateral
veins on each side, lateral veins with

midrib angle about 50–60◦

Epidermal
characteristics

Upper epidermis

Irregularly polygonal epidermal cells,
varying from quadrilateral to

hexagonal; shallowly undulated
anticlinal wall

Polygonal epidermal cells; anticlinal
walls slightly curved, with a few

stomatal apparatuses

Lower epidermis

Irregularly polygonal epidermal cells
with shallowly undulated anticlinal

walls, a trichome base, and
multicellular roots

Polygonal epidermal cells with
trichome bases, multicellular trichome
roots, and radially arranged cells at the

base of the trichome

Stomatal apparatus
Cyclocytic stomatal apparatus, about
15–35 µm long and 10–30 µm wide;

stomatal apparatus stellate distribution

The transition between anomocytic and
cyclocytic, about 35–65 µm long and

24–50 µm wide

Although the leaf specimens and co-occurring endocarps were collected from the
same layer of the same site in Tiantai and seem to belong to the same species, they were not
directly linked together. For the sake of caution, we did not assign the two fruit fossils and
the three leaf fossils to the same species. Overall, the morphologies of both the endocarps
and leaves of late Miocene Choerospondias in eastern Zhejiang were more similar to their
living relatives. This implies that the present fossil species of Choerospondias may be the
ancestor of extant C. axillaris.

4. Discussion
4.1. Paleogeographic History of Choerospondias

The reviewed fossil records of Choerospondias are restricted to East Asia and
Europe [3–6,8,12,13,37,38]. To date, the most ancient Choerospondias plants were reported
in Western Europe from the early Eocene [5]. Since the late Oligocene, Choerospondias has
spread to East Asia [12]. During the Miocene, this genus existed in Eastern Europe and East
Asia. However, Choerospondias has been confined to East Asia since the Pliocene (Figure 1;
Table 1). Based on these fossil records, it could be supposed that Choerospondias plants
may originate from Europe in the early Eocene, whereafter they spread to Asia before the
late Oligocene. During the Paleogene and Neogene, there were two possible pathways
for Choerospondias plants to spread from Europe to Asia. One was the northern route at
middle-to-high latitudes, which stretched across the Turgai region, north of the Tibetan
Plateau [39–41]. The other was the southern route, which crossed along the southern border
of the Tibetan Plateau via the coast and the island chains of the Tethys and Paratethys
oceans [42–46].

The Turgai region was flooded by the epicontinental Turgai sea during most of the
Palaeogene and fell dry at the end of the Oligocene. Henceforth, the Turgai region became
an important pathway for biological migration between Europe and Asia [39]. However,
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with the closure of the Turgai Strait, Central Asia became increasingly cool and dry follow-
ing the late Paleogene [47–51]. During the early Oligocene, the flora in the Turgai region
was of the temperate forest type [52,53]. By the late Oligocene, forest-steppe flora was
established in this region [54–58]. Taken together, the above paleoclimatic and paleofloral
reports and reconstructions indicate that a temperate climate was predominant in the
Turgai region during the late Oligocene into the middle Neogene. However, Choerospondias
fossils from many regions in Central Europe and Asia during this period were reported
to show fully humid tropical to warm temperate character [13]. The climatic preferences
of extant and fossil Choerospondias point toward a migration route with warm and humid
conditions. Thus, the northern route was not suitable for the spread of Choerospondias.

Compared with the Turgai region, the Tethys ocean lay at lower latitude and had
warmer and wetter climate, which allowed for tropical and subtropical plants to live along
the coast [39,46,59], by providing natural conditions for the survival and migration of tropi-
cal and subtropical plant taxa on the Eurasian continent. Under the influence of the collision
between the Eurasian and African/Indian plates, the Tethys and Paratethys oceans had
been gradually closing since the Eocene [60]. Simultaneously, with the formation of Antarc-
tic glaciers in the late Eocene, the sea level decreased by approximately 50–60 m, leading
to the formation of a larger land area in the Tethys and Paratethys ocean regions [60,61].
Ultimately, these two factors expanded the territory available for the biological spread on
the continent of Eurasia [62–64]. In addition, many large adjacent islands and peninsulas
(e.g., Anatolia) existed in the Tethys and Paratethys oceans, which would also have pro-
vided possible pathways for biotic migration across narrow straits [18,42,49,65,66]. For
example, Bowerbank [67] reported that Nipa fossils, i.e., a tropical palm, spread to Southeast
Asia along the Tethys Ocean from Britain across Eurasia [3,68–70]. The earliest fossil of
C. nanningensis from East Asia was reported in late Oligocene Nanning, Guangxi [12],
indicating that the Choerospondias plant may have first migrated from Europe to Southern
Asia along the southern route before the late Oligocene. However, after the middle Miocene,
Choerospondias fossils disappeared in Europe due to continuous global cooling during the
late Cenozoic. Consequently, the Choerospondias population may have been unable to adapt
to climatic change, finally leading to extinction in Europe [6,71].

The distribution of Choerospondias fossils in East Asia is concentrated in southeastern
China and southern Japan. The late Oligocene C. nanningensis in Nanning, Guangxi is
currently the earliest fossil record in East Asia with the lowest latitudinal distribution.
According to all the fossil records of this genus in China, the latitudinal distribution of
Choerospondias is getting higher over geological time (Figure 8). It was speculated that
Choerospondias plants in China showed a trend of gradually northward spread from low
to high latitudes, which could be related to the paleoclimatic fluctuation in East Asia.
During the Miocene, global temperatures were higher relative to the present [72,73], and
the monsoonal circulation system had formed [74–77], causing a warm and humid climate
in eastern China [51,78]. This provided favorable climatic conditions for Choerospondias
populations to live in southeastern China.
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The distribution position of the fossils in the current study is consistent with the
northern boundary of the distribution of living Choerospondias plants in eastern China,
suggesting that the distribution pattern of this genus in China formed no late than the late
Miocene, possibly due to cold and dry conditions after the late Miocene (ca. 8 Ma) [42,79].
The climatic change prevented the genus from spreading to higher latitudes. In contrast,
the beneficial topography and climate in South and East China provided a relatively stable
refuge, which contributed to the survival of the Choerospondias taxon in the cold climate of
the Quaternary ice age [12,13,66,80].

The earliest fossil record of Choerospondias in Japan is C. axillaris from the late Miocene
Osaka, southern Japan. The same Choerospondias plants have been found in the area until
today [8,38]. The latitudinal distribution of C. axillaris was the highest in Japanese fossils
until now, adjacent to the northern boundary of the living Choerospondias distribution in
Japan (Figure 8), which indicates that the distribution pattern of Choerospondias in Japan was
roughly formed since the late Miocene. This may have been due to southern Japan’s specific
topography and oceanic climate, which helped Choerospondias live in a cold climate during
the Quaternary ice age in Japan, and then survive until now. The distribution pattern
of Choerospondias in Japan was similar to that in China, suggesting that phytogeographic
change was consistent in eastern Asia after the Miocene.

The fossil records of Choerospondias, however, are not sufficient. It is still difficult
to accurately infer its geographic origin and detailed dispersal process over geological
time. Thus, more fossil records are necessary to resolve the phytogeographic question of
Choerospondias.
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4.2. Paleoclimatic Implications of the Current Choerospondias Fossils

Extant Choerospondias axillaris is a deciduous tree that mainly grows in subtropical and
tropical mountain forests with an elevation of 300–2000m, constituting minor components
of subtropical to tropical evergreen forests in China [13,81–83]. Ye et al. [84] suggested that
low temperature was a primary environmental factor influencing the distribution of the
Choerospondias plant, followed by frost. Warm and humid climates are more favorable for
the growth of Choerospondias [85]. Based on the living environments of extant Choerospondias,
semiquantitative climatic parameters in the late Miocene eastern Zhejiang were obtained
using the method of climate analysis of endemic species (CAES) [86,87], including the mean
annual temperature (MAT) 5.7–24.7 ◦C, mean annual precipitation (MAP) 669–2435 mm,
mean temperature of the warmest month (MTWM) 14.2–29.9 ◦C, and mean temperature of
the coldest month (MTCM) −4.1–19.8 ◦C. To obtain more accurate MAT and MAP values,
Ye et al. [84] used the MaxEnt model to reconstruct the two climatic values based on the
distribution area of living Choerospondias plants, the MAT of 12.3 to 25.5 ◦C and the MAP of
950 to 2700 mm, respectively. The paleoclimatic parameters were further compared with
the data reconstructed in previous studies.

Many plant fossils from the Shengxian Formation in eastern Zhejiang have been
identified, and their modern equivalents are mostly distributed in tropical or subtropi-
cal humid zones [24,25,88]. The MAT and MAP values in late Miocene eastern Zhejiang
have been quantitatively reconstructed based on these plant fossils in previous studies
(Table 3). Li [89] used the coexistence approach to reconstruct MAT as 16.3–20 ◦C and
MAP as 1160.9–1653.5 mm based on plant macrofossils. Ding [90] used the Climate–Leaf
Multivariate Analysis Program (CLAMP-ASIA1) to reconstruct MAT as 15.89 ◦C based on
plant macrofossils. In this article, MAT and MAP were also reconstructed as 14.1–18.5 ◦C
and 825.9–1470.2 mm, respectively, by overlapping distribution analysis. Yang [88] also
reconstructed the MAT of 17.0–18.5 ◦C and the MAP of 979–1722 mm using the coexistence
approach based on the Sporopollen fossils. Hua [91] reconstructed MAT as 23 ◦C based
on the cell aspect ratio method for Chinese fir fossils, which was higher than that of other
botanical methods. Recently, a geochemical method was established by Herbert et al. [92],
who used the alkenone unsaturation method to reconstruct MAT as 21–28 ◦C based on
marine fossil algae. This value is conspicuously higher than the MAT values reconstructed
from other methods (Table 3). In the above paleoclimatic data, MAT is a common value. In
addition, temperature is the primary factor for controlling the distribution of Choerospon-
dias [85]. Thus, we only compared the MAT values reconstructed by different methods. Due
to the lack of a statistical framework for the coexistence approach, this method is highly
vulnerable to the vagaries of statistical outliers and exotic elements [93–95]. However, in
this study, we only drew a comparison between different MAT values. It was found that
the covered range of climatic parameters obtained herein was larger than that of previous
paleoclimatic values based on botanical methods. This is possible because only one species
of Choerospondias was used for the paleoclimatic reconstruction, resulting in lower accuracy.
Overall, the current MAT values were similar to those obtained by other methods. However,
the MAT reconstructed by the alkenone unsaturation method was relatively high. This
may be due to the differences between land and marine plant materials. For the MAP, the
values reconstructed by different methods were also generally analogical, although the
current MAP values covered a larger range. Finally, the MAT and MAP in late Miocene
eastern Zhejiang were also compared to current climatic data from the same region. It
was concluded that the late Miocene climate in eastern Zhejiang was similar to or warmer
and more humid than the modern climate, which is consistent with the views of previous
studies [88–90].
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Table 3. Late Miocene climatic values reconstructed by different methods and nowadays values in
Tiantai region, eastern Zhejiang.

Approach MAT/◦C MAP/mm Source

Coexistence approach 16.3–20 1160.9–1653.5 [89]
Palynoflora coexistence

approach 17.0–18.5 979–1722 [88]

Overlapping distribution
analysis 14.5–18.0 825.9–1470.2 [90]

CLAMP method 15.89 - [90]
Cell aspect ratio method 23 - [91]
Alkenone unsaturation

method 21–28 - [92]

Climatic factors for extant
Choerospondias (CAES) 5.7–24.7 (12.3–25.5 *) 669–2435 (950–2700 *) [87]

Nowaday climate of Tiantai 16.7 1391.5 [90]
* The values obtained by Ye et al. using the MaxEnt model [84].
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