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Simple Summary: In this review, we provide information on the role of Vav proteins, a group of
signaling molecules that act as both Rho GTPase activators and adaptor molecules, in the cardio-
vascular system, skeletal muscle, and the nervous system. We also describe how these functions
impact in other physiological and pathological processes such as sympathoregulation, blood pressure
regulation, systemic metabolism, and metabolic syndrome.

Abstract: Vav proteins act as tyrosine phosphorylation-regulated guanosine nucleotide exchange
factors for Rho GTPases and as molecular scaffolds. In mammals, this family of signaling proteins is
composed of three members (Vav1, Vav2, Vav3) that work downstream of protein tyrosine kinases
in a wide variety of cellular processes. Recent work with genetically modified mouse models has
revealed that these proteins play key signaling roles in vascular smooth and skeletal muscle cells,
specific neuronal subtypes, and glia cells. These functions, in turn, ensure the proper regulation
of blood pressure levels, skeletal muscle mass, axonal wiring, and fiber myelination events as
well as systemic metabolic balance. The study of these mice has also led to the discovery of new
physiological interconnection among tissues that contribute to the ontogeny and progression of
different pathologies such as, for example, hypertension, cardiovascular disease, and metabolic
syndrome. Here, we provide an integrated view of all these new Vav family-dependent signaling
and physiological functions.

Keywords: vascular smooth muscle cells; skeletal muscle cells; neurons; glia; ventrolateral medulla;
nitric oxide; protein tyrosine kinases; cytoskeleton; signaling; receptor internalization; sympathetic
nervous system; blood pressure; vasoconstriction; vasodilation; hypertension; axon wiring; myelination;
metabolic syndrome; type II diabetes; obesity

1. Introduction

The Vav family is a group of signal transduction molecules that work as GDP/GTP
exchange factors (GEFs) for GTPases of the Rho subfamily and, in some other cases, as
adaptor-like molecules. This family is composed of single representatives in invertebrates
(generically designated as Vav proteins in each species) and three members in most ver-
tebrates (Vav1, Vav2, Vav3). However, depending on the phylogenetical stage, reduced
and increased numbers of Vav family proteins can be found in some species [1,2]. The
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first member of this family was discovered in Mariano Barbacid’s lab in 1989 due to the
spurious stimulation of its transforming activity during transfections of a human tumor
genomic DNA in NIH3T3 cells [3]. Given that this oncogene was the sixth one isolated in
that lab, it was named as the sixth letter of the Hebrew alphabet (Vav). The Vav2 and Vav3
proteins were identified from 1995 to 2000 [4–6]. The explosion of genomic data derived
from genome sequencing efforts subsequently led to the discovery of the rest of the Vav
family members present in both vertebrate and invertebrate species [1].

Mammalian Vav proteins harbor eight structural domains associated with regulatory
and/or effector proteins (Figure 1). These domains include calponin-homology (CH),
acidic (Ac), Dbl-homology (DH), pleckstrin-homology (PH), C1 subtype zinc finger (ZF),
noncanonical SH3 (NSH3), SH2, and canonical SH3 (CSH3) regions. The catalytic activity
of these proteins is mediated by the catalytic DH domain in a concerted action with the
PH and ZF regions, a rather unique feature of this protein family compared with the rest
of Rho GEFs [1,2,5,7–9]. However, Vav proteins can also activate additional downstream
pathways using catalysis-independent mechanisms. These adaptor functions are in many
cases Vav family member- and cell type-specific (Figure 1). For example, Vav1, but not
Vav2, can activate the nuclear factor of activated T cells using a CH-dependent mechanism
in T lymphocytes [10–12]. Likewise, Vav1 plays tumor suppressor roles in T cell acute
lymphoblastic leukemia using an adaptor mechanism mediated by its SH3 domains. This
function promotes the ubiquitin-mediated degradation of the active, intracellular fragment
of Notch 1 by forming complexes with the E3 ubiquitin ligase Cbl-b (Casitas B-lineage
lymphoma b) [13]. The SH3 regions of Vav proteins can bind to many other protein
partners, although their specific downstream role is not understood as yet. However, these
interactions suggest that Vav proteins might participate in additional scaffold-like functions
in cells.
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Figure 1. Depiction of the structure, the main regulatory phosphosites (using the amino acid sequence corresponding to
mouse Vav1), the intramolecular autoinhibitory interactions that take place in the nonphosphorylated state of Vav proteins
(top), and some of the main downstream pathways described for specific mammalian Vav family members (bottom).
NFAT, nuclear factor of activated T cells (a transcriptional factor involved in the proliferation and cytokine production of T
lymphocytes); ICN1, intracellular domain of Notch1. The rest of abbreviations are described in the main text.

Vav proteins require phosphorylation by upstream protein tyrosine kinases to become
activated [2]. This is due to inhibitory interactions established by the N-terminal (CH and
Ac region) and the C-terminal (CSH3 domain) regions with the catalytic core when the
proteins are in the nonphosphorylated state (Figure 1). These interactions, which occlude
the effector sites of these proteins, are eliminated upon the phosphorylation of Vav proteins
on specific tyrosine residues (Figure 1). This leads to the stimulation of the catalytic activity
and most adaptor functions upon the exposure of the effector sites [2]. The structural basis
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for the autoinhibition of Vav proteins by the CH-Ac has been clarified due to the resolution
of the crystal structure of a large N-terminal fragment of Vav1 [14]. The CSH3-mediated
intramolecular inhibition has been inferred using biochemical, signaling, and cell biology
experiments. However, it is worth noting that a model for the inhibitory action of the CSH3
has recently been identified for Vav2 and Vav3 using artificial intelligence approaches (see
the AlphaFold Protein Structure Database, entries at https://alphafold.ebi.ac.uk/entry/P5
2735 (accessed on 30 July 2021) and https://alphafold.ebi.ac.uk/entry/F1LWB1, accessed
on 30 July 2021). The regulation of Vav proteins by tyrosine phosphorylation is rather
unique in the Rho GEF family. Underscoring this issue, Vav proteins are the only Rho GEFs
that contain the phospho-tyrosine binding SH2 region. Recent data have revealed that
the signaling output of Vav proteins can be regulated by additional mechanisms such as
acetylation, binding to plasma membrane-resident phosphatidylinositol monophosphates,
and expression [1,2,15,16].

Accumulating evidence indicates that Vav proteins play critical roles in a wide range
of physiological and pathological processes. Some of these signaling functions have been
previously reviewed [1,2]. Detailed information on the phylogenetic origin of the Vav family
is also available from a previous publication [1]. Additional information on Vav functions
will be found in review articles that, together with the present one, form part of the Special
Issue on Vav proteins published by this journal. Here, we will specifically aim at providing
an update of what is known about the role of these proteins in cardiovascular biology,
skeletal muscle, and different branches of the nervous system. As a note of caution, we will
exclusively focus on signaling and physiological mechanisms that have been corroborated
using mouse models. As we will see, the study of Vav proteins in these functions has
allowed us to better understand both the regulation and roles of these proteins. In addition,
it has illuminated new layers of the ontogeny and progression of complex diseases such as
metabolic syndrome and hypertension.

2. Vav2, Vascular Smooth Muscle Cells, and Cardiovascular Regulation

The control of systemic blood pressure is ensured, among other physiological re-
sponses, by regulating the contractility of blood vessels in real time. A key signal for
this process is nitric oxide (NO) [17,18], a vascular endothelial cell-generated gas that
favors the reduction in blood pressure via the induction of the vasodilatation or resistance
arterioles. This process entails the disassembly of the F-actin cytoskeleton, of protein
nitrosylation events, and of other signaling regulatory steps in NO-stimulated vascular
smooth muscle cells (vSMCs) [17]. To induce the former response, NO promotes the
step-wise stimulation of soluble guanylate cyclase [17,19], production of cyclic guanosine
monophosphate (cGMP) [17,19], and the enzyme activity of the cGMP-dependent protein
kinase type I [17,19,20] (Figure 2, pathway in black color). The latter enzyme triggers
the phosphorylation of the RhoA GTPase that, in turn, causes the release of the GTPase
from the plasma membrane and its disassembly from the downstream serine/threonine
kinase Rock1 (Rho-associated coiled-coil-containing protein kinase 1) [21]. This leads to
the vasodilatation-mediated reduction in blood pressure because the inactivation of Rock1
abrogates stress fiber formation via the concerted down- and upregulation of the 20 kDa
myosin light chain (MLC20) and the MLC20 phosphatase (MLCP), respectively [22–24]
(Figure 2). This NO-regulated vasodilatation pathway is negatively regulated by phospho-
diesterase type 5 (PDE5), an enzyme that hydrolyzes cGMP [25] (Figure 2). The importance
of this route in normal physiology is demonstrated by the observation that the inactivation
of several signaling elements of this pathway using either genetic or pharmacological
avenues leads to the rapid development of a hypertensive state [20,26–30]. Conversely, the
use of PDE5 inhibitors (e.g., sildenafil, the active component of Viagra) restores most va-
sodilatation defects associated with hypertensive states and erectile dysfunction [25,31,32].
While this pathway had been known for a long time, the investigation of the cause of
the hypertension exhibited by Vav2-deficient mice [33] allowed for the discovery of a
new signaling branch that cooperates with the previously known pathway to favor the
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dilatation of resistance arterioles (Figure 2, pathway in red) [34]. This branch requires the
Src-dependent phosphorylation and activation of Vav2 upon the stimulation of vSMCs
with NO (Figure 2). Activated Vav2 leads, in turn, to the stimulation of Rac1, the Rac1-
mediated translocation of the serine/threonine kinase Pak (p21–activated kinase), and the
Pak1-mediated inactivation of PDE5 (Figure 2) [34]. This inhibitory step unexpectedly
relies on the physical interaction of Pak1 with the N-terminal domains of PDE5, rather
than on a transphosphorylation-dependent step. It is hypothesized that this inhibition step
involves a conformational change in the target protein [34], given that the PDE5 N-terminus
contains domains involved in both the homodimerization and the upstream regulation of
PDE5 enzymatic activity [35]. The inhibition of PDE5 by Vav2 therefore ensures high levels
of cGMP production in NO-stimulated vSMCs, thus favoring the sustained silencing of
the RhoA pathway, effective vasodilation, and reduction in blood pressure (Figure 2) [34].
Further genetic evidence has demonstrated that this pathway is intrinsic to vSMCs and is
dependent on the main Vav2 substrate, the GTPase Rac1 [36,37]. These results indicate that
Vav2 is a natural “Viagra”-like molecule that ensures proper NO-triggered vasodilatation
responses by limiting the enzyme activity of PDE5. Consistent with this idea, the develop-
ment of the hypertension and its associated cardiovascular comorbidities can be prevented
in Vav2–/– and vSMC-specific Rac1–/– mice using sildenafil treatments [34,36].
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Figure 2. Schematic representation of the Vav2–Rac1-dependent pathway promoting blood vessel vasodilatation (red color).
The previously known signaling elements of the NO signaling route in vSMCs are shown in black. The vasoconstriction
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in the main text.
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3. Vav2, Skeletal Muscle, and Metabolic Homeostasis

The analysis of the role of Vav2 in skeletal muscle and associated physiological
mechanisms has been made using second-generation Vav2L332A and Vav2Onc knock-in
mouse models. The former strain expresses a version of Vav2 with a point mutation in the
DH region (Leu332 to Ala) that reduces its catalytic activity by approximately 70% [38]. The
latter strain expresses an N-terminally truncated (residues 1 to 186) version of the protein
that showed catalytic hyperactivity due to the elimination of the inhibitory CH and Ac
regions (Figure 1) [36]. Thus, these two mouse models allowed us to address, for the first
time, the contribution of the deregulated catalytic activity of Vav2 to a specific biological
process. Using these models, we found that Vav2 signaling is critical for the control of
skeletal muscle mass due to its implication in the regulation of the optimal output from the
phosphatidylinositol 3 kinase α (PI3Kα)–Akt axis upon the stimulation of skeletal muscle
cells with either insulin or IGF1 (insulin growth factor 1) [39]. Consistent with this, it was
observed that homozygous Vav2L332A/L332A and Vav2Onc/Onc mice showed reduced and
increased muscle mass, respectively [39]. This is an intrinsic function of Vav2 in skeletal
muscle cells, since the signaling alterations can be recapitulated using both loss- and gain-
of-function approaches in cultured skeletal muscle cells [39]. The signaling dissection of
this pathway indicated that Vav2 contributes to the activation of the PI3Kα–Akt axis using
GTPase Rac1 as the main substrate [39].

The skeletal muscle is also responsible for ≈80% of the glucose uptake and clearance
induced by insulin at the whole body level [40,41]. It also regulates the physiological
status of other tissues involved in metabolic homeostasis such as the brown (BAT) and
white (WAT) adipose tissue through hormonal-mediated mechanisms [40,42,43]. As a
result, signaling dysfunctions in skeletal muscle cells can cause the development of type 2
diabetes and metabolic syndrome in both mice and humans [40,41]. It is not surprising,
therefore, that Vav2L332A/L332A mice also showed a progressive increase in adiposity in both
the BAT and WAT, which eventually caused the subsequent development of liver steatosis
and hyperglycemia [39]. These problems are accelerated, and further aggravated, when
these mice are maintained under high-fat diet conditions [39]. Conversely, Vav2Onc/Onc

animals exhibited resistance against the foregoing dysfunctions when subjected to a high-
fat diet [39]. These metabolic alterations are quite similar to those previously found in other
genetically modified mouse models that display either reduced (as in Vav2L332A mice) or
increased (as in Vav2Onc mice) skeletal muscle mass [44–50].

4. Vav2 and Neuronal Functions

Vav2 plays roles in signaling processes related to the internalization of transmembrane
receptors in the nervous system. The first example of these functions was given by Green-
berg’s group in 2005, when they discovered that Vav2 is important for the regulation of the
internalization of Eph family receptors in specific neuronal subtypes [51]. This function is
important for proper growth collapse and the correct establishment of axon projections
from retinal ganglion neurons to cells located in the dorsal geniculate nucleus [51].

Vav2 is also involved in the endocytosis of Ret–dopamine transporter complexes
present in neurons of the nucleus accumbens [52], a part of the mesolimbic pathway of
the brain that becomes stimulated during rewarding experiences and the intake of some
drugs [53]. In fact, the dopamine transporter is the molecular target for cocaine [53]. Loss
of Vav2 leads to the accumulation of the dopamine transporter in plasma membrane and
an increase in the intracellular levels of dopamine in mice [52]. This function is nucleus
accumbens-specific, since the lack of Vav2 does not affect the overall dopamine content
of other midbrain regions involved in the mesolimbic pathway. It is also Vav2-specific,
as Vav3–/– mice do not display any defects in dopamine levels in any of those midbrain
regions [52]. Interestingly, the effects of cocaine are severely reduced in the absence of
Vav2 [52]. This has been connected to reductions in the dopamine transporter Km and to
smaller amplitude of the elevation of dopamine levels in the nucleus accumbens in the
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presence of cocaine. In contrast, no overt changes in the mesolimbic pathway-associated
behaviors have been found under normal conditions in Vav2–/– mice [52].

5. Neuron-Associated Vav3 Functions in the Brainstem, Cerebellum, and Retina

Unlike the case of Vav2, the elimination of the Vav3 gene causes widespread physi-
ological alterations in mice due to severe problems in the regulation of the sympathetic
nervous system (SNS). This is due to the implication of Vav3 in the establishment of proper
inhibitory GABAergic wiring between the caudal (CVLM) and the rostral (RVLM) ven-
trolateral medullas that are located in the brainstem area [54] (Figure 3, point a). This
wiring is essential for proper sympatho-regulation, since the CVLM is in charge of feeding
tonic inhibitory signals to the RVLM and, at the same time, relay afferent signals from
peripheral baroreceptors [55–59]. These activities are required, for example, to ensure the
rapid restoration of normotensia upon sporadic changes in blood pressure. The CVLM
also contributes to reset the threshold for the activation of the baroreflex by RVLM cells,
an action that facilitates adaptative rises of blood pressure to new environmental, health,
or physiological conditions [55]. The migration of axons of GABAergic neurons located
in the CVLM toward their target neurons of the RVLM is impaired in the absence of Vav3
(Figure 3, point a) [54], leading to the unleashing of RVLM activity, the hyperactivation of
the SNS, and the development of SNS-dependent defects such as hypertension, tachypnea,
and hypercapnia (Figure 3, point a) [54,60]. All these dysfunctions can be prevented or re-
verted when treating the animals with β-adrenergic antagonists such as propranolol [54,60].
Interestingly, similar SNS-dependent dysfunctions are detected in mice lacking Ahr [61], a
transcriptional factor that regulates Vav3 expression [62].
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transmitted to the RVLM using the vagus nerve is shown in (b) (see Section 7). Further details are discussed in the main text.

The SNS hyperactivity is also the original cause of post-receptor insulin-like state
and the obesity-independent metabolic syndrome seen in chow diet-fed Vav3–/– mice
(Figure 4) [63]. Interestingly, this metabolic phenotype is highly dependent on the type
of diet because, unexpectedly, the Vav3-deficient animals do not develop the foregoing
alterations when maintained under a high-fat diet regimen (Figure 4) [63]. Even more
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unexpectedly, these mice are totally protected against obesity and the ensuing metabolic
syndrome condition that typically develops in mice under high-fat diets (Figure 4) [63].
Several physiological processes contribute to this paradoxical metabolic phenotype. On
one hand, the protection from obesity exhibited by these animals independently of the diet
used is the result of the presence of constitutive thermogenic programs in the BAT and the
WAT that are sustained through adrenergic signals conveyed by both β3 and α1 receptors
(Figure 4) [63]. On the other hand, the metabolic syndrome that develops in Vav3–/– mice is
caused by two separate, SNS-dependent inputs on the liver: (a) An extrinsic effect elicited
by peripheral tissues that promotes a post-receptor insulin state, de novo lipogenesis, and
liver steatosis in Vav3–/– mice, regardless of the type of diet used [63]; and (b) an intrinsic
effect on the liver itself that causes the upregulation of Pgc1α, a transcriptional cofactor
involved in the activation of gluconeogenic, fatty acid oxidation, and ketogenic routes
during fasting responses [63]. All these data indicate that the loss of Vav3 in the CVLM
causes a butterfly-like effect that leads to the progressive alteration of many SNS-dependent
physiological processes at the whole organismal level.
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Outside the VLM, the Vav3 gene deficiency causes a retardation in the developmental
steps of cerebellar Purkinje and granule cells. These defects lead to transient motor coordi-
nation and gaiting defects in very young Vav3–/– mice [64]. At the cell biology level, it has
been demonstrated that Vav3 regulates the branching of dendrites in both Purkinje and
granule cells in culture [64]. The cerebellar phenotype of Vav3-deficient animals is similar
to those found in animals lacking BDNF (brain-derived neurotrophic factor), NT3 (neu-
rotrophin 3), and calcyphosine 2 [65–67]. BDNF and NT3 are ligands for TrkB (tropomyosin
receptor kinase B) [68]. Calcyphosine 2 is an intracellular calcium-binding protein that
participates in the secretion of the foregoing neurotrophins and, thereby, for the local
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bioavailability of these ligands to the TrkB-expressing cells located in the cerebellum [67].
This phenotypic similarity suggests that some of the defects found in Vav3-deficient mice
could be related to the defective stimulation of the neurotrophin–TrkB signaling axis. In
agreement with this idea, Vav3–/– knockout mice displayed low levels of BDNF than the
controls within specific cerebellar areas during perinatal ages [64]. Given the transient
nature of the cerebellar phenotype observed in Vav3–/– mice, it is likely that other Rho GEF
could carry out functions analogous to Vav3 during this process concurrently or at later
postnatal ages. Obvious candidates include GEFs, whose elimination causes cerebellar
defects such as P-Rex family members, Trio, β-Pix, and Dock10 [69–73].

Finally, the genetic elimination of Vav3 enhances the differentiation of early neuronal
lineages such as ganglion and cone photoreceptor cells in the retina of mouse embryos.
This alteration, however, is corrected later on in postnatal stages [74]. It is likely that this
process is mediated by the regulation of Vav3 expression and, subsequently, the stimulation
by extracellular ligands for transmembrane tyrosine kinase receptors. Potential candidates
for this stimulation step include ligands for both the epidermal and fibroblast growth factor
receptors [74].

6. Vav3, Oligodendrocytes, and Myelination Processes

Similar to the case of retinal cells [74], the elimination of Vav3 accelerates the differen-
tiation of oligodendrocytes in mice [75]. The Vav3 gene deficiency also delays, although
it does not abrogate the myelination of fibers in both cortical and cerebellar areas [75].
This process seems to be Rho GTPase-dependent, although the upstream and downstream
mechanism involved still remain to be elucidated [75]. The physiological consequences of
these defects are also unknown.

7. Lessons Learnt from the Phenotypes of Vav Family Knock-Out and Knock-In Mice

Together with the identification of new Vav family-regulated signaling and physiolog-
ical processes, the study of the mouse models for the Vav family has unveiled new data on
the regulation of the Vav proteins themselves as well as on the biological programs they
participate in. In the former case, for example, we have learnt that the phosphorylation-
mediated activation of Vav proteins can be mediated not only by antigens and ligands
for specific tyrosine kinase receptors, but also by NO (Figure 2) [34]. Despite this, the
activation of Vav2 by this gas still requires the expected participation of protein tyrosine
kinases, in this case, of the cytoplasmic Src family [34]. The exact mechanism that connects
NO with those kinases is as yet unknown. In the latter case, the analysis of the Vav family-
regulated physiological programs has also shed light on lingering questions affecting a
number of etiological factors and cross-talk that are associated with the development of
cardiovascular and metabolic diseases. For example, a rather obscure issue in this field
is the role played by chronic sympathoexcitation in the development of both obesity and
metabolic disease. Likewise, the role of hypertension in the development of type II diabetes
and the ensuing metabolic syndrome is under debate. Answering these questions is highly
relevant, since the data obtained will give us information on whether all these pathologies
are etiologically and mechanistically intertwined or whether they just develop concurrently
(but independently from a mechanistic point of view) as a consequence of the lifestyle
of people. Tackling these issues from a clinical point of view has been rather difficult
up to now given the multiple ethnic, sex, genetic, and environmental layers that affect
the origin and evolution of all these illnesses. The availability of Vav3–/– mice has made
it possible to use them as genetically “clean” tools to dissect the contribution of chronic
sympathoexcitation to these pathologies. The findings obtained with them indicate that, at
least in the case of rodents, the chronic stimulation of the SNS does affect the development
of most pathological dysfunctions linked to metabolic syndrome conditions (Figure 4) [63].
They also suggest that treatments with α-adrenergic receptor antagonists, but not with
β-adrenergic receptor antagonists, can be utilized to eliminate the metabolic syndrome
condition in non-obese individuals displaying chronic sympathoexcitation (Figure 4) [63].
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The combined used of Vav2–/– and Vav3–/– mice also demonstrated that hypertension does
not contribute per se to the development of type II diabetes and metabolic syndrome [63].

The use of Vav3–/– mice led to the discovery that vagal signals originated from pe-
ripheral tissues are essential for the consolidation of the systemic pathologies caused by
RVLM-driven sympathetic hyperactivity [76]. In line with this, it was observed that the
surgical or chemical elimination of the afferent vagal branch that goes from the liver to the
brainstem eliminates all the cardiovascular and metabolic defects found in Vav3-deficient
animals [76] (Figure 3, point b). The transmission to, and subsequent integration of these
vagal nerve-transmitted inputs into the RVLM requires further investigation.

Finally, there is the issue of whether the functions discovered in mice have a translation
to human settings. At moment, this question remains to be tackled. However, it is
worth noting that genetic association studies have found associations of specific VAV2
and VAV3 gene polymorphisms with the development of functions found in mice such
as cardiovascular homeostasis, hypertension, obesity, and diabetes [77,78]. More work,
however, is needed to fully address this issue.

8. Physiological Functions of Vav Proteins, a Problem for Potential
Anti-Vav Therapies?

Recent data indicate that the inhibition of the catalytic activity of Vav proteins could
be of interest to treat a large variety of pathologies such as immune dysfunctions and
cancer [2,79]. For example, in the case of Vav2 and Vav3, protumorigenic roles have
been described in skin cancer, head and neck cancer, and p190BCR-ABL-driven B cell acute
lymphoblastic leukemia [80–82]. Roles for the third family member, Vav1, in cancer and
other pathologies will be described in other reviews of the Special Issue on Vav proteins of
this journal. Thus, they can be considered as potentially interesting good targets if high
affinity inhibitors can eventually be developed. However, prima facie, it can be considered
that the phenotypes described in this review can preclude the application of such therapies
due to the extensive side effects they can elicit in the cardiovascular system, the skeletal
muscle, and the overall metabolic homeostasis in patients. It is likely that the same problem
would also arise when using inhibitors targeting downstream elements of the Vav–Rac1
axis. This issue is still a matter of investigation. However, with the available evidence, we
can forecast some of the most important problems and rule out other potential side effects.

In the case of Vav2, we believe that the cardiovascular defects elicited by the inhibi-
tion of Vav2 should not represent a serious hurdle for anti-Vav2 therapies for a number
of reasons: (i) Genetic evidence indicates that the hypertensive state is rescued when
the activity of Vav2 is restored in Vav2-deficient mice [36]; (ii) these defects can be pre-
vented using standard anti-hypertension therapies [33,34,36]; and (iii) using homozygous
Vav2L332A/L332A (which display a reduction in 70% of Vav2 catalytic activity in tissues) and
heterozygous Vav2L332A/– (which displayed a reduction of 85% of Vav2 catalytic activity
in tissues) pharmaco-mimetic mice, we have shown that the cardiovascular defects only
arise in the latter animals [38]. However, effective anti-tumoral effects were obtained when
using both Vav2L332A/L332A and Vav2L332A/– mice [38]. These results indicate that it could
be possible to find therapeutic windows in which the positive anti-tumoral effects of the
catalytic activation of Vav2 can be dissociated from the negative side effects [38]. Skeletal
muscle defects do arise in Vav2L332A/L332A mice though [39], thereby suggesting that the
use of Vav2 inhibitors could eventually lead to the loss of muscle mass and the development
of a metabolic syndrome condition if administered during very long periods of time. The
time-window in which most of these defects arise, however, suggest that patients will not
develop such side effects under the normal protocols usually utilized during anti-tumoral
treatments [39].

In the case of Vav3, we consider that most defects found in Vav3–/– mice do not
represent a red flag for anti-Vav3 therapies because they arise as a consequence of the dys-
regulation of biological processes that take place during the embryonic or early postnatal
times. Thus, it is unlikely that they will emerge when Vav3 is inhibited at older ages.
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9. Concluding Remarks

Despite the progress made, many regulatory and functional issues remain to be
addressed for these Vav family-dependent physiological processes in the near future.
Thus, we still have a long way to go to understand the upstream receptors, regulatory
molecules, and downstream pathways that are involved in most of the signaling processes
described in this review. This is important from a basic science perspective, but also from
pharmacological and clinical points of view, given that this information can shed light
into new therapeutic avenues for high-incidence diseases. In this context, it has been
generally assumed that most phenotypes found in Vav family mouse models are Rho
GTPase-dependent. However, the specific GTPases that are involved remain to be clarified
in the case of most of the pathways that have been discussed here. Likewise, we cannot
rule out the participation of Vav-regulated adaptor pathways, at least in some of them.

The repercussions of some of the defects found in Vav family-deficient mice at the
organismal level also remain poorly characterized. For example, we do not know as yet the
impact of the defects found in retinal neurons on the vision of Vav family-deficient mice.
As indicated above, the physiological problems associated with the myelination defects
found in Vav3–/– mice are also unknown. Many questions remain to also be addressed
in the case of the regulation of sympathoexcitation by the RVLM in Vav3-deficient mice
and how it is affected by the inputs received from vagal afferent fibers. All these lingering
problems can be solved by continuing the analyses of genetically modified mice for Vav
family genes and for other loci encoding proteins implicated in these processes.

Finally, we cannot rule out the implication of Vav family proteins in additional func-
tions in the tissues and systems discussed in this review. It is also possible that additional
phenotypes will be found when the genetic manipulation of Vav family loci is conducted in
combination with other Rho GEF-encoding genes. Arguably, more work has to be done to
eventually solve all these questions.
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