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Simple Summary: In this study, we conducted a quantitative assessment and compared the COVID-19
pandemic spread in two countries based on selected methods from the graph theory domain. The
results indicate that while the applied experimental procedures are useful, we could draw limited
conclusions about the dynamic nature of infection diffusion. We discussed the possible reasons for
the above and used them to formulate research hypotheses that could serve the scientific community
in future research efforts.

Abstract: Coronavirus disease 2019 (COVID-19) was first discovered in China; within several months,
it spread worldwide and became a pandemic. Although the virus has spread throughout the globe, its
effects have differed. The pandemic diffusion network dynamics (PDND) approach was proposed to
better understand the spreading behavior of COVID-19 in the US and Japan. We used daily confirmed
cases of COVID-19 from 5 January 2020 to 31 July 2021, for all states (prefectures) of the US and Japan.
By applying the pandemic diffusion network dynamics (PDND) approach to COVID-19 time series
data, we developed diffusion graphs for the US and Japan. In these graphs, nodes represent states
and prefectures (regions), and edges represent connections between regions based on the synchrony
of COVID-19 time series data. To compare the pandemic spreading dynamics in the US and Japan, we
used graph theory metrics, which targeted the characterization of COVID-19 bedhavior that could not
be explained through linear methods. These metrics included path length, global and local efficiency,
clustering coefficient, assortativity, modularity, network density, and degree centrality. Application
of the proposed approach resulted in the discovery of mostly minor differences between analyzed
countries. In light of these findings, we focused on analyzing the reasons and defining research
hypotheses that, upon addressing, could shed more light on the complex phenomena of COVID-19
virus spread and the proposed PDND methodology.

Keywords: COVID-19 pandemic; graph theory; pandemic diffusion; network density

1. Introduction

China officially reported the first case of a new coronavirus disease, COVID-19, on
8 December 2019 [1]. As China failed to control the outbreak, the virus responsible for this
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disease, SARS-CoV-2, spread to many countries and was declared a global pandemic [2,3].
The US and Japan are among the countries affected by the SARS-CoV-2 virus.

The US reported its first confirmed case of COVID-19 on 20 January 2020 [4]. By
the end of January, the number of confirmed cases increased to six; consequently, the
US government restricted travel from China and declared a public health emergency [5].
By the end of February, the number of confirmed COVID-19 cases had grown to 60; on
13 March, the case number climbed above 2100, and the US administration declared a
national emergency due to the COVID-19 outbreak [5].

From January 2020 to July 2021, the US faced three waves of SARS-CoV-2 infections.
The first wave was from 20 March to 10 June 2020, with 2,104,956 confirmed cases and
118,464 deaths; the second wave was from 10 June to 16 September 2020, with 4,889,694 con-
firmed cases and 84,521 deaths; and the third wave was from 16 September 2020 to 20 June
2021, with 27,300,183 confirmed cases and 414,833 deaths [6].

To address the pandemic, the US federal and state governments focused on four key
measures: (1) investing in research to accelerate the production of vaccines, diagnostics, and
treatments; (2) improving access to diagnostics and treatment; (3) improving health system
delivery to rapidly respond to the COVID-19 outbreak; and (4) increasing the availability of
data to improve surveillance [7]. However, the US was not successful in implementing all
key measures, which have been only partially addressed. The US was successful in mainly
increasing funding for scientific research, developing vaccines, and changing regulations
regarding telemedicine; however, the US is falling behind in developing unified policies
among all states [7].

Japan reported its first confirmed case of SARS-CoV-2 infection on 16 January 2020 [8].
By the end of February 2020, several confirmed cases had been identified; consequently,
the Japanese government closed all schools [9]. The number of COVID-19 cases increased
considerably by mid-March, and the government declared a state of emergency on 16 April
2020 [8,10].

From January 2020 to July 2021, Japan faced four waves of SARS-CoV-2 infections.
The first wave was 26 January to 31 May 2020, with 16,582 confirmed cases and 898 deaths;
the second wave was June 1 to July 31 2020, with 19,120 confirmed cases and 114 deaths;
the third wave was 10 October 2020 to 6 March 2021, with 349,344 confirmed cases and
6612 deaths; and the fourth wave was 6 March to 25 June 2021, with 353,227 confirmed
cases and 6395 deaths [11].

At first, Japan appeared vulnerable to the COVID-19 pandemic for several reasons,
such as (1) the proximity of Japan to China and the high travel volumes between the
two countries; (2) heavy population density and high volumes of commuters in large cities;
and (3) a high percentage of older people in the population [12]. However, the Japanese
government was able to reduce the number of COVID-19 cases and control the spread
of the pandemic [13]. The government developed and implemented a comprehensive
COVID-19 response, which included (1) decreasing the number of travelers and returnees
from key affected areas; (2) increasing testing and medical capacity; (3) framing the Basic
Countermeasure Policy, according to suggestions from an expert committee; (4) providing a
stronger legal basis for countermeasure policies; and (5) improving economic recovery [12].

Based on the number of confirmed COVID-19 cases, Japan appears to have been more
successful than the US in controlling the pandemic. The main objective of this study was
to investigate the pandemic diffusion in the two countries. Herein, a time series analysis
of confirmed COVID-19 cases was performed to improve understanding of the spreading
dynamics of the pandemic in the two countries.

One way to better understand the spreading dynamics of the pandemic is by gen-
erating COVID-19 diffusion graphs and using graph theory metrics to analyze them. In
this paper, we proposed a methodology called the pandemic diffusion network dynamics
(PDND) approach to build diffusion graphs of the COVID-19 pandemic in the US and
Japan. These diffusion graphs were developed by analyzing synchronized fluctuations
of COVID-19 time series data among different regions. We then applied a graph theory



Biology 2022, 11,125

30f15

analysis to better understand the spreading behavior of COVID-19 in the US and Japan. In a
previous paper, we showed that graph neural networks—based on synchrony of COVID-19
time series data—can improve the accuracy of predicting COVID-19 dynamics [1]. In this
paper, we focused on developing COVID-19 diffusion networks based on synchronized
fluctuations and analyzing the networks by means of the graph-theoretical approach.

2. Diffusion of Infectious Diseases

The spread of an infectious disease normally follows one of the following patterns:
(1) contagious spreading, i.e., moving wave-like from the original center to other centers,
(2) hierarchical spreading, i.e., moving progressively from large to small centers, and
(3) spreading with both contagious and hierarchical components [14,15]. The locations over
which spreading occurs can be treated as a graph containing nodes (regions) with links
(diffusion process) between them [14]. The spreading patterns in different locations are
frequently observed to fluctuate synchronously [16]. These synchronized fluctuations can
be measured by different statistics and often indicate connectivity between locations [17].

Various researchers have studied the transmission of diseases by means of graph the-
ory. Reference [18] used US influenza-related mortality data to investigate the between-state
progression of the influenza pandemic. The research indicated higher pairwise synchrony
between populous states through a correlation analysis between locations. Reference [16]
focused on the spatial structure of influenza transmission from June 1918 to April 1919 in
England and Wales. The study used statistical methods (lag and correlation analysis) to
better understand the spatial and temporal characteristics of the pandemic. Reference [19]
investigated the spatiotemporal pattern of dengue hemorrhagic fever incidence by collect-
ing a time series dataset containing 850,000 dengue hemorrhagic fever infections, from 1983
to 1997, in 72 provinces in Thailand. The study used cross-correlation functions to provide
metrics of the spatial dependency of temporal correlation among time series. In [20], the re-
searchers attempted to determine how influenza spread in space in one cycle of an epidemic.
The researchers investigated the spatiotemporal dynamics of influenza and concluded the
importance of diffusion over long distances due to global transportation systems.

The assessment of COVID-19 diffusion in our study was addressed in a state compari-
son setup. This pointed us to a broader network comparison problem—tackling inexact
graph matching. Searching for accurate and effective tools to compare networks pushed the
research in many different directions, and led to a wide variety of methods and algorithms.
Our study explores if the comparison of two networks and the respective phenomena of
COVID-19 diffusion can be quantitatively assessed by means of the pandemic diffusion
network dynamics (PDND) approach.

3. The Pandemic Network Dynamics Approach

The PDND approach involves investigating the statistical interdependence between
COVID-19 time series data. Correlation and coherence analyses are among the most
commonly used methods to examine interdependency [21,22]. In the former, a correlation
can be calculated between interconnected geographical entities by using their recorded
synchronous time series. In the latter, the correlation concepts are applied in the frequency
domain [23]. The result of applying the PDND approach to COVID-19 time series data is a
diffusion graph, indicating the spread of the pandemic among regions.

4. Methods and Procedures

The following steps were used to develop the diffusion graphs based on the PDND
approach:

Step 1. Defining the nodes of the graph. For the US graph, 54 nodes represented
US states plus New York City, the District of Columbia, Puerto Rico, and Guam; for the
Japan graph, 47 nodes represented prefectures.

Step 2. Collecting the time series COVID-19 datasets. To build two COVID-19 diffusion
graphs for the US and Japan, we used the number of daily confirmed cases of COVID-19
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from 5 January 2020 to 31 July 2021. For the US, we used daily records for all states plus
other territories in the US from the Centers for Disease Control and Prevention [6]. For
Japan, we used data for all prefectures from the Japan Ministry of Health, Labour, and
Welfare [11].

Step 3. Defining the edges of the network. The edges represent connections between
nodes. In the COVID-19 dataset, edges indicated a connection between two locations in
terms of synchrony of their COVID-19 dynamics. Network edges can be classified as binary
or weighted, and can show the directionality among regions (directed or undirected) [24].
We assumed that all geographical entities were connected with each other.

Step 4. Selecting a method to discover synchronized location. A statistical method,
correlation analysis, was used to identify if there was a strong relationship between the
COVID-19 time series datasets of different geographical entities. Following numerous other
studies [21], we adopted a lag of 0 between the analyzed time series.

Step 5. Forming the connectivity matrix. Computed connectivity between nodes can
be used to create a connectivity matrix, which is also known as an adjacency matrix. In this
matrix, nodes are represented by rows (i), and columns (j) and edges are represented by
matrix entries (aij), as presented in Figures 1 and 2.
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Figure 1. The US COVID-19 adjacency matrix. The green color represents a strong correlation
between the time series of the regions, the yellow color represents moderate correlation, and the red
color represents a weak correlation. The correlation of each region, with itself, is considered zero.

Step 6. Forming a binary matrix. The adjacency matrix can be used to create an
unweighted unidirectional matrix, called the binary matrix. To develop this matrix, a
threshold value must be selected. The value of the edge between two nodes was modified
to 1 if the value of the correlation between nodes in the connectivity matrix exceeded the
threshold, otherwise the value was set to 0. In our study, the threshold value of 0.7 was
selected to simplify the network and remove weak and insignificant edges from the matrix.
The resulting binary matrices are demonstrated in Figures 3 and 4.
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Figure 2. Japan COVID-19 adjacency matrix. The green color represents a strong correlation between

the time series of the regions, the yellow color represents moderate correlation, and the red color

represents a weak correlation. The correlation of each region, with itself, is considered zero.
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Figure 3. The US COVID-19 binary matrix. The green color represents a strong correlation between
the different regions. All strong correlations are represented by 1.
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Figure 4. Japan COVID-19 binary matrix. The green color represents a strong correlation between the
Step 7. Constructing the final diffusion graphs.

different regions. All strong correlations are represented by 1.

Once the PDND graphs are created, it is possible to compute and analyze their topolog-
ical properties. Global (graph) and local (nodal) graph theory metrics can be used to achieve

this. In our study, we selected the clustering coefficient (CC), characteristic path length (PL),
local efficiency (Elocal), network density, global efficiency (Eglobal), modularity (Q), and

assortativity (r)

the nodal measures included degree centrality (K), nodal centrality [24].

7

First, brief descriptions regarding the adopted network measures are provided in Table 1,

along with detailed definitions.

Table 1. Network measures.

Description

Metrics

Average of the shortest path lengths over all nodes

Path length (PL)

Existing edges/all possible connected edges

Clustering coefficient (CC)

The efficiency of information transformation among all pairs of

nodes, which is inverse of the average characteristic path lengths

between all nodes in the network

Global efficiency (Eglobal)

Efficiency of all pairs of nodes

Local efficiency (Elocal)

Network density

Density of a network

Tendency of a node to connect to other nodes with similar numbers

of edges

Assortativity (r)

Combination of nodes that are more connected to one another than

the rest of the network

Modularity (Q)

Number of edges connected to one node

Degree centrality (K)

Path length (PL). The average shortest path length was defined as the average number of

steps along the shortest paths for all possible pairs of network nodes [25]. This metric indicates
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the efficiency of information transport in a developed network. The average shortest path
length of a graph can be calculated with the following equation:

1
o= i e »

In this formula, d (v;, vj) indicates the length of the shortest path between two nodes.
To calculate the average shortest path in a graph, the sum of the shortest paths between all
nodes is divided by the number of all possible paths.

Global efficiency (Eglobal). Eglobal, the inverse of PL, is another metric used to
quantify COVID-19 spread in a network.

Clustering coefficient (CC). The clustering coefficient is used to better understand
the function—structure of the network and is associated with the number of triangles in
a network [26]. The clustering coefficient of a graph can be calculated with the follow-
ing equation:

numbero ftrianglesconnectednodei

Ci = ()

numbero ftriplescenteredaroundnodei

In this formula, a set of two edges connected to node i is called a triple center around
node i. For the whole graph, the CC is the average of the local values C;.

Network density. Network density is another metric used to evaluate the effectiveness
of a network. This metric is the actual number of connections in the network divided by its
maximum capacity [24].

Assortativity (r). Assortativity is used to determine whether high-degree nodes are
primarily connected to low-degree nodes or whether nodes with the same magnitude of
degree tend to connect to each other [27].

Modularity (Q). The modularity metric measures the structure of a network on the
basis of the statistical arrangement of nodes [28]. The modularity can have values from
—1 to 1, and a value close to zero indicates that the community (modularity) division
is not better than that expected at random, whereas a value close to 1 or —1 indicates
a strong community structure. The modularity of a graph can be calculated with the
following equation:

Q= é(eii - 1112) 3)

where ¢;; is the number of edges that have both ends in community i, k is the number of
communities, and g; is the number of edges with one end in community 7 [28].

Local efficiency (Elocal). Efficiency in graph theory describes networks from the
perspective of information flow [29]. The local efficiency of a graph is measured as follows:

1
Ejoc(G) = " Z Eglob(Gi) 4)
i€eG

where Eg5(G;) is the Eglobal of only node i’s immediate neighbors, but not node i itself [29].

Degree centrality. Nodal centrality quantifies the importance of a node in a network
and can be measured by various metrics, such as nodal efficiency, degree centrality, close-
ness centrality, and betweenness centrality [29]. Among these metrics, degree centrality
is one of the most commonly used and is defined by the number of edges of a node. The
greater the number of edges, the more central the node.

Apart from the discussed network measures, we also conducted a 0-1 test for chaos
to verify the chaotic properties of both US and Japan PDND networks. The test was first
proposed by Gottwald et al. [30,31] and later improved by Gottwald et al. [32]. The test
results closer to 0 indicate a lack of chaos, while close to 1 indicates the presence of chaotic
system properties [32,33]. The whole analysis was carried out in the Python programming
language on a single computing machine.
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5. Results

Most of the metric values computed in the course of the conducted graph theory
analysis for both COVID-19 PDND networks are shown in Table 2.

Table 2. Values of graph theory metrics obtained for both analyzed PDND networks.

Metrics us Japan
Path Length 1.46 1.37
Clustering coefficient 0.72 0.74
Global efficiency 0.68 0.73
Local efficiency 0.83 0.84
Network density 0.249 0.253
Assortativity 0.0055 0.019
Modularity 0.32 0.0077
0-1 test for chaos 0.183 0.269

Tables 3 and 4 and Figures 5 and 6 demonstrate degree centrality for each state and
prefecture for the US and Japan, respectively.

Table 3. Degree centrality of states in the US.

Node ID State Degree Centrality
1 Alabama 18
2 Alaska 18
3 Arizona 17
4 Arkansas 14
5 California 22
6 Colorado 20
7 Connecticut 1
8 Delaware 14
9 District Of Columbia 8
10 Florida 0
11 Georgia 18
12 Guam 0
13 Hawaii 0
14 Idaho 21
15 Mlinois 22
16 Indiana 29
17 Towa 14
18 Kansas 0
19 Kentucky 31
20 Louisiana 0
21 Maine 9
22 Maryland 24
23 Massachusetts 20
24 Michigan 0




Biology 2022, 11,125

9of 15

Table 3. Cont.

Node ID State Degree Centrality
25 Minnesota 15
26 Mississippi 13
27 Missouri 0
28 Montana 15
29 Nebraska 17
30 Nevada 25
31 New Hampshire 20
32 New Jersey 0
33 New Mexico 22
34 New York 14
35 New York City 0
36 North Carolina 19
37 North Dakota 8
38 Ohio 27
39 Oklahoma 10
40 Oregon 22
41 Pennsylvania 29
42 Puerto Rico 0
43 Rhode Island
44 South Carolina 13
45 South Dakota 14
46 Tennessee 20
47 Texas 12
48 Utah 26
49 Vermont 5
50 Virginia 21
51 Washington 8
52 West Virginia 29
53 Wisconsin 14
54 Wyoming 15

Table 4. Degree centrality of prefectures in Japan.

Node ID Prefectures Degree Centrality
1 Tokyo 10
2 Saitama 11
3 Chiba 7
4 Kanagawa 8
5 Osaka 17
6 Kyoto 30
7 Hyogo 20
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Table 4. Cont.

Node ID Prefectures Degree Centrality
8 Aichi 24
9 Fukuoka 28

10 Hokkaido 11
11 Miyagi 1
12 Hiroshima 13
13 Tochigi 10
14 Gifu 20
15 Gunma 27
16 Shizuoka 16
17 Nara 18
18 Wakayama 10
19 Ibaraki 14
20 Aomori 0
21 Iwate 0
22 Akita 0
23 Yamagata 1
24 Fukushima 20
25 Niigata 17
26 Nagano 16
27 Toyama 0
28 Ishikawa

29 Fukui 0
30 Yamanashi 0
31 Mie 23
32 Shiga 25
33 Okayama 21
34 Tottori 0
35 Shimane

36 Yamaguchi 12
37 Tokushima 5
38 Kagawa 18
39 Ehime 6
40 Kochi 0
41 Saga 21
42 Nagasaki 17
43 Kumamoto 19
44 Oita 18
45 Miyazaki 9
46 Kagoshima 14
47 Okinawa 0
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Figure 5. Schematic representation of the COVID-19 pandemic diffusion graph for Kentucky. Nodes
(states) are represented in color and the virus-spreading pattern in Kentucky is indicated with lines.

1 Fukuoka

e . Hokkaido
> i Miyag,
\ . - H’(oshr’n')

Figure 6. Schematic representation of the COVID-19 pandemic diffusion graph for Kyoto. Nodes
(prefectures) are represented in color and the virus-spreading pattern in Kyoto is indicated with lines.

6. Discussion

The underlying processes of the pandemic are complex, and understanding them
requires analyzing the available COVID-19 data on a global scale. The COVID-19 pandemic
diffusion can be considered a nonlinear process that originated in China and spread
worldwide [34,35]. Therefore, to identify the main patterns of COVID-19 behaviors, the
nonlinearity of COVID-19 data must be taken into account. To discover the insights and
implications hidden in COVID-19 data, the applied methods should be adaptive to the
underlying nature of the data [35]. To our knowledge, this is the first study to apply
synchronized connectivity to analyze the behavior of the COVID-19 pandemic.
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In this study, we developed COVID-19 diffusion networks (graphs) by adopting the
PDND approach, and analyzed the graphs properties, including path length, global and
local efficiency, clustering coefficient, assortativity, modularity, network density, hubs, and
degree centrality.

The path length metric shows the efficiency of information transport in a developed
network. A low PL indicates greater integration among geographical regions and the ease
of information flow [25]. In the COVID-19 network, the path length represents the diffusion
integration of states or prefectures and ease of virus spreading. The average path length for
the US COVID-19 network was 1.46, and that for Japan was 1.37. Based on these values,
the COVID-19 pandemic spread slightly more easily between prefectures in Japan than
between states in the US. A similar observation can be drawn from the global efficiency
values of 0.68 for the US and 0.73 for Japan.

The clustering coefficient (CC) is another metric for measuring the ease of information
transport in a network, especially on a local scale (states or prefectures) [26]. In general,
a higher CC value indicates faster flow of information in the network. As the discussed
metric value was 0.72 and 0.74 for the US and Japan, respectively, we conclude that the
differences were marginal and do not allow us to draw strong conclusions regarding the
speed of virus spread on a local scale.

Similar observations can be drawn based on the computed network density parameter.
For the US COVID-19 network, the network density was 0.249, and for Japan 0.253.

Assortativity can be used to determine whether high-degree nodes are primarily con-
nected to low-degree nodes [27]. To calculate assortativity, we used the method described
in [30]. The assortativity for the US COVID-19 network was 0.0055, and that for Japan was
0.019. A higher assortativity indicates the preference of a node in a network to connect to
others that are similar. Based on the obtained assortativity values, and thorough discussions
and demonstrations of networks characterized by various assortativity values available
in [36], we conclude that the nature of virus flow in Japan might be slightly more focused
on the high-degree hub nodes (prefectures) when compared to the US. However, we note
that 0.019 cannot be considered a high assortativity value for the discussed networks.

The modularity metric represents the structure of a network based on the arrangement
of the nodes [28]. This metric can have values from —1 to 1, where a value close to 1 or
—1 indicates a strong community structure and a value close to 0 indicates a weak and
random community structure. The modularity for the US COVID-19 networks was 0.32,
and that for Japan was 0.0077. We observe that the analyzed US PDND network was more
structured and more module-based than that in Japan.

The Elocal measures the ability of a network to spread COVID-19 at the local level [29].
A higher Elocal value indicates superior integration and faster transfer of COVID-19
spreading at the local scale. The Elocal for the US COVID-19 networks was 0.83, and that
for Japan was 0.84. This outcome does not allow drawing any strong conclusions regarding
the analyzed PDND networks.

Degree centrality is defined by the number of edges of a node; the greater the number
of edges, the more central the node. In the COVID-19 PDND networks, for Japan, the
regional node with the highest degree centrality was Kyoto, and for the US was Kentucky,
as represented in Tables 3 and 4.

Following our previous publication [32], in the case of the (here studied) PDND
networks, we evaluated chaotic behavior in the US and Japan using the 0-1 test for chaos.
The results were 0.183 and 0.269 for the US and Japan, respectively. From the tangible
difference of this metric, we conclude that the spreading of the virus was more chaotic in
Japan than in the US. However, in both countries, the absolute value of the test does not
allow classifying the pandemic behavior as chaotic.

Based on each adopted measure, it is possible to formulate a general observation
that the discovered differences between the analyzed PDND networks were vague and
prohibited the formulation of strong conclusions. We believe that such results may be
caused by several factors that should be explored in future studies: (1) the proposed graph
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metrics could not account for subtle differences between networks. In our study, we focused
on traditional graph metrics. In contrast, recent progress in the field of graph theory offers a
plethora of other metrics and node and graph representation techniques, such as graph node
embeddings with Deep Walk [37] or whole graph embeddings [38], as possible examples.
(2) The adopted threshold value of 0.7 used for simplification of the adjacency matrix might
have caused excessive loss of important information. To verify this hypothesis, a separate
search for an optimal threshold value should be carried out. (3) The analysis period was
too broad for an approach with a single network representation. The analyzed time series
represents almost 18 months and covers several waves of the COVID-19 pandemic. It is
possible that virus diffusion patterns evolved over the analyzed time and differed between
the waves, for example, in the case of the influenza epidemic studied in [16]. Moreover, as
other studies addressing the COVID-19 pandemic distinguished and focused on its various
phases [39-41], this may indicate that analyzing the whole pandemic in a single procedure
may cause bias. If so, the adopted calculation of a single correlation coefficient value
between states and prefectures in a too-long period could result in a hindered information
extraction process. (4) Influence of lag on the analysis. In our study, a lag of 0 was adopted,
as in numerous studies focusing on COVID-19 spread [42,43]. However, it is possible that
adopting other lag values will shed more light on the virus spread phenomenon.

7. Limitations of the Study

Certain limitations should be acknowledged regarding this study. First, we only
focused on two countries: the US and Japan. Investigations of other countries in different
parts of the world could produce different results. Second, although we used a correlation
analysis to understand connectivity and develop COVID-19 networks, other methods, such
as coherence analysis, should also be considered. Finally, the analyzed COVID-19 confirmed
case dataset was subject to COVID-19 testing bias, in that the number of confirmed cases
was the function of the number of tests conducted in different US states and prefectures
in Japan.

8. Conclusions

This study adopted the pandemic diffusion network dynamics (PDND) approach
to develop COVID-19 diffusion networks for the US and Japan. A graph-theoretical
approach was used to understand the behavior of the pandemic in these two countries. The
quantitative comparison and assessment of two networks and corresponding COVID-19
diffusion phenomena showed modest benefits of employing the proposed PDND approach.
In most cases, the differences between countries measured utilizing adopted graph metrics
did not lead to strong conclusions regarding the virus diffusion. Given such findings,
we formulated several research hypotheses to be analyzed in future studies, which could
determine the utility of the proposed PDND approach regarding the COVID-19 pandemic
spread. We hope that other researchers will follow our direction and participate in the
opportunity of examining the described methodology.
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