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Simple Summary: RNAi-mediated knockdown of intersex in the newly emerged Nilaparvata lugens
leads to abnormal expansion of the copulatory bursa by infection filled with bacteria. RNA-seq anal-
ysis shows a significant enrichment of immune defense genes responsive to bacteria in differentially
expressed genes (DEGs). Moreover, inhibition of intersex expression by dsRNA treatment results
in changes in the richness index of symbiotic microorganisms in copulatory bursa, fat body, and
midgut of the planthopper. Specifically, significant changes are observed in the microbial community
composition of the copulatory bursa. These findings reveal the function of intersex in maintaining
microbial homeostasis in this insect, thereby providing insight to improve the pest control strategies.

Abstract: Insects harbor a wide variety of symbiotic microorganisms that are capable of regulating
host health and promoting host adaptation to their environment and food sources. However, there is
little knowledge concerning the mechanisms that maintain the microbial community homeostasis
within insects. In this study, we found that the intersex (ix) gene played an essential role in maintaining
microbial homeostasis in the brown planthopper (BPH), Nilaparvata lugens. Injection of the double-
strand RNA targeting N. lugens ix (Nlix) into the newly emerged females resulted in abnormal
expansion of the copulatory bursa of BPH after mating. Further observation by transmission electron
microscopy (TEM) revealed that the abnormally enlarged copulatory bursa resulting from dsNlix
treatment was full of microorganisms, while in contrast, the copulatory bursa of dsGFP-treated
individuals stored a large number of sperm accompanied by a few bacteria. Moreover, RNA-seq
analysis showed that the gene responses to bacteria were remarkably enriched in differentially
expressed genes (DEGs). In addition, 16s rRNA sequencing indicated that, compared with control
samples, changes in the composition of microbes presented in dsNlix-treated copulatory bursa.
Together, our results revealed the immune functions of the Nlix gene in maintaining microbial
homeostasis and combating infection in BPH.

Keywords: copulation; immune deference; microbiome; Nilaparvata lugens; RNA interference

1. Introduction

Microorganisms, especially bacteria, are extensively distributed in the insect exoskele-
ton, gut, hemocoel, and even cells, which constitute an important part of insect body and
have general impacts on many aspects of insect biology. Previous studies have demon-
strated that certain resident microorganisms play vital roles in the biological process to
promote insect fitness. For example, they can regulate insect development and reproduc-
tion [1,2], provide specific nutrients including essential amino acids or B vitamins [3–6],
synthesize toxins or activate the insect immune system to protect their host insects against
pathogens, parasitoids and other natural enemies [7–10], produce detoxifying toxins and
resist against insecticides [11,12], and promote chemical communication among insects by
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specific components [13,14]. Furthermore, a variety and diversity of insect symbionts are
related to the developmental stage, internal organs and tissues, and external environment
factors. In Bactrocera dorsalis (Diptera: Tephritidae), the composition of microflora displays
conspicuous differences among different developmental stages including larvae, pupae,
and adults [15]. In Apis mellifera (Hymenoptera: Apidae), the age, caste, and seasonal
variations determine the structure of symbiotic bacteria in the host [16]. Additionally,
microbial components of Laodelphax striatellus (Hemiptera: Delphacidae) may be related
to the longitude at which the host is located [17]. In general, community dynamics of
endosymbiotic bacteria may facilitate insect adaptation.

To maintain host health, insects need to preserve the commensal microbial community
homeostasis by resisting invasion from infectious microorganisms. It has been indicated
that when infectious bacteria invade the intestine of Drosophila melanogaster (Diptera:
Drosophilidae), the duox gene expresses a large number of reactive oxygen species (ROS)
to combat pathogenic bacteria [18]. Inhibition of microbial infections by antimicrobial
peptides modulated by the immune deficiency pathways has also been demonstrated [19].
Moreover, it is demonstrated that peptidoglycan recognition protein (PGRP) is involved in
the innate immunity of D. melanogaster [20], and the maintenance of B. dorsalis microbiome
at different developmental stages may be related to PGRP-encoding genes [21].

The brown planthopper (BPH), Nilaparvata lugens (Hemiptera: Delphacidae), a typical
monophagous herbivore, is one of the most devastating rice pests in many Asian countries,
which has caused serious losses to rice production every year [22]. Recently, the interaction
between BPH and its symbionts has become the focus of attention in numerous researchers.
The yeast-like endosymbiont (YLS), a symbiotic fungus present in a huge abdominal fat
body cell [23], is capable of compensating BPH for amino acids that are lacking in the unbal-
anced nutrition diet sucking from the sap of the rice phloem [22,24,25]. Arsenophonus has
been shown to generate an instrumental role in the provision of B vitamins to BPHs [22,26].
Furthermore, recent studies have shown that the bacterial communities are diverse and
dynamic during BPH development [27], and microbial diversity differs between fat body
and ovary [28].

The intersex (ix) gene is well conserved in insects, nevertheless, it has a multiplicity of
functions in different species. For instance, it participates in sex differentiation, regulates
external genital development, and female fecundity [29–32]. In our previous studies,
we found that knocking out Nlix in nymphs led to the arrest of reproductive system
development and failure of molting in BPHs. Meanwhile, the RNAi experiments performed
on the newly emerged females led to abnormal enlargement of copulatory bursa, along
with reduced fecundity and hatching rates [29]. Based on the phenotype of copulatory
bursa after silencing Nlix, we hypothesized that the ix gene might be associated with the
maintenance of the microbial community homeostasis in BPH. In this study, we further
investigated the role of Nlix in microbial homeostasis at the time of copulation. Our results
illustrated that the Nlix gene likely participated in the immune defense response of BPH
to bacteria, and that RNAi-mediated knockdown of Nlix disrupted the immune system,
consequently leading to the abnormal enlargement of the copulatory bursa due to infection
in BPH.

2. Materials and Methods
2.1. Insect Rearing

In the field, BPH populations were originally obtained from rice crops in Hangzhou,
China, in 2008. Insects were maintained on rice seedlings (variety xiushui 134) in a work-in
chamber at Zhejiang University under the following conditions: 26 ± 1 ◦C, 60–70% relative
humidity, and a 16 h light: 8 h dark photoperiod.

2.2. Expression Validation by Real-Time Quantitative PCR (RT-qPCR)

Total RNA was extracted from BPH using RNAiso Plus (Takara, Kyoto, Japan), and
then 1 µg RNA was used to synthesize cDNA using the HiScript® II Q RT SuperMix
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(Vazyme, Nanjing, China) through reverse transcription according to the manufacturer’s
instructions. The target genes were quantified by RT-qPCR with an SYBR Color qPCR
Master Mix kit (Vazyme, Nanjing, China) using a 20 µL reaction system consisting of 10 µL
ChamQ SYBR Color qPCR Master Mix, 2 µL of 10-fold diluted cDNA, 0.6 µL of each primer,
and 6.8 µL RNA-free deionized water. Specific primers for RT-qPCR designed by Primer
Premier 6.0 software are listed in Table A1. The 18S rRNA gene of BPH (GenBank accession
number JN662398.1) was used as the internal reference for RT-qPCR. The expression of
target genes was validated by relative quantitative method (2−∆∆Ct). Each treatment was
conducted in triplicate.

2.3. RNA Interference

The double-stranded RNAs (dsRNAs) of target genes were synthesized by using
the T7 High Yield RNA Transcription Kit (Vazyme, Nanjing, China) from the amplified
sequence. Two unique regions of Nlix were used as a template to synthesize dsRNA. The
specific primers are presented in Table A1. dsGFP was utilized as control. Microinjection
of BPH with dsRNA was carried out according to a previously described method [33].
Briefly, 100 ng of dsRNA was injected into the mesothorax of newly emerged females
that had been anaesthetized with carbon dioxide for 10 s using a FemtoJet (Eppendorf-
Netheler-Hinz, Hamburg, Germany). One hundred newly emerged females were used for
dsRNA treatment and administered in three biological replicates. A set of 10 insects were
collected as an independent sample to evaluate the RNAi efficiency of Nlix at three days
after injection by RT-qPCR.

To determine the silencing effect of dsNlix on BPH survival, newly emerged females
were injected with dsRNA and reared on 10 cm high fresh rice seedlings for two days. Two
groups, including one group treated with dsNlix and the other one treated with dsGFP
were selected to mate with the wild-type males, while the other two groups did not mate.
Subsequently, all BPH individuals were reared for 6 days and survival rate of females
was determined. dsGFP was injected as control. Each treatment was carried out in three
biological replications.

2.4. Transmission Electron Microscope Analysis

We dissected the copulatory bursa from BPH females at three days after dsNlix and
dsGFP treatments for observation. In brief, newly emerged females were microinjected
with dsRNA and kept under normal growth conditions for 2 days, mated for 1 day, and
dissected to collect the copulatory bursa. Samples were prepared according to a previously
reported method [34], and sections of processed samples were observed under a Hitachi
Model H-7650 Transmission Electron Microscope (TEM).

2.5. Differential Expression Analysis Based on RNA-seq

Fifteen individuals, which were collected from the dsRNA-treated newly emerged
females at 3 days after injection, were homogenized for total RNA extraction. The dsGFP-
treated samples were used as control for nonspecific effects of dsRNA. Three sets of
biological replicates were involved in each treatment. The cDNA library preparation and
Illumina sequencing were performed by Novogene (Beijing, China). The clean reads were
aligned with the reference genome by using HISAT2 [35]. The low-quality alignments
were filtered with SAMtools [36]. TPM expression values were calculated by using feature
counts for genes [37]. The DESeq2 package was utilized to detect differential expression
analysis of the two groups [38]. The DEGs were selected upon the following thresholds:
false discovery rate (FDR) p < 0.05 and absolute value of the log2 ratio >1. The raw data
have been submitted to the National Center for Biotechnology Information Sequence Read
Archive database under the accession number PRJNA755751.
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2.6. Bacterial Community Characterization by Illumina Sequencing

The mated N. lugens female adults were selected for sample preparation at 3 days
after injection. The surface of individuals was washed with 75% alcohol for 90 s and
then rinsed thrice with sterile deionized water. Copulatory bursa, midgut, and fat body
were then dissected using the sterile forceps in pre-chilled phosphorylation buffer (pH 7.4;
140 mmol/L NaCl, 2.7 mmol/L KCl, 10 mmol/L Na2HPO4, 1.8 mmol/L KH2PO4) under a
dissecting microscope. Regarding 16S ribosomal RNA (rRNA) gene Illumina sequencing,
three samples of copulatory bursa, midgut, and fat body were dissected and isolated from
60 insects, each with three biological replicates. All samples were immediately snap-frozen
in liquid nitrogen and stored in a −80°C refrigerator until DNA extraction.

Total DNA of each specimen was extracted using the QIAamp DNA Mini Kit (Qia-
gen, Hilden, Germany) following the manufacturer’s protocols. The quantity and qual-
ity of the extracted DNA were assessed using a NanoDrop NC2000 spectrophotometer
(Thermo Fisher Scientific, Waltham, MA, USA) and agarose gel electrophoresis. The
full-length bacterial 16S rRNA gene was amplified via PCR with the primer pair 27F
(50-AGAGTTTGATCMTGGCTCAG-30) and 1492R (50-ACCTTGTTACGACTT-30). PCR
products were purified with Agencourt AMPure XP Beads (Beckman Coulter, Indianapolis,
IN) and quantified using the PicoGreen dsDNA Assay Kit (Invitrogen, Carlsbad, CA,
USA). Subsequently, amplicons from each sample were pooled at equal concentrations and
sent for sequencing using the Pacific Bioscience’s Sequel platform at Shanghai Personal
Biotechnology Co., Ltd., in Shanghai, China. The raw data could be found in the National
Center for Biotechnology Information Sequence Read Archive database under the accession
number PRJNA755801.

The QIIME2 software was employed to explore the sequencing data as previously
described. The amplicon sequence variants (ASVs) were de-replicated sequences gen-
erated after quality control using the DADA2 method, which were no longer clustered
in similarity [39]. The representative sequences for each ASV were classified into organ-
isms by a classify-sklearn algorithm using the Naïve Bayes classifier based on SILVA
Database (https://www.arb-silva.de/; 7 January 2021) [40]. Besides, the alpha diversity
indices were calculated, whereas the ASVs’ rarefaction and rank abundance curves were
plotted by using QIIME2. Beta diversity analysis was performed using the Bray–Curtis
distance index to confirm the structural variations in microbial communities of different
samples, which were visualized by Principal Coordinate Analysis (PCoA) [41].

2.7. Statistical Analysis

The data are expressed as the mean ± SEM as shown in figures. GraphPad Prism
8.2.1 was used for statistical analysis. Difference between two groups was compared by
using a two-tailed Student’s t-test (Figures 1B, 4A–F and 7E) and log-rank (Mantel–Cox)
test (Figure 1A). The significance level was set at * p < 0.05, ** p < 0.01, and *** p < 0.001.
The LEfSe method was used to analyze the differences in bacterial community composition
between samples based on the one-against-all comparison strategy and the Wilcoxon test
to determine biomarkers in different samples.

3. Results
3.1. Effects of Nlix Knockdown on the Survival and Copulatory Bursa Development of BPH
Female Adults

An investigation was carried out to evaluate whether the abnormal enlargement of
the copulatory bursa induced by dsNlix treatment affected BPH survival. The dsNlix
treatment resulted in a high mortality in comparison with dsGFP treatment. In particular,
compared with a survival rate of 74.0% for control groups, all the mated females died
within 192 h after dsNlix injection (x2 = 153.5, DF = 1, p < 0.001). Survival rate of unmated
females treated with dsNlix and dsGFP were 39.0% and 89.0%, respectively (x2 = 54.6,
DF = 1, p < 0.001). Interestingly, we found that the survival rate of dsNlix-treated females
dropped dramatically at 24 h after mating, while that of the unmated dsNlix-treated

https://www.arb-silva.de/
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females decreased slowly at 108 h after injection (Figure 1A,B) (t = 102.0, DF = 4, p < 0.001).
Furthermore, the size of copulatory bursa was not significantly different from control
sample 72 h after Nlix knockout, which became enlarged quickly after mating; however,
some of the unmated females had enlarged copulatory bursa at about 120 h after injection
(Figure 1C–G).
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3.2. Electron Microscopy Observations

As shown in Figure 2, the copulatory bursa of dsGFP-treated BPH was full of sperm,
accompanied by a small number of bacteria. In contrast, injection of dsRNA for Nlix in
the newly emerged females led to massive bacterial infections in the copulatory bursa,
thereby preventing sperm from entering or surviving in copulatory bursa. TEM observation
showed that the copulatory bursa might be abnormally enlarged due to bacterial infection
after dsNlix treatment, which in turn contributed to the death of BPHs.

3.3. Expression of Defense Response Genes Regulated by dsNlix Treatment

RNA-seq analysis was used to reveal genes potentially targeted by Nlix. A total
of 183 DEGs were identified using transcriptome sequencing, among which, 130 includ-
ing Nlix were significantly down-regulated and 53 were remarkably up-regulated after
knockdown of Nlix in the newly emerged female adults. Gene Ontology (GO) enrichment
analysis was performed to infer the biological processes of DEGs. It was found that the
DEGs were mostly implicated in cuticle development (GO:0042335), chitin-based cuticle
development (GO:0040003), and response to bacterium (GO:0009617) (Figure 3), confirm-
ing our assumption that the expression levels of immune defense response genes were
altered in BPHs after treatment with dsNlix. Results of qPCR assays demonstrated that
4 down-regulated genes and 1 up-regulated gene were associated with the response to
bacterium, including ubiquitin carboxyl-terminal hydrolase (scaffold.1090, t = 5.926, DF = 4,
p < 0.01), modular serine protease (Nl.chr05.0253, t = 11.06, DF = 4, p < 0.001) as well as
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genes involved in the melanin biosynthetic process from tyrosine (Nl.chr11.425, t = 24.69,
DF = 4, p < 0.001, and Nl.chr01.0531, t = 17.86, DF = 4, p < 0.001), and in the vitamin catabolic
processes (Nl.chr06.0989, t = 25.11, DF = 4, p < 0.001) as shown in Figure 4A.
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As demonstrated by the qRT-PCR results, the expression level of each gene under
RNAi treatment, in contrast to the control group, was significantly (p < 0.001) reduced
(Figure 4C–F). The results suggested that there were no prominent differences in copulatory
bursa between RNAi treatment and dsGFP treatment (Figure 5A–E). Nevertheless, knock-
down of each of the three genes, Nl.chr11.425, Nl.chr01.0531 or Nl.chr06.0989, by RNAi
resulted in hypoplastic ovaries, and less oocytes in the ovaries (Figure 5B–D). Moreover,
oviposition experiments showed that depletion of these three genes led to a significant
reduction in the fecundity of BPH females, as shown in Figure 4B.
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Figure 5. Phenotypes of ovary development after knockdown of 4 genes responsive to bacteria: (A–E) Ovaries dissected from
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3.4. Microbial Community Compositions in Copulatory Bursa, Fat Body, and Midgut

The Shannon rarefaction curves based on 16S sequencing results for all samples almost
reached the saturation plateau (Figure A1), indicating that the database produced from
our samples was sufficient to capture the majority of microbial community information.
At the phylum level, analysis confirmed that Proteobacteria and Firmicutes were the
major microbial components in copulatory bursa of N. lugens. In fat body and midgut,
Proteobacteria was the most predominant microbiota, which accounted for over 99% of
the total phyla as show in Figure 6A. Among the bacterial genera, Klebsiella, Lactococcus,
and Enterobacter were the major microbial members in copulatory bursa. Arsenophonus
was the most predominant genus detected in fat body and midgut as shown in Figure 6B.
Notable bacteria in the copulatory bursa were Klebsiella, Lactococcus, and Enterobacter, while
Arsenophonus was the maker of both fat body and midgut (linear discriminant analysis
(LDA) scores >4.5) as shown in Figure 6D. PCoA showed that microbiome in copulatory
bursa was clustered separately from fat body and midgut based on the first principal
component, in contrast, the samples from fat body and midgut tended to cluster together
as shown in Figure 6C, suggesting a separation of the samples from copulatory bursa and
the other two tissues/organs.
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3.5. The Nlix Gene Was Associated with Shifted Microbial Communities of BPH

The changes in microbiota were evaluated after the depletion of Nlix gene in adults
via dsRNA microinjection on the newly emerged females. We found that the expression
level of Nlix gene was reduced at 72 h after dsRNA treatment (Figure 1B).

The Shannon rarefaction curves almost approached the saturation plateau, as shown in
Figure A1, suggesting that the current sequencing database well represented the microbial
communities in each library. In copulatory bursa, sample analysis revealed that the species
of dominant microbial communities did not change, but the abundances of corresponding
communities changed dynamically after dsNlix treatment as shown in Figures 7A and A2.
Microbial groups with relative abundance exceeding 0.1% were selected for comparative
analysis to avoid significant bias. As shown in Figure 7E, dsNlix treatment increased the
relative abundances of candidatus saccharibacteria, Arsenophonus and, Ralstonia, but decreased
those of Enterococcus and Acinetobacter, compared with the dsGFP-treated samples. Besides,
LEfSe analysis was employed to explain the difference between groups. The results
showed that there were significant differences in the abundances of Ralstonia, candidatus
saccharibacteria, Enterococcus, and Acinetobacter between RNAi and control groups as shown
in Figure 7D. PCoA also revealed separation between dsNlix-treated and dsGFP-treated
groups. With regard to fat body and midgut, in contrast to copulatory bursa, there were no
significant differences in microbial structure which was observed between dsNlix-treated
and dsGFP-treated samples as shown in Figure 7A,B. Besides, the number of ASVs in
copulatory bursa, fat body, and midgut altered after dsNlix treatment compared with
dsGFP treatment; in other words, the microbial richness index changed as shown in
Figure 7C.



Biology 2021, 10, 875 10 of 15Biology 2021, 10, x FOR PEER REVIEW 11 of 16 
 

 

 
Figure 7. Microbial structural composition between dsGFP-treated group and dsNlix-treated group: (A) Relative abun-
dances of bacteria at the genus level in CB, FB, and MG of BPH in the dsNlix-treated and control groups. The 10 species 
with the highest relative abundances were displayed, and the relative abundances of the remaining species were combined 
and grouped into Others; (B) Comparison of bacterial communities in samples treated with dsRNA via Bray–Curtis prin-
cipal coordinate analysis; (C) Venn diagrams of the bacterial ASVs in CB, FB, and MG of BPH treated with dsRNA. The 
overlapping areas between blocks indicated the ASVs common to the corresponding groups, and the values in each block 
indicated the number of ASVs contained in the block; (D) LEfSe analysis based on ASV abundance in BC between dsGFP- 
and dsNlix-treated samples; (E) Comparative analysis of abundance in the genera of Acinetobacter, Enterococcus, candidate 
saccharibacteria, Arsenophous, and Ralstonia under different treatments. *, **, and *** indicate significant differences between 
dsGFP treatment and dsNlix treatment at p < 0.05, p < 0.01, and p < 0.001 levels, respectively. CB: copulatory bursa; FB: fat 
body; MG: midgut. 

4. Discussion 
Insects are colonized by a vast array of symbiotic microorganisms, which may be one 

of the key factors in the successful adaptation of insects to their environment and food 
source [42]. In our study, we characterized the microbial community compositions of cop-
ulatory bursa, fat body, and midgut in BPH. Our results revealed that the genus of Ar-
senophonus was the most abundant in fat body, consistent with previous studies [28]. Sim-
ultaneously, microbial composition of the copulatory bursa as a part of the ovary were 
slightly different from the results of previous ovarian studies [28]. These may be attributed 
to the different external environments in which the hosts live, which supports the previ-
ous conclusion that the environment can greatly shape the microbial community structure 
[16,43]. Additionally, the genus of Arsenophonus was the most abundant in both the fat 
body and midgut, which might be attributed to its function of providing B vitamins to the 
host [22,26]. 

In our present study, we found that the copulatory bursa of control BPH individuals 
was teeming with a large number of sperm and a few bacteria; by contrast, the abnormally 
enlarged copulatory bursa caused by dsNlix treatment was infected with a large variety 
of bacteria with no sperm, which was responsible for the dramatic reduction in the fecun-
dity of BPH in our previous study [29]. Concurrently, a low survival rate was observed 
after 192 h of dsRNA injection in the newly emerged female adults, indicating that the 
Nlix gene played an essential role in maintaining the normal biological activity of BPHs. 
Furthermore, the mated females exhibited a lower survival rate after dsNlix treatment 
than that of the unmated females, and the survival rate of females decreased sharply after 

Figure 7. Microbial structural composition between dsGFP-treated group and dsNlix-treated group: (A) Relative abundances
of bacteria at the genus level in CB, FB, and MG of BPH in the dsNlix-treated and control groups. The 10 species with
the highest relative abundances were displayed, and the relative abundances of the remaining species were combined
and grouped into Others; (B) Comparison of bacterial communities in samples treated with dsRNA via Bray–Curtis
principal coordinate analysis; (C) Venn diagrams of the bacterial ASVs in CB, FB, and MG of BPH treated with dsRNA. The
overlapping areas between blocks indicated the ASVs common to the corresponding groups, and the values in each block
indicated the number of ASVs contained in the block; (D) LEfSe analysis based on ASV abundance in BC between dsGFP-
and dsNlix-treated samples; (E) Comparative analysis of abundance in the genera of Acinetobacter, Enterococcus, candidate
saccharibacteria, Arsenophous, and Ralstonia under different treatments. *, **, and *** indicate significant differences between
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4. Discussion

Insects are colonized by a vast array of symbiotic microorganisms, which may be
one of the key factors in the successful adaptation of insects to their environment and
food source [42]. In our study, we characterized the microbial community compositions
of copulatory bursa, fat body, and midgut in BPH. Our results revealed that the genus of
Arsenophonus was the most abundant in fat body, consistent with previous studies [28].
Simultaneously, microbial composition of the copulatory bursa as a part of the ovary
were slightly different from the results of previous ovarian studies [28]. These may be
attributed to the different external environments in which the hosts live, which supports
the previous conclusion that the environment can greatly shape the microbial community
structure [16,43]. Additionally, the genus of Arsenophonus was the most abundant in both
the fat body and midgut, which might be attributed to its function of providing B vitamins
to the host [22,26].

In our present study, we found that the copulatory bursa of control BPH individuals
was teeming with a large number of sperm and a few bacteria; by contrast, the abnormally
enlarged copulatory bursa caused by dsNlix treatment was infected with a large variety of
bacteria with no sperm, which was responsible for the dramatic reduction in the fecundity
of BPH in our previous study [29]. Concurrently, a low survival rate was observed after
192 h of dsRNA injection in the newly emerged female adults, indicating that the Nlix gene
played an essential role in maintaining the normal biological activity of BPHs. Furthermore,
the mated females exhibited a lower survival rate after dsNlix treatment than that of the
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unmated females, and the survival rate of females decreased sharply after 24 h of mating.
This was probably owing to the fact that the mating behavior introduced bacteria that
were not originally present in the BPH, thus accelerating the pathogenic infection. A
study on the symbiotic community structure in the different developmental stages of BPH
also demonstrates the differences in microbial community composition between male and
female individuals [27]. These results prompted us to speculate that the Nlix gene was
engaged in the immune defense response of BPH against bacterial infestation, and that
the bacteria increased in copulatory bursa due to mating behavior may come from the
environment as well as from the male, as copulation opens the mating orifice and exposes
the male external genitalia to the external environment, making it easier for microorganisms
in the environment to invade copulatory bursa.

RNA sequencing technology has become a powerful tool to study transcriptome
profiling across a wide range of applications [44]. In our research, to investigate the
DEGs of Nlix, RNA-seq was used to profile the transcriptome of female adults after RNAi
treatment. Our results revealed that immune response genes that were responsive to
bacteria were significantly enriched in DEGs, suggesting that Nlix gene might be a part
of the immune defense network protecting BPH individuals from pathogenic bacteria.
Moreover, when dsRNA treatment, which targeted each of these four down-regulated
genes responsive to bacteria, was administered to BPH females in the newly emerged
stage, we did not observe a similar phenotype in the copulatory bursa after the knockout
of Nlix gene. However, a reduction in female fertility was observed after knockdown of
genes Nl.chr11.425, Nl.chr01.0531, and Nl.chr06.0989 by RNAi, revealing the complexity
and pleiotropy of the immune process in the organism. Additionally, most of the DEGs
were related to cuticle development, consistent with our previous observations that BPH
exhibited lethal phenotype that failed to shed the old cuticle, which resulted from the
depletion of Nlix [29].

Interestingly, results of 16S sequencing analysis showed the changes in microbial
community structure in BPHs after ix gene knockout compared with the natural status,
which might account for the abnormal enlargement observed in copulatory bursa after
Nlix knockdown. Previous studies have shown that some regulatory factors contribute to
the maintenance of the immune status in the host, which in turn regulates the composition
of the symbiotic community. In Drosophila, proper expression of duox gene allows the
host to achieve gut-microbe homeostasis by effectively removing pathogenic microbes,
while tolerating the commensal bacteria [18]. Two PGRP genes have been demonstrated
to be instrumental in regulating the community structure of Gram-negative and Gram-
positive bacteria in B. dorsalis [21]. Genes encoding AMPs in some insects are expressed at
the basal levels under conventional microbial loads and are systematically up-regulated
in response to pathogenic microbial infections [19,45]. In our study, we also identified
a similar immunomodulatory factor-Nlix gene; when its expression level was knocked
out, changes were observed in the abundances of symbiotic bacteria in copulatory bursa,
fat body, and midgut of BPH individuals. In particular, in the copulatory bursa, dsNlix
treatment led to an increase in its general richness index and changes in the abundances of
some microbial taxa. It revealed the importance of Nlix genes in combating infection to
preserve the microbial community homeostasis. Overall, the Nlix gene may be associated
with the immune response to microorganisms in N. lugens.

Extraordinary experimental efforts have been conducted to elucidate the role of Nlix
in biological processes of insects, such as growth and development, sex differentiation, and
reproduction [29–32]. The function of Nlix in regulating microbial community composition
was first discovered. However, the underlying mechanisms of the Nlix gene in the resistance
to infection and maintenance of endosymbiotic community homeostasis in BPH requires
further study.
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5. Conclusions

In summary, we performed RNAi experiment in newly emerged BPH, in which
dsNlix microinjection led to abnormal expansion of the copulatory bursa by infection filled
with bacteria, which resulted in a high mortality rate of females after mating. Analysis
of RNA-seq reveals a significant enrichment of immune defense genes responsive to
bacteria in DEGs. Moreover, changes in the richness index of symbiotic microorganisms
in the copulatory bursa, fat body and midgut of BPH were observed after inhibition of
Nlix expression. Notably, the microbial community composition of the copulatory bursa
was significantly altered. Consequently, these findings reveal the function of intersex in
maintaining endosymbiotic community homeostasis in this insect and thus provide insight
to improve the pest control strategies.
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Appendix A

Table A1. The main primers used in this study.

Primer Name Sequence (5’-3’) * Purpose

Nlix-RNAi-F-1 T7-TTCTGGATTGAACAGTGGCAAT Nlix-1 dsRNA synthesis
Nlix -RNAi-R-1 T7-CAATGTTTCTCTTAGTTGACCG
Nlix -RNAi-F-2 T7-AATAATTTGGTGGACGTTGG Nlix-2 dsRNA synthesis
Nlix -RNAi-R-2 T7-AGGGTTCTGAATGTTGTGTG

Nl.chr11.425-RNAi-F T7-CGAGTTCTTTCCCGATAAGT
TTGTGCATGTCTCCATACAA Nl.chr11.425 dsRNA synthesis

Nl.chr11.425-RNAi-R T7-TTGTGCATGTCTCCATACAA
Nl.chr06.0989-RNAi-F T7-CTGCCGGATATGTCATACAA Nl.chr06.0989 dsRNA synthesis
Nl.chr06.0989-RNAi-R T7-GACGAGACCAAGAGAGTTTT
Nl.chr01.0531-RNAi-F T7-CACGAACATCTCTAACCGAT Nl.chr01.0531 dsRNA synthesis
Nl.chr01.0531-RNAi-R T7-CCATTGAAGGGATAGACGAG
Nl.chr05.0253-RNAi-F T7-ACACAGCAGTTGATGGTAAT Nl.chr05.0253 dsRNA synthesis
Nl.chr05.0253-RNAi-R T7-GCTTTCCAAGGAAAAGCTAC

QNlix -F-1 GACAACCGAATATGCCAGGACAG RT-qPCR for Nlix-1
QNlix -R-1 AGTTGACCGACAAGAGATTTGACT
QNlix -F-2 ACTCTCAAAACAGCGGCCA RT-qPCR for Nlix-2
QNlix -R-2 TTCCTTGGTTCAGGCACTCC

QNl.chr11.425-RNAi-F TCGTTTTGGATCGAAGGGCA RT-qPCR for Nl.chr11.425
QNl.chr11.425-RNAi-R AACGGGTTCATGTTTTGGCG
QNl.chr06.0989-RNAi-F GTGGCACAATCCAATCACCG RT-qPCR for Nl.chr06.0989

https://www.mdpi.com/article/10.3390/biology10090875/s1
https://www.mdpi.com/article/10.3390/biology10090875/s1
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Table A1. Cont.

Primer Name Sequence (5’-3’) * Purpose

QNl.chr06.0989-RNAi-R TACCATCCGCACTGGAGTTG
QNl.chr01.0531-RNAi-F CACGAACATCTCTAACCGAT RT-qPCR for Nl.chr01.0531
QNl.chr01.0531-RNAi-R CCATTGAAGGGATAGACGAG
QNl.chr05.0253-RNAi-F CAGTCCAATGCTCCCCTGAG RT-qPCR for Nl.chr05.0253
QNl.chr05.0253-RNAi-R ACAACGAGCGGCTGTTAGAA
Qscaffold.1090-RNAi-R GACTGCAGTGAAAGACCCGA RT-qPCR for scaffold.1090
Qscaffold.1090-RNAi-R CGATCAACCAGGATGCCAGA

QNl18S-F CGCTACTACCGATTGAA RT-qPCR for 18s
QNl18S-R GGAAACCTTGTTACGACTT

* T7, 5′-TAATACGACTCACTATAGGGAGA-3′.
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